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ABSTRACT

We develop necessary and sufficient conditions for
importance sampling measures to yield estimates
with bounded relative error. We use these condi-
tions to examine the properties of existing methods
for estimating failure probabilities in highly reliable
systems. We then propose a new approach which
we show has bounded relative error and is asymp-
totically optimal.

1 Introduction

We consider estimating the mean-time-to-failure
(MTTF) of highly reliable systems using simula-
tion. Analytical difficulties often require the use
of simulation to estimate MTTF, even in cases
where component failure times are exponentially
distributed. Unfortunately, for highly reliable sys-
tems, the events of interest (system failures) occur
very infrequently, so long simulations are required
to estimate the MTTF with reasonable confidence.
Equivalently, simulations of a given “length” typ-
ically have high variance. Importance sampling is
a variance reduction technique which provides po-
tentially dramatic (orders of magnitude) reductions
in estimate variance, or equivalent reductions in the
computation required to obtain estimates of a spec-
ified confidence.

Unfortunately, the optimal application of im-
portance sampling requires in some sense “knowing
the answer.” Moreover, misapplication can increase
the variance, rather than reducing it. Existing ap-
plications in the reliability area have been based
substantially on heuristics.

In this paper, we develop new expressions for
the relative error of estimates based on importance
sampling and use them to characterize two existing
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heuristics. Then we propose a new approach which
we show yields estimates with bounded relative er-
ror, and which is asymptotically optimal (relative
error — 0).

2 Background on Importance Sampling

The basic idea of importance sampling is to modify
the system so that the events of interest are more
frequent. The observations made on this modified
system are then transformed to obtain an estimate
for the original system. Basic references are Ham-
mersley (1964) and Glynn & Iglehart (1989). See
also Bratley, et. al. (1987) for a succinct presen-
tation of the key ideas. To see how importance
sampling works, consider the following simple ex-
ample.
Let X be a random variable with

X = { 1 with probability .99

10000 with probability .01
and assume that we want to estimate its (presum-
ably unknown) mean px := E[X] via simulation.
To do this, we generate N independent samples of
X, denote them by z,,...,zxn, and use the stan-
dard estimator

1
ﬂx=—1\7§$i~

This estimator is unbiased (due to its linearity) and
its standard deviation is ax/\/ﬁ, where ox is the
standard deviation of X itself. For the distribution
of X given above, ox & 995, whereas p = 100.99.
Thus a large number of samples will be required
to obtain a good estimate. The basic difficulty is
that the “important” event, as far as the mean is
concerned, occurs infrequently—it is a “rare event.”
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Importance sampling (IS) is based on the fol-
lowing observation. Letting X be defined on the
probability space (2, F, P), we can rewrite the stan-
dard formula for the mean as

px = /de(:c) = /:c dPI(Z) dPr(z) (1)

where we
have simply multiplied by dP(z)/dPr(z) = 1, with
dP(z) being another probability measure. Defin-
ing ¢(z) := dP(z)/dP(z), the resulting integral
can be thought of as the expectation of a new ran-
dom variable Z := X - £(X), where X has probabil-
ity measure P;. Assuming that dP = 0 whenever
dP; =0 (i.e. P is absolutely continuous w.r.t. Py),
we can estimate p by generating the N independent
samples using Py, then defining

LN
pri= o ;-’ti A(zi).

P; is called the importance sampling measure, or IS-
measure. That this gives us an unbiased estimator
of pu is apparent from equation (1). The crucial
point is that a careful choice of P; will yield an
estimator with much lower variance.

Let us apply this idea to the example above.
If we define dP; by

¥ = 1 with probability .01
T 1 10000 with probability .99

then we can verify that E[X - (X)] = p. On the
other hand, the standard deviation is .2, so for
a given number of observations, the accuracy has
been improved by a factor of 5000.

It is worth underscoring the impact of variance
reduction on computation. Since the confidence
intervals produced by most statistical techniques
are proportional to the standard deviation, the key
question in comparing estimators is: How much
computation is required to obtain a given standard
deviation? In discrete-event simulation, the com-
putation is roughly proportional to the number of
simulated events, so assume we have simulated n
events and our estimate standard deviation is o(n).
Now assume we simulate an additional N —1 blocks
of n events. For n large, the blocks will be essen-
tially independent. Moreover, typical estimators
can be written as the average of estimates based on
each block individually (think of counting the fre-
quency of events of a certain type). Then the stan-
dard deviation of this overall average is o(n)/v/N.
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The factor of 5000 reduction (in standard devia-
tion) in the example above translates into a factor
of 2.5 x 107 in computation reduction.

More generally, we can consider expectations
of functions of X. Applying the same reasoning as
above, we can estimate E[g(X)] by

|
& 2 9(@i) (=) )
i=1

where, again, the z; are generated using density
dP;. Also, X may take values in R™ or a more
general space. This is the typical situation in ap-
plications. For example, X may be a sequence of
interarrival times and service times in a queueing
system, or a sequence of failure and repair times of
components. In such cases we may have g(X) =1
if the resulting queue length exceeds K (or, respec-
tively, the system has failed) and 0 otherwise.

3 Optimal Importance Sampling

The improvement obtainable using importance
sampling is theoretically infinite. If we happened
to choose dP(z) = « - dP(z)/px, then

dP(z)
g(z;)dPr(z)/px

so our estimate variance would be zero even though
the variance of the naive estimator can be arbitrar-
ily large! Of course p is unknown, so we can only
hope to approximate this optimal density. More-
over, choosing the wrong density can make the es-
timate worse—in fact, arbitrarily worse. For exam-
ple, defining P; in the example above by

g(zi) - (xs) = g(x:) = px

¥ = 1 with probability 10~7
=1 10000 with probability 1 —10~7

gives X - £(X) a standard deviation of approxi-
mately 3132. And arbitrarily bad choices of Pr
exist. Let a denote the probability that the IS-
density Py assigns to the outcome ¥ = 1. Then
a characterizes the family of possible importance
sampling densities. The graph in Figure 1 shows
the variance ratio (02/0% ) as a function of p1,
plotted in Log-Log scale. While the computation
is reduced over a broad range of «, large reductions
require careful selection of . It is apparent that
one cannot simply put all (or most) of the proba-
bility mass on the event of interest. In fact, as the
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Figure 1: Computation Ratio as a Function of o

optimal (zero variance) density shows, one needs
to distribute probability mass proportional to the
“importance” of the outcome, where the relative
importance of an outcome z is given by the product
g(z)- fx(z), which is the proportional contribution
of £ to the expectation integral. This is particu-
larly difficult in most applications where one con-
siders a function g(X), because g(X) is typically
complex and many-to-one, so P{g(X) = 8} cannot
be determined for arbitrary £ (though g(X) can be
computed—this is what the simulation does).
Now let g(X) be an indicator function, i.e.
g(X) :=1{X € A} = 14(X),

where X~1(A) € F (i.e. A is a measurable set in
the space of X). When X is the sample path of
a system, A may denote the set of sample paths
where the system fails, or a queue overflows (this
will be discussed further in the next section). For
these indicator functions E[g(X)] = P[A], so the
optimal IS measure becomes

dPi(z) = g(z)dP(z)/E[X]
= 14(2)dP(z)/P(4)
{ dP(z)/P[A] = dP(z|A) z €A
0 otherwise

We want to emphasize two features of this opti-
mal IS measure. First, it puts all of the probability
measure on the set A. Second, on A the measure is
precisely the conditional probability of X given A,
so the relative likelihood of values of X in A is the
same in both the original and IS measures. Put an-
other way, dP;(z;)/dPr(z2) = dP(z,)/dP(z2) for
all 21, 5. This fact can be used to guide the con-
struction of IS measures.

The effect of deviations from this optimal IS
measure can be seen by considering the variance of
the resulting estimator. Let P} denote the optimal
IS measure as given above, P the actual IS measure
used for estimation, and o3 the resulting variance.

dP(z)

Then
2
a1 (z) A))J
Ep, [<1A(x)dd;((z)) _ IA(X)jl;((?))
dP(z)  dP(z)\?
/. (dPI(x)‘dP;( ;) i
5 (dP1(z)* — dP(z)?
JECH 4P 1 (2)dP} () ) @it

PlA]2 /A (dpﬂzzj:(:;m ’(z)) 4P (2)

0%[ |E|p, [<1A(X

—_—

We then have that an estimate of P[A] based
on one sample has relative error

0'|p,

“*Pl4]

- ([ (= o)
(3)

where the proportionality constant c, is deter-
mined by the confidence level . With n indepen-
dent samples, this error would decrease by a factor
of 1/y/n. From this we can see that if P; sub-
stantially underestimates P} on a “non-negligible”
subset of A, then the relative error can be large.
More precisely, we have the following two theorems
covering discrete and continuous P.

er =

THEOREM 1 Let P be discrete and A; = {z : z €

A,P[z] = O(P[A])} (so A = U2, A;).} Then e, is
bounded for all P[4] > 0 iff P;(z) = ©(1) for all
Tz €A

PROOF:

=

Assume that P;[z] = ©(P[A]¥) with k > 1 for some
z, € Ay and note that P}[z] = P[z]/P[A] = o(1)

!By y = ©(a) we mean y = coa + o(a) for constant co
independent of o.
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for x € A;. Then

Pilzo] — Pr(zo)
P’(zo)
o(1) — o(P[A]*)
S(PATF)
1

= W—»oo as P[A] —0.

e > Ca (P'(20))"/

(o(P[4))) "

=

Assume that P;[z] = ©(1) for z € A,. For P (and
P; and P}) discrete, the integral in (3) becomes a
sum, so

o

9 1/
_. Pile] -Pi(=)\ " p .,
€r = Cqo (; < P[(l‘) > P )) :

For z € A4,
Pi(z) —Pr(2)\® _ [0(1) - 0(1)\* _
( Pr() ) ‘( o)) )‘@“y
For z € Ay, with k > 1,
<ﬂm—any
Pr(z)
<MHM“U—@WMW>2
o(P[A])
[ O(PIAPGID) i <k -1
= {e((n iszk—l.}se(l)

So,

1/2
er < Co (Zeuw,m) < 0(1).

[m]
For the continuous case, assuming P, Py, and
P} admit densities f, fr, and f7, respectively,

e, 1=
O

e P[4]

o (f (et

, 1/2
) G 11
’%(A< 1) ”“”)

Then similar to the discrete case, we have

1/2

THEOREM 2 Let P (and P;) be continuous and
A; = {z : f(z) = 0(P[A]'}. Then e, is bounded
for all P[A] > 0 iff fr(z) = ©(1) almost everywhere
on A.

PRroOF:

=

Assume fr(z) = O(P[A]F) (k > 1) on B C A, with
P;[B] = ¢ > 0. Then

fi(2) - fi(@))’ e
S (/Al (’fT) f’“”)‘“)
o\ 1/2
(1) — O(PAJ%)
20“@( S(P[ATF) ))
car/q
CQW—*OO as P[A]—>0
=

Assume that fr(z) = ©(1) for z € A; a.e. on A;.
Then for almost all z € Ay,

fi(z) - fr(z) _©6(1) —O@1) _ o
fi(z) o(1)

and for x € Ay (with & > 1),

fi(z) = fir(x)
fr(z)
O(P[A}k-1) — ©(P[A))
O(P[A}7)

OP[AIE-1-1) ifj <k —1
= {@%1)[] : if;zk—l.}se(l)

(1),

Thus,

er <o (]r(@(l))2 f:(-’C)alﬂB>1/2 = ¢aO(1)

for P[A] > 0. a
Similar results can be obtained for general
measures (i.e. mixed discrete and continuous).

4 Failure Biasing in Reliability Estimation
For Markovian Systems

Failure biasing is the term used to describe the ap-
plication of importance sampling to the simulation
of highly reliable systems. The results of the pre-
vious section provide insight into existing failure
biasing methods and allow us to define an asymp-
totically optimal failure biasing scheme. We use
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a simplified version of the setup of Shahabuddin
(1991). In brief, the system is composed of C types
of components, each with redundancy n;. Failed
components are repaired. The state of the system
is given by ¢ = (1, ..., z¢), where z; is the number
of components of type ¢ which are not operational.
The system is said to have failed whenever z; = n;
for any ¢. The time-to-failure of components of
type ¢ is exponentially distributed with parameter
A\;i = c;€® and repairs of components of type i are
also exponentially distributed with parameter p;.
Thus the state of the system is characterized by a
continuous-time Markov chain. The situation of in-
terest occurs when € is small, so that \; < p;, i.e.
repairs occur at a much higher rate than failures.
This makes the system highly reliable with system
failure a rare event. Thus, estimating the proba-
bility of failure by naive simulation results in high
relative error.

Before discussing failure biasing, we first intro-
duce two simplifications. First, using the method of
discrete-time conversion (Hordijk, et. al. (1976)),
we can replace the continuous-time Markov chain
by the embedded discrete-time chain. Second, we
focus on estimating the probability that the system
fails before returning to the fully operational state.
Let F = {z : z; = n; for some ¢} denote the set
of states where the system has failed, and, abus-
ing notation, let z = 0 denote the state where all
components are active. Also, assuming the system
starts in state z = 0, let 74 be the hitting time
of a set of states A. Then the performance mea-
sure we consider is P[rg < 7p]. This measure is the
key component of a number of important perfor-
mance measures (see Goyal, et.al.(1992) and Wal-

rand (1988)).

Example 1 (adapted from Nakayama (1993)) Let
C = 2 with (ny,n2) = (3, 1), and assume all oper-
ational components of type 1 are in simultaneous
use and fail at rate e and the single component of
type 2 fails at rate ¢2. All components can be re-
paired 51multa.neously at rate p. The continuous-
time Markov chain representing this system is de-
picted in Figure 2 and the embedded discrete time
chain in shown in Figure 3.

The basic idea of failure biasing is to increase
the probability of failure transitions so as to make
failure events more likely. There are two standard
methods. Both involve increasing the total prob-
ability of a component failure to é at each state.

ample 1

=172| |= e2 =1/2

=12 ~7 Z1n V =1/2

Figure 3: Embedded Discrete-Time Markov Chain
of Example 1

Based on empirical studies, § is typically chosen in
the interval [.5,.9]. The methods differ in how the
total probability é is allocated among the failure
transitions at each state. In simple failure biasing,
§ is divided proportional to the original probabili-
ties of the individual failure transitions. In balanced
fatlure biasing, 6 is divided evenly, irrespective of
the original probabilities. The single exception to
these rules occurs at state 0. Since repair transi-
tions cannot occur in state 0, the total failure prob-
ability is already 1 and is allocated proportionally
(trivially). Thus simple failure biasing ignores state
0. Balanced failure biasing equalizes the probability
of failure transitions exiting state (without adjust-
ing the total probability). Figures 4 and 5 show the
resulting DTMC after each type of failure biasing.
Let P(s,t) denote the original probability of the
transition s — t, and Py(s,t) the transition proba-
bility after biasing. Then the probability of a sam-
ple path w = (s0,51,52,...,5m) is given by Plw] =
1%, P(si-1, si) under the original transition prob-
abilities and by Prlw] = [['_, Pr(si-1,s:) with
the biased probabilities. The IS estimator is then
given by equation (2) with £(w;) = P[w;]/Pr[w;] and
9(wi) = 1{sm, € F}.

We can make the following observations re-
garding this example. First, simple failure bias-
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Figure 4: Embedded Markov Chain of Example 1
After Simple Failure Biasing

Figure 5: Embedded Markov Chain of Example 1
After Balanced Failure Biasing

ing will not give bounded relative error. This was
shown for a related example by Nakayama (1993)
and can also be shown via Theorem 1 as follows.
Let A denote the sample paths which start in state
0 and hit F before returning to 0. By inspection,
we can see that P[rr < 79] = P[A] = O(e), cor-
responding to a failure of the single component of
type 2. Thus P[((0,0),(1,0))] = ©(P[A]) and so
we need P;[((0,0),(1,0))] = ©(1) to have bounded
relative error. But from Figure 4 we see that
P;[((0,0),(1,0))] = ©(e) under simple failure bi-
asing.

Under balanced fail-
ure biasing, P;[((0,0),(1,0))] = ©(1) as required.
Since all other paths are of higher order (in P[A])
under the original measure, we have bounded rel-
ative error. In fact, we can immediately see why
balanced failure biasing always yields bounded rel-
ative error (proved by Shahabuddin (1991)). Since
the failure probabilities are balanced at each state,
and have ©(1) total probability, Pr[w] = ©(1) for
all w € A (under very weak regularity conditions).

Shahabuddin (1991) and Nakayama (1993)
give conditions under which simple failure biasing
has bounded error. An intuitive characterization
is as follows. The difficulties lie in the way the e-

order of transitions is reduced by the biasing. When
the transition probabilities are biased, the result-
ing order of each failure transition is reduced by
the order of the lowest-order failure transition exit-
ing the state (which itself becomes ©(1) under the
biasing)—except at state 0. Observe that a path
consisting solely of transitions of ©(¢) will neces-
sarily have total order 1 after biasing. On the other
hand, since the order of a path is the sum of the or-
ders of the individual transitions, paths whose first
transition (out of state 0) has € order > 1 effectively
have part of their total order concentrated on a
transition which will not undergo any order reduc-
tion. In addition, paths with fewer transitions will
generally undergo less total order reduction since
their individual transitions necessarily have higher
order which typically makes then not the lowest or-
der transition exiting the state. Thus they are only
partially reduced. The difficulties with simple fail-
ure biasing lie in its inherently myopicnature; tran-
sitions are biased on the basis of local information.
Balanced failure biasing, while it gives bounded rel-
ative error, is clearly a crude approximation of the
optimal biasing. In the next section we give a bi-
asing scheme which we show is asymptotically op-
timal and has bounded relative error.

5 An Optimal Failure Biasing Scheme

The basic idea is to determine, for each transi-
tion, the € order and leading constants of the set
of sample paths leading to F' which begin with the
given transition. Then we bias proportionally. Let
A(s,..) = {w € A :w = (s,...,F)}, ie. the
set of paths which start in state s and hit F be-
fore hitting state 0. Similarly, let A(s,¢,...) :=
{weA:w= (s¢...,F)} denote the set of
paths from s to F' which begin with transition (s,1).
Finally, let R(s) := {t : P(s,t) > 0}, i.e. the
states reachable from s in one transition. Define

P[A(s,t,...)] = P[A(s,¢,...)] + o(P[4]).

THEOREM 3 The IS measure defined by the tran-
sition probabilities

PlA(s,t,..)]
2 ter(s) PlA(s 2, .. )]

has bounded relative error.

Pr(s,t) :=

4)

PROOF:

Let w = (s0,...,F) € A;. Then necessarily
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P[A(si, si+1,...)] = O(P[A]) for all transitions of
w. Consequently,

PlA(s:, siq1,-..)]
ZteR(s) P[A(Sivt’ e )]
O(P[A])
= —==t=0(1

ora) ~ °V
(noting that P[A(s;,...)] < O(P[A])). Thus,
Pr(w) = [1; Pr(si,si+1) = ©(1) and the result fol-
lows from Theorem 1. O
Note that this algorithm assigns each state a to-
tal failure probability of § = 1 in contrast to the
biasing methods of the previous section.

Pr(si,siy1) =

THEOREM 4 The above biasing is asymptotically
optimal, i.e. e, — 0 as P[4] — 0.

PROOF:
By definition,

Pi(s,t) = I15’[A(§,t, )l
Lien(s) PIA(s 1. )]
P[A(s,t,.. )]

ZteR(s) P[A(S,t, e )]
as P[A] — 0. But

P[A(s,t,...)]
ZtGR(s) PlA(s,t,.. )]

that is, the optimal biased transition probability.
Thus

= P/ (s, 1),

dPi(z) — dP(z)
dP[(:D)
on Aj, while at the same time P;[A;] — 1. Thus,
from (3), e, — 0. =
Let ©f = maxycr()P[A(t,u,...)]. Then the
probabilities P[A(s, ¢, ..
ing recursion:

P[A(s,t,.. )] = P(s,1) >

wP[A(,u,...)]=07

-0

.)] are given by the follow-

PlA(t,u,.. )]

(5)
Given reasonable constraints on the structure of
paths in A; (e.g. the state sequence in each w is
non-decreasing in each component), we can solve
this recursion via dynamic programming. Since this
can be viewed as a variant of a shortest path prob-
lem with multiplicative cost structure, we can also
apply more efficient labeling algorithms (see Ahuja,
et. al. (1993)). For our example, we get:

P[A((0,2),..)] = ¢
P[A((0,1),(0,2),...)] = 2¢2
P[A((0,1), F] = ¢?
P[A((0,0),(0,1),...)] = 3¢2
PLA((0,0), F] = (1/3)e

Figure 6 shows the biased probabilities obtained
for Example 1. Though the number of states grows

Figure 6: Optimal Failure Biasing For Example 1

exponentially with C (the number of component
types), many practical systems have component
types (or groups thereof) with independent failure
and repair processes, so the system can be decom-
posed into manageable subproblems.

One final note: notice that the optimal fail-
ure probabilities are inherently dynamic—they are
a function of the state. This is a slightly different
use of the term than that in Goyal, et. al. (1992).
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