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ABSTRACT

We discuss a way of simulating M replications of a
uniformizable Markov chain simultaneously and in
parallel (the so-called parallel replication approach).
Simulation is performed to estimate the expectation
of some cumulative reward over a finite deterministic
time horizon. Distributed implementation on a num-
ber of processors and parallel SIMD implementation
on massively parallel computers are described.

We investigate the adaptation of Fishman’s rotaiion
sampling approach (Fishman 1983a and 1983b) to our
setting in order to reduce the variance of the estima-
tors. It is pointed out that the algorithms can be used
in conjunction with the Standard Clock simulation
of uniformized chains at distinct parameters (Vakili

1992) to increase the effectiveness of the Standard
Clock simulation.

1 INTRODUCTION

Parallel/distributed approaches for discrete-event
simulation are categorized as single simulation run
and multiple runs methods; the latter corresponding
either to multiple statistical replications of one sys-
tem, the parallel replications approach (Glynn and
Heidelberger 1991), or to simulation runs of one sys-
tem at multiple parameter settings (Vakili 1992). Of-
ten the approaches in these two categories are de-
signed to address different computational issues of
discrete-event simulation. Those in the first category
address the simulation of a large discrete-event sys-
tem (for a review see Fujimoto (1990)) where the size
and complexity of the system renders its simulation
on sequential machines inefficient or infeasible. Those
in the second category address the computational is-
sues related to cases where a large number of sta-
tistical replications of a system is required to achieve
acceptable levels of accuracy, or when the system is to
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be simulated at a large number of parameter settings
in order to, for example, find an optimal setting.

In this paper we describe a way of implementing
M replications of a system in parallel. Our model
of parallel simulation is very similar to that of the
so-called Standard Clock simulation of a system at
multiple parameter settings (Vakili 1992). In fact us-
ing both approaches in conjunction with each other,
where, for example, a system is simulated at N pa-
rameter settings and for each setting M replications
are run, is highly desirable. Parallel simulation via
Standard Clock allows for dynamic and simultaneous
comparisons at multiple parameter settings. Simu-
lating multiple replications at each setting simulta-
neously makes the comparisons significantly more ef-
fective.

We limit ourselves to uniformized Markov chains.
Generalizations of this setting is possible (see Vek-
ili 1992). Our basic model is similar to that used
in (Heidelberger and Nicol 1992, 1993a and 1993b).
We assume that the objective of the simulation is to
estimate the expected value of some cumulative “re-
ward/cost” over a finite deterministic horizon. Ran-
dom horizons require a separate treatment (see Glynn
and Heidelberger (1991), Heidelberger (1988)). We
investigate the adaptation of Fishman’s rotation sam-
pling approach (Fishman 1983a and 1983b) to our
setting in order to reduce the variance of the estims-
tors.

The paper is organized as follows: preliminaries ar
given in section 2. Section 3 and 4 describe parallel
independent and parallel correlated simulation alge-
rithms. Experimental results are presented in section
5. We conclude in section 6.

2 PRELIMINARIES

In this section we present the basic setting of the pa
per and establish notation.
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2.1 Simulation of Markov chains

Let X = {X;,t > 0} be a continuous-time Markov
chain (CTMC) on a (finite or) countable set S. Let
Qi; be the rate of transitions from state s; to state
sj, and let ¢; = —Q;i; be the total rate of transitions
out of s;. All through this paper we assume that the
chains simulated are uniformizable, i.e., Q is bounded
(supgi < 0o). Given that the chain is in some state,
say 8;, it remains in that state for a duration that
is exponentially distributed with mean ¢ '. Given a
transition out of s;, the next state of the chain - a dis-
crete random variable - has probability mass Q;;/q;
at state j. One strategy for simulation, therefore, is
to generate samples of an exponential residence time
and a discrete random variable of the next state for
each transition.

2.2 Uniformization

For uniformizable chains, the sojourn times of the
chain in states can be uniformized by appropriately
introducing extra fictitious transitions from states to
themselves. The inter-event times can thus be made
an i.i.d. sequence of exponential random variables
independent of the states of the chain. This often
leads to simplifications that can be exploited to de-
sign alternative simulation strategies that in one way
or another improve upon the above straightforward
approach (e.g., see Hordijk et al. (1976), Fox and
Glynn (1990), Heidelberger (1992, 1993a and 1993b)
and Vakili (1992)). In this paper we assume that the
chain is uniformized.

More precisely, let X = {X;,t > 0} be a CTMC
with infinitesimal generator @ bounded by A. Let
NA = {N,,t > 0} be a Poisson process with rate
Aand Y = {Y,,n > 0} a discrete-time Markov
chain (DTMC) with transition probability matrix
P = I+ A~'Q (where I is the identity), with N*
and Y mutually independent. If X, has the distri-
bution of Yy, then {X,,t > 0} and {Yn,,t > 0} are
equal in law. The Poisson process N A determines
the (potential) state transition epochs of the CTMC
X, while the state transitions are determined by the
DTMCY.

2.3 The Model

We limit ourselves to those chains that are “well-
structured”. We assume that all state transitions are
caused by a finite number of events. It is implicitly as-
sumed that the transitions caused by the same event
in all states are in some sense “similar”; for example,
in simple migration processes (see Kelly (1979), Ch.
2) the effect of a migration from colony i to colony j

is similar in all states: it corresponds to the reduction
of the population of colony i by one and the increase
of the population of colony j by one. This additional
structure - which is often present in simulated systems
- is not easily discernible from the transition rate ma-
trix Q. To make things more explicit we consider the
following model:

Let S denote, as above, the state space. Let E =
{e!,...,eX} be the set of events, K finite. To each
event e there corresponds a state transition rule

f(e,u) : S-S,

where u is a uniform r.v. on (0,1) used to generate
probabilistic transitions. Note that f(, ,) is defined
on all of S. If event e is not active in state s, then
f(e,u)(8) = 8, corresponding to a null transition.

Let (1,e,v) = {(mn,€n,vn),n > 0} be a marked
Poisson process, where {m,,n > 0} is the sequence
of arrival instances of N*, {¢,,n > 0} is an i.i.d.
sequence of discrete random variables, independent
of the Poisson process N*, such that ¢, € E and
P(e, = €') = pi, and {v,,n > 0} is an i.i.d. sequence
of uniform random variables on (0, 1) independent of
the sequences 7 and €. A is the rate at which the
clock ticks, 7, is the n-th tick of the clock, €, is the
type of event that occurs at the n-th tick of the clock,
and v, is the uniform r.v. used to generate the n-th
state transition.

Given initial state Yo = Xo, the state of the system
evolves as follows:

Y, = f(e,.,u,.) o f(en-hvn-n) 0---0 f(€1,01)(X0)

and

X = ZY,,I{T,, <t< Tpy1}, fort>0

n=0

(I{.} is the indicator function.)

Let g : S — R be a real-valued function defined on
the state space of the system, and let T be a finite
deterministic stopping time and let

T
L= /0 o(X0)dt

be a random variable representing some cumulative
cost/reward over [0,T]. Our objective is to estimate
6 = E[L] via simulation.

Remark 2.1 : This setting avoids some of the issues
that arise when random stopping times are selected.
See, for example, Glynn and Heidelberger (1991),
Heidelberger (1988), where random stopping times
are considered and it is shown that when simulation
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experiments are not carefully designed the estimators
may be biased. The case of random stopping times
requires special treatment which will not be consid-
ered in this paper.

Example 2.1 Consider a tandem queueing network
with K servers and buffer sizes {b;,! = 1,...,K}.
Customers arrive to the system according to a Pois-
son process with rate Ao, and service times at server !
are assumed to be exponentially distributed with rate
Al

Let Y, (!) be the number of customers at queue I im-
mediately after the n-th transition. The set of the
events consist of K +1 events {e/,1=0,..., K} where
e° corresponds to the arrival event and e’ to the de-
parture from server I, = 1,..., K. Event e° is ac-
tive at all times; event €' is active, if ¥,,(I) > 0 and
Yol +1) < b(l+1). Let go = 5, Yx(1), be the

total number of customers in the system.

To simulate a uniformized chain a uniform r.v. u,
is generated at the n-th tick of the clock. Then ¢, =
e if z:_:_l Ai <up < 25=0 Ai. The transition rule f.:
is applied to determine the next state of the system.

2.4 Discrete-time conversion

Uniformization is often used to convert a continuous-
time problem to a discrete-time equivalent. In theo-
retical investigations such a discrete-time conversion
simplifies the analysis (see Keilson 1979) and in simu-
lation it can lead to variance reduction (see Hordijk et
al. 1976); the latter sometimes involve the extra cost
of generating some null transitions. The cost is al-
ready incurred in our context; hence from now on we
consider the discrete-time version of the problem and
assume that the discrete-time chain ¥ = {¥,;n > 0}
is simulated. More precisely, let

Nr = Max{n;m, < T}
Nt is Poisson distributed with rate AT. Let L' =
E[L|Y, Nr], then
Nr
L'=> 9(ta)
n=0
and E[L'] = 6. Hence to estimate 6, it is sufficient to
simulate Ny and Y. For a general discussion of this
approach see (Fox and Glynn 1990).

T
Nr+1

3 PARALLEL (INDEPENDENT) REPLI-
CATED SIMULATION

To simplify the presentation we assume that all tran-
sitions f(c,4) are deterministic, i.e., once event ¢, is

generated, there is no need to generate v, to deter-
mine the next state. The extension to the probabilis-
tic case is straightforward. We assume that we are to
simulate M replications of the system to estimate 4.

3.1 Model of parallel simulation

Let ¢/ = {el;n > 1} and Y7 = {Yi;n > 0} be,
respectively, the i.i.d. sequence of events that drive
the j-th replication and the sequence of states visited
by the j-th replication (j = 1,...M). In this section
we assume that €/’s are independent for j = 1,... M.

Similar to the parallel simulation of a parametric
family of chains (see Glasserman and Vakili 1992), we
consider the following model for the parallel simula-
tion of parallel replications.

Let e € EM. Define F, : Hjlw S — Hjlu S compo-
nentwise, i.e.,

Fg(ylx .. -)y‘M) = (fel(yl)) .. ')fem(yM))

The process Y = {¥Y,;t > 0}, defined on Hjlu S, is

given by
Y,=F oF o...0F (Y,)
where ¢, = (el,...,eM).

For example, when M replications of a tandem
queueing network are simulated, at each tick, M in-
dependent uniform r.v. - uw) for replication j - are
generated; event ¢, is determined using uJ;

Remark 3.1 A note of clarification is in order here.
This construction introduces a coupling across M
replications in continuous time. We assume that the
same Poisson process N2 is shared between replica-
tions and

oo
X} = Zy,{l{r,, <t< Tayr}, fort>0

n=0

for j = 1,...M. Moreover, to estimate 8, we will use
the same Np for all replications. Nonetheless, it can
be easily verified that the processes X7 (and Y7) have
the right marginal probability laws (j = 1,... M) .

3.2 Parallel implementation

The above construction can be easily implemented
in a variety of computational environments. The
construction has two basic steps: (i) generation of
€, = (el,...,€M), and (ii) evaluation of Fe (Y(n_p)

In a parallel/distributed implementation assume
each (or a group of) processor(s) simulates one repli-
cation. First a sample of Nr is generated and re-
ported to all processors. Subsequently, each processor
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evaluates its associated ¢/ and foi (Y(':;_l)). Little, if
any, coordination is required across processors during
the simulation (however, such a coordination can be
imposed so that the processors execute their codes in
lock-step).

In a SIMD implementation, a sample of Nt is gen-
erated at the front end. Again assume that each (ora
group of)) processor(s) simulates one replication. Pro-

cessors evaluate their associated e/, and f, ; (Y(’n _n)

in parallel and in a SIMD fashion (the front-end di-
rects them to find €], . Once all processors have evalu-
ated €], they are directed by the front-end to evaluate

fc{,(}’(]n—l))

Remark 3.2 A comparison of the model of paral-
lel simulation of parametric families of chains (see
Glasserman and Vakili 1992) and the above model
and implementation strategy reveals that the two can
be easily implemented in conjunction with each other.
In other words multiple replications of a number of
chains that have distinct parameters can be simulated
simultaneously and in parallel.

Remark 3.3 Note that a significant part of the sim-
ulation in the above model is to sample from €7, €7 ’s
are identically distributed across j and n. Samples of
the discrete r.v. € can be generated in O(1) (inde-
pendent of K) using the Alias method (see Bratley
1987). The setup for this method is done only once
for all n and all j.

4 PARALLEL (CORRELATED) REPLI-
CATED SIMULATION

Our objective here is to reduce the variance of the es-
timator for 8 by introducing correlation across repli-
cations. The approach is based on the use of rotation
sampling, proposed in (Fishman and Huang 1983)
and is inspired by the particular application of ro-
tation sampling to the simulation of Markov chains
as reported in (Fishman 1983a and 1983b).

We introduce correlation across ¢} for j =
1,..., M. Let

M
=Y He =€} for i=1..K

i=1

In words, I’ is the number of replications at the n-
th transition that observe event e'. In parallel in-
dependent replications I{ef = e'}’'s (j = 1,..., M)
are M i.i.d. Bernoulli random variables with param-
eter p;; hence I' = zﬁll {el = €'} is a binomial
random variable with parameters M and p;. Let

I' be the number of correlated replications observ-
ing event ¢'. When rotation sampling is introduced
I = |piM| + Z where Z is a Bernoulli r.v. (|a] =
integer part of a). In this case the sampling seems
to minimize number of samples that agree, a prop-
erty that, informally, appears desirable for variance
reduction (see (Devroye 1990) for the case where max-
imal coupling, i.e., maximizing the number of agree-
ing samples is desirable).

We first give a brief introduction to rotation sam-

pling.

4.1 Rotation Sampling

Let uy, ug,...,up be M uniform r.v.s on (0, 1) and let
g1(21),92(u2),...,9ar(uar) be M corresponding re-
sponse functions. A relevant problem is to impose ap-
propriate dependencies among uy, ug, ..., upr - while
retaining the uniform marginal distributions - to min-
imize the following variance

1 M
Var(- Zgj(uj)).

It is shown (see Fishman and Huang 1983) that if we
limit ourselves to the set 2 of one-to-one mappings w
of (0, 1) onto itself where except for a finite number of
points dw/dz = 1, we can approximate the infimum of
the above variance as closely as we wish by inducing
dependencies via setting
vy =wj(u) wj €N

In rotation sampling w’s are limited to a subset of
2, namely, the class of one-parameter rotation trans-
formations

11,@6]'

= u+§; for 0<u<1-4§;
v+6; -1 for 1-6;<u<1

wj(u)

(0<6<1,j=1,...,M).

It is shown that for g; = g,7=1,... M, and under
appropriate conditions, the sampling corresponding
to 6 = L for j = 1,...,M is optimal among all
rotation samplings. In this case the variance of the
average is of the order of O(1/M?) as compared to
O(1/M) for independent sampling (see Fishman and
Huang 1983) .

4.2 Model of parallel correlated simulation

Let ¢ : (0,1) — E be the function used to gen-
erate samples of €, (this may represent an inverse
transform or an application of Alias method.) Let
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{un;n > 1} be a sequence of i.i.d. uniform r.v.s on
(0,1). Then we define €', the n-th event at replica-
tion j, by

et! = ¢{fun + 2 |Mod(1)

where 7,(7) is a permutation of {1,2,...,M}.
Then Y' = {Y;n > 0}, defined on l-[llu S, is given
by

' U
_}:_n = el OFil(n_x) °-'~°Fg',(_0)

where e/ = (el,...,eM).

Renumbering systems after each step with the per-
mutation m, allows us to control dependencies be-
tween certain pairs or groups of replications over time.
Note that the permutation 7, can be any function of
Y1,...Y,_; without distorting marginal distributions
of €J/. The proper choice of 7, is a topic of current
research.

We investigated several choices of m,(j). The
choice m,(j) = j for all j seems undesirable, because
then Var(g(ui,u;)) is a function of | i — j |. We can
achieve independence of Var(g(ui,u;)) from indices
by generating random permutation 7, (j) (Method 1).
If some functional G(Y;), reflecting an ordering of
current states of each replication can be defined for
the simulated system, then we can try to improve the
algorithm by increasing rotations between systems
with “close” or equal values of G(Y;). For example,
for 8 systems, numbered such that G(Y?) > G(Y;)
for j > ¢, 7={1,5,3,7,2,6,4,8} (Method 2).

Example 4.1 For each replication j of the tandem
queueing network ul/ = [u, + "—’]‘éﬂ]M od(1) is used to
determine ¢J/. For method 1, 7(j) is a random per-
mutation of 1,..., M.

For method 2 we need to define some measure of
“closeness” between systems. We define it to be the
weighted average queue lengths

1K
Lo
G= X ‘2_1 a, Y (1),

where a, is a parameter.
For the M/M/1 queue G = Y, provides a natural
measure of “closeness”.

4.3 Parallel implementation

Except for the generation of €/, the implementation is
identical to that of parallel independent replications.

In parallel/distributed implementation on a num-
ber of processors and in SIMD implementations either
a central mechanism generates the uniform random
numbers used for event determination (i.e., u,’s) or
via appropriate selection of seeds at processors one
insures that the same sample of u, is generated at all
Processors.

5 EXPERIMENTAL RESULTS

In this section we report simulation results for an
M/M/1 queue (p = 0.2,0.5 and 0.9) and two tan-
dem queueing networks with blocking. Average queue
length

= /0 " X ()it

is chosen as the total cost. T denotes the time hori-
zon.

For the M/M/1 queue we ran independent simula-
tions, simulations using Fishman’s rotation method
(described in Fishman (1983b)) and using methods
1 and 2, described above. For method 2 we used
G=Y].

Table 1: M/M/1 queue

P) T.. k | 28Tind VAT ind UGTind
stm varg var, vary

0.2 1000 8 1.26 2.03 2.52
0.2 1000 | 16 2.04 2.00 3.04
0.2 1000 | 32 2.53 3.11 4.92
0.2 1000 | 64 2.74 2.66 7.22
0.2 1000 | 128 4.45 2.57 7.54
0.2 1000 | 256 4.28 2.45 | 12.72
0.2 1000 | 512 4.83 2.88 | 15.53
0.5 10000 8 1.13 1.48 2.68
0.5 10000 | 16 1.41 1.99 5.02
0.5 10000 | 32 1.99 2.34 5.63
0.5 10000 | 64 3.68 2.81 | 11.18
0.5 10000 | 128 4.38 2.69 | 14.37
0.9 10000 8 1.44 4.02 5.98
0.9 10000 | 16 2.59 4.44 | 10.18
0.9 10000 | 32 5.39 5.52 | 24.97
0.9 10000 | 64 9.08 5.84 | 33.89
0.9 10000 | 128 | 16.07 4.46 | 37.34
0.9 | 100000 8 1.25 2.08 3.89
0.9 | 100000 | 16 1.13 2.40 6.03
0.9 | 100000 | 32 1.84 3.99 9.71
0.9 | 100000 | 64 1.79 2.49 | 15.32
0.9 | 100000 | 128 3.04 9.41 | 82.31
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For each system we report the ratio of the vari-
ance of the estimator of the total cost of independent
simulations to the variance of rotation estimator for
different values of the rotation parameter k.

The goal of these experiments is to investigate the
degree of variance reduction achieved by the proposed
methods.

The results (Table 1) show that for M/M/1 queue
methods 1 and 2 generally achieve variance reduction
not less than the method of (Fishman 1983b). We
also observe that Method 2 has a bigger potential,
especially for large values of k.

We also simulated tandem queueing network with
blocking. The simulated systems have 10 servers with
equal service rates and a given ratio of the arrival
rate to the service rate (p = 0.5). We consider 2
systems with different buffer sizes. To apply method
2 to the tandem %ueueing network with K servers,
we use G = +Y°,°, a'Y7(l). We report results for
method 1 and several modifications of method 2 with
different values of the parameter a = 0,1, and 1.1
(Tables 2 and 3).

Table 2: Tandem queue with 10 buffers, p = 0.5
Buffer sizes { 333333333333}

Tgim k VaTind VAT ingd VAT nd VAT nd
var; varop—op Varo— varqa—1.3
10000 8 1.39 1.35 1.42 1.49
10000 16 2.00 1.82 1.78 1.75
10000 | 32 1.96 2.00 2.21 2.01
10000 | 64 2.75 2.19 3.20 3.38
10000 | 128 2.92 2.73 1.84 2.38
10000 | 256 3.22 2.14 2.87 3.71
10000 | 512 3.95 2.19 1.94 3.38

Table 3: Tandem queueing network with 10 buffers,
p=0.5 Buffer sizes { 1044444444444}

T . k varingd VaTind VaTind VaTind
sim var) varg—o varg—; varo—1,
10000 8 1.29 1.27 1.22 1.29
10000 16 2.12 1.73 1.65 1.83
10000 | 32 2.77 2.96 3.05 3.03
10000 64 4.12 3.97 3.97 4.06
10000 | 128 4.25 5.85 4.23 4.10
10000 | 256 5.74 2.18 2.86 3.02

6 SUMMARY

We described a way of simulating M replications of
a uniformizable Markov chain simultaneously and in
parallel. Distributed and massively parallel SIMD
implementations on a number of processors and on
massively parallel computers were described. We de-
scribed ways of adapting Fishman’s rotation sampling
approach (Fishman 1983a and 1983b) to our setting
to reduce the variance of the estimators. Understand-
ing the tradeoffs and efficiency of these algorithms is
a future project. It is worth investigating the degree
of variance reduction and conditions that guarantee
it.
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