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ABSTRACT

A number of importance sampling methods have been
previously proposed for estimating the system unre-
liability of highly reliable Markovian systems. These
techniques are effective when the time horizon of in-
terest is small. However, for large time horizons,
these methods are no longer efficient. We describe
a technique in which instead of estimating the ac-
tual measure, we estimate bounds on the measure.
The bounds can be estimated efficiently, and for large
time horizons, they are close to the actual measure.
Similar techniques for derivative estimation are also
presented.

Keywords: Variance reduction, Markov chains, im-
portance sampling, reliability, derivative estimation,
regenerative systems, likelihood ratios.

1 INTRODUCTION

Many mission-oriented systems need to be available
during some fixed time interval. For example, con-
sider computers used in space missions. For these
types of systems, a performance measure of inter-
est is the system unreliability, which is the proba-
bility that the system fails before some time horizon.
Because of the typically huge state spaces of mathe-
matical models of such systems, analytical methods
may not be feasible for solving for performance mea-
sures, and so we have to resort to simulation. Using
naive simulation (i.e., without the use of any variance
reduction techniques) to estimate performance mea-
sures of highly reliable systems is inefficient because
of the rarity of system failures. Thus, we must apply
variance reduction techniques to obtain better esti-
mators. One such method is importance sampling.
The basic idea behind this approach is to simulate
the system under a probability measure different from
the original one, where the new measure is chosen so
as to make the important events (in our case, system
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failures) occur more frequently.

A number of importance sampling methods have
been previously proposed for estimating the system
unreliability of highly reliable systems; e.g., see Lewis
and Béhm (1984), Goyal et al. (1992), Nicola et
al. (1991), and Nicola et al. (1992). Empirical re-
sults show that these methods are effective when the
time horizon is small; i.e., it is less than one over the
sum of all of the component failure rates, which is the
expected time of the first component failure. How-
ever, for large time horizons, the importance sampling
schemes do not perform as well and/or are sensitive to
the values of the parameters used in the importance
sampling. Carrasco (1991) developed a method which
works for large time horizons, but the technique in-
volves estimating a Laplace transform and inverting
it, making implementation difficult. Thus, the need
arises for simple methods to estimate the system un-
reliability that are efficient in the large time horizon
setting.

In this paper, we examine the problem of estimat-
ing transient measures for large time horizons for
highly reliable Markovian systems through estimat-
ing close upper and lower bounds. Preliminary work
in this direction was done by Shahabuddin (1993),
who investigated the problem of estimating the inter-
val unavailability, which is the expected fraction of
time that a system is failed during some fixed time
interval. We now extend these ideas to estimate the
unreliability. Moreover, we investigate the estimation
of partial derivatives of the unreliability with respect
to component failure rates.

Working within the mathematical framework de-
veloped by Shahabuddin (1990) (see Shahabud-
din 1991 for a refined version), we study the asymp-
totic properties of the estimator of the unreliability
obtained using an importance sampling scheme which
combines forcing (Lewis and Béhm 1984) and bal-
anced failure biasing (Shahabuddin 1990 and Goyal
et al. 1992). We first present a theorem which es-
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tablishes that for any given (fixed) time horizon, the
estimator has bounded relative error. (An estima-
tor is said to have bounded relative error if the ex-
pected width of the confidence interval for a fixed
number of samples over the quantity to be estimated
remains bounded as the component failure rates tend
to zero with the repair rates fixed. This notion was
introduced in Shahabuddin 1990.) We then give an
intuitive explanation as to why the estimator is no
longer efficient when the time horizon is large. In
general, this is due to the fact that the likelihood
ratio (which arises from importance sampling) has a
variance which grows (approximately) exponentially
with the time horizon; see Glynn (1992).

Because of this, we develop upper and lower bounds
for the unreliability which are applicable for any time
horizon. The bounds are in terms of expectations of
random quantities defined over regenerative cycles.
Since regenerative cycles of highly reliable Markovian
systems are typically small, we can estimate these ex-
pectations, and thus the bounds, efficiently using im-
portance sampling. Moreover, these bounds converge
to the unreliability as the failure rates vanish. We
present similar bounds for the partial derivatives of
the unreliability with respect to the component fail-
ure rates and show that these bounds also converge
(under certain assumptions) to the partial deriva-
tives. We provide some experimental results show-
ing that the bounds are typically quite accurate in
practice.

The rest of the paper is organized as follows. Sec-
tion 2 contains a brief description of the type of highly
reliable Markovian systems we are considering and
the importance sampling techniques used for such
systems. Previous bounded relative error results in
the estimation of steady state measures (using bal-
anced failure biasing) are also reviewed in this section.
Bounded relative error results in the estimation of un-
reliability and its derivatives (using balanced failure
biasing and forcing) are presented in Section 3. Sec-
tion 4 describes unreliability estimation using bounds
(for the case of large time horizons), and Section 5
describes the same for derivatives. Experimental re-
sults are presented in Section 6. For formal proofs
of results in this paper, the reader is referred to Sha-
habuddin and Nakayama (1993).

2 BACKGROUND

2.1 CTMC MODELS OF RELIABILITY
SYSTEMS

We consider Markovian models of reliability systems
of the type in Goyal and Lavenberg (1987). These

systems consist of a number of different types of com-
ponents, each having a certain redundancy. All com-
ponents have exponentially distributed failure and re-
pair times and components of the same type have the
same failure rate and the same repair rate. Com-
ponent interdependencies arise due to the sharing of
a limited number of repairpersons, operational and
repair dependencies (the operation/repair of a com-
ponent depends on other components being up) and
failure propagation (the failure of a component causes
some other components to fail with certain probabil-
ities). The system is considered to be up whenever
certain combinations of components are up. In Goyal
and Lavenberg (1987) only the preemptive random
order service discipline was considered. However, our
simulation analysis applies to systems with any pre-
emptive or non-preemptive repair discipline.

Let {X(t) : t > 0} be the continuous time Markov
chain (CTMC) model of the Markovian reliability sys-
tem described above, and let {Y, : n > 0} denote
its embedded discrete time Markov chain (DTMC).
For systems in Goyal and Lavenberg (1987), X(t) =
(X1(t), X2(t), ..., XR(t)), where X;(t) is the number
of components of type ¢ that are up at time ¢t and R
is the total number of component types. For models
with the general repair disciplines which we consider,
we may have to add an ordered list of components
waiting to be repaired at each repairperson.

Let n; be the total number of type ¢ components
in the system. We label the state with all compo-
nents up as 1. (We also use 1 to denote the set of
states which contains only the single state 1.) We
will assume that X(0) = Yo = 1. Let S be the set of
states that are accessible from 1 and we assume that
the CTMC is irreducible over the set S. We partition
S into two subsets: S = U U F, where U is the set
of up states (i.e., the set of states in which the sys-
tem is considered to be up) and F is the set of down
states. An important property of systems in Goyal
and Lavenberg (1987) is that

A: All states in S except state 1 have at least one
repair transition.

We will be considering system regenerations that
occur when the system enters state 1. In any regen-
erative cycle let Z be the random variable denoting
the holding time in state 1 and W be the sum of the
holding times in all other states.

Let ® denote the probability measure on the sample
paths of this CTMC. Let Q = (¢(x,y) : x,y € S)
be the rate matrix of {X(¢) : ¢ > 0}, and let P =
(P(x,y) : x,y € S) be the transition matrix of {Y,, :
n > 0}. One can simulate a CTMC by progressively
generating state transitions using P, and generating
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the random holding times in each state. Let g(x)
denote the total rate out of state x. For any set of
states £ C S, let Tz = inf{t > 0: X(t—) ¢ £,X(t) €
€}, and 7z = inf{n > 1:Y, € £}. Of particular
interest are Ty, Tp, 77 and 7p.

We will be interested in estimating the unreliabil-
ity. Given a finite time horizon ¢, the unreliability,
U(t), is defined to be the probability that the system
fails before time t given that it starts in state 1; i.e.,
U(t) = P(Tr < ?).

2.2 IMPORTANCE SAMPLING FOR
HIGHLY RELIABLE MARKOVIAN
SYSTEMS

Consider the problem of estimating p = E;(X),
where the subscript indicates that X is sampled from
the density f(-). Let g(-) be another density where
g(z) > 0 whenever zf(x) > 0. Then we can write

b= B = [ afe)s

Vz

/vz zL(z)g(z)de = E,(XL(X)), (1)

where L(z) = f(z)/g(z) whenever g(z) > 0 and
L(z) = 0 otherwise. In importance sampling, to es-
timate p, instead of sampling X from f(-), we sam-
ple XL(X) from g(-). The main problem in impor-
tance sampling is to select g so that E,(X2L%(X)) <
E¢(X?), thereby substantially reducing the variance
over naive simulation.

One change of measure often used for highly re-
liable Markovian systems is called failure biasing
(Lewis and Bohm 1984). The idea behind failure bi-
asing is to make component failure transitions of the
embedded DTMC occur with a probability that is
much higher than in the original system. In state 1
there are no repair transitions. Therefore, we do not
need to use failure biasing in this state. However, in
states that have both failure and repair transitions,
the total probability of repair transitions is ~ 1 and
the total probability of failure transitions is =~ 0. In
such states we increase the total probability of failure
transitions to p (where p is some constant between
0 and 1 that is significantly larger than the failure
probabilities; in practice p is typically taken to be
0.5) and correspondingly decrease the probability of
repair transitions to 1 —p. In the version of failure bi-
asing called balanced failure biasing, the probabilities
of particular failure transitions, given that a failure
transition has occurred, are all made the same (this
is also done in state 1).

Let P’ = (P'(x,y) : X,y € S)) denote the transi-
tion matrix corresponding to balanced failure biasing.
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Let @' be the new probability measure on the sample
paths of {X(¢) : ¢ > 0} in which we use P’ instead of
P until the system fails and P from then on. Note
that for the unreliability, for each sample, we only
need to simulate the CTMC until the system fails.

If the time horizon ¢ is orders of magnitude less
than Eg(Z), then the system will fail very rarely
in [0,t] even though we failure bias. To avoid this,
we sample the time of the first event from the dis-
tribution of Z conditioned on it being less than ¢.
Since Z is exponentially distributed with rate ¢(1),
the time of the first event which we use in the simu-
lation is sampled from the distribution function given
by F(s) = (1—e~9MD*)/(1—e= 1)), where 0 < s < t.
This is called forcing (Lewis and Bohm 1984). Let &/
be the new probability measure on the sample paths
corresponding to both balanced failure biasing and
forcing.

2.3 MODELLING SYSTEMS WITH
HIGHLY RELIABLE COMPONENTS

In mathematical models of highly reliable Markovian
systems, the failure rate of any component type, say
component type 3, is given by A; = A;eb where \;
and b; are positive constants and ¢ is a small param-
eter called the rarity parameter. The repair rates are
represented by constants p; > 0. The aim is to study
the variance of the estimator of the given depend-
ability measure, with and without importance sam-
pling, for small €. Let by = min{by,b2,...,bx} > 0.
Then E5(Z) = 1/q(1) = 1/ TN, nidiebs = Q(e7b).
It was shown in Shahabuddin (1991) that E¢(W) =
Q(l) and thus both EQ(T]) = E.;(Z) + EQ(W) and
Eg(min(Ty, Tr)) are Q(e*°).

We will now briefly review the order of magnitude
results for the variance associated with importance
sampling in the estimation of steady state measures
(see Shahabuddin 1991). A crucial quantity to be
estimated in the context of steady state measures is
Ye = Ps{Tr < Ty} = Es(I(Tr < T1)). Note that to
obtain a sample of I(Tr < T4 ), we need only simulate
the CTMC until time Tpin = min(Tr,Ty). Let @,
be a change of measure on the sample paths of the
CTMC in which we use P’ until time Tinin and then P
after that. For any stopping time 7 of the embedded
DTMC, define
Tt P(Y:, Yina)

L, = J] ki Xevt)
! gPl(Yi,Yi+1)

1 A function f(¢) is said to be Q(e°) if there exist constants
K, and K such that for all sufficiently small ¢, Ky < f(€) <
Kaec.
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Let Tmin = min(7g, 7). Then in the same spirit as
Equation 1 we can write

Es(I(Tr <Tq)) = Ee,(I(Tr < Tq)Lr.;,).

Let 02 (-) denote the variance associated with the
estimation of <. using the probability measure
within the parentheses. For example, o2 (&,) =

Vare,(I(Tr < Ty)Lr.,) = Ee,(I(Tr < Ty)L7 )~
42. Then we have the following theorem:

Theorem 1 (Shahabuddin (1990)) Both v, and
02 (®) are Q(€"), where v is a non-negative constant
depending on the model. Also, Eg,(I(Tr < Ty)L2_, )
is Q(e7), and s0 02 () is O(e”).

Let RE] (-) denote the relative error (i.e., the ex-
pected confidence interval half width divided by the
quantity to be estimated) of the estimator of 4. us-
ing the probability measure within the parentheses.
Then, we get the following corollary:

Corollary 1 For a fized number n of regenera-
tive cycles (and corresponding to a fized 100(1 —
6)% level of confidence), RE, (8) = Q(e™"/?) and
RE, (®,) = O(1).

Proof. Let z5/; be the /2 percentile point of the
standard normal distribution. Then

gy = 2297 (®) _ 252 VO(E) o oy
RE‘r.(Q)—\/,—I v  /n Q(e) =0( )-

A similar calculation can be used for RE. (®,). W

The corollary states that the relative error using
naive simulation tends to infinity as component fail-
ure events get rarer, whereas using balanced failure
biasing, it remains bounded. Another way of looking
at it is that to achieve a given level of relative accu-
racy, the amount of computational effort required us-
ing naive simulation tends to infinity (as component
failure events get rarer), whereas it remains bounded
using balanced failure biasing.

3 BOUNDED RELATIVE ERROR IN THE
ESTIMATION OF RELIABILITY AND
ITS DERIVATIVES

In this section we present bounded relative error re-
sults in the estimation of the unreliability. We can
express the unreliability as U(t) = E¢(I(Tr < t)).
Let crlz,.(t)(~) be the variance associated with the es-
timation of the U,(t) using the probability measure
within the parenthesis.

Theorem 2 For fized t, both U.(t) and Uf,‘(t)(tli)
are Q(e7¥).  Also, ofy ,\(®') = O(e¥+) and
o) (®F) = O(*U+%)).  Hence, for o fized
number n of replications, REy ,\(®) — oo and
REy (,(®') — o0 as € — 0, whereas REy; (,)(®F) =
o(1).

By “fixed t,” we mean that ¢ is independent of e.
From a modelling point of view, this means that the
time horizon is small as compared to the expected
failure time of components. In such cases, Theorem 2
implies that we can expect efficient simulation esti-
mates using a combination of balanced failure biasing
and forcing (though not through naive simulation or
balanced failure biasing alone). Similar results hold
for the estimation of the derivatives (using the likeli-
hood ratio method) of the unreliability with respect
to the component failure rates.

4 RELIABILITY ESTIMATION FOR
LARGE TIME HORIZONS

To study the behavior of the unreliability estimator
for large t, we will now consider the case where ¢ is
not fixed but also depends on €. In particular, we
consider the case when t is Q(e™"t), where r; > 0.
For r; = 0 (i.e., t is fixed and we will get the re-
sults of the last section), ¢ is of the same order as
the expected repair times, and for r, = bo, t is of the
same order as the expected first component failure
time in the system (which is of the same order as the
expected regenerative cycle time). For ry = bo + 7, ¢
is of the same order as the mean time to system fail-
ure (MTTF). (The MTTF for regenerative systems
may be expressed as Eg(min(Tr, Ty ))/7.; hence, the
MTTF is Q(e~(ot).)

Theorem 3 Consider the case of large time hori-
zons where t = Q(e™") and ry > 0. Ifr, < by,
then both U(t) and af,‘(t)(ﬁ) are Q(e+%"4) and

T (0 (®) = O(2r40=4)).

We saw in the previous section that for fixed ¢, for the
bounded relative error property to hold, the order of
the variance using importance sampling had to be
twice the order as the unreliability. In Theorem 3, as
long as r; < by, the order of the variance is twice the
order of the unreliability. Hence, for 7, < by, we can
expect the simulation using @ to be efficient.

Now let us examine what happens when r, > r,.
To do so, let Cc = Eg,(I(Tr < Ty)L%_ ) and B, =
Es (I(Tr > T]_)L?.min). Also, let

Ve(t) = (1 - e_‘I(l)t)%(e(B.—l)q(l)t _1).
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It is easy to show that for 0 < r; < bo, Eg, (I(Tr <
t)L2)/Ve(t) — 1 as € — 0. We conjecture that this
is true even for by < 7; < r + bo. If this conjecture
holds, then using the fact from Shahabuddin (1991)
that C. = Q(¢?") and B, — 1 = (1), we get that for
re > bo, Bg (I(Tr < t)I2,) is Q(e¥e" ") (since
1— e~ = (1) and e(B~Da(1) 5 1), Hence
for the case of large time horizons where r; > bo, we
should not expect efficient estimates of Uc(t) by using
®'.. This is also what we see in practice; see Goyal
et al. (1992).

So what do we do for the case where r; > bo? In

this case it is best to estimate bounds on the unreli-
ability.

Theorem 4 Let Uc(t) = 1—e= 79Dt Then U(t) <
Uc(t) for all e and t. Ift = Q(™*) where 0 < 1, <
7 +bo, then U(t)/Uc(t) = 1 as e — 0.

Note that the upper bound is in terms of the re-
generative cycle based measure ., which can be effi-
ciently estimated. Hence, the upper bound estimate,
which we form by replacing the v, term in the expres-
sion for U,(t) by the estimate of 7., can also be esti-
mated efficiently. To see this, note that for r; < r+bo,
U(t) = (1 — e 9Dty v g(1)tye = QertboTe).
From Theorem 1 we see that o2 (&,) = O(¢*") and
hence a%‘(t)(ﬁ,) ~ q(1)*202 (®,) = O(*r+2be2m),
Thus the order of the variance is again twice the order
of the upper bound, and so the simulation is efficient.
Also note that for small ¢, the upper bound is close
to the actual measure.

It is also possible to obtain a close lower bound
on the unreliability. Let | = I(t,q) = max(v%,t/q).
Then we have the following theorem:

Theorem 5 Let

Qe(t) = ﬁe(t) - (6_7'q(1)(t“) — e—‘Y-q(l)t

Eé(W) —7Yeq 1)-
+ T(l — e 7ea(1)(-1)y
B q(1)(t —)Ee(WI(Ty < TF))e—'y.q(l)(t—l)) (2)
; .

Then Uc(t) > U,(t) for all € and t. Ift = Qe )
then for 0 < vy < 1+ bo, lime_,o Uc(t)/U(t) = 1.

Note that this lower bound is also in terms of regen-
erative cycle based measures, which can be estimated
efficiently using importance sampling.

We mention at this point that other bounds on the
unreliability, such as the ones in Brown (1990) and
Kalashnikov (1989), can also be used. However, most

Shahabuddin and Nakayama

of these bounds converge to the actual value only for
by < 7: < T + bo, whereas ours converge for 0 < r, <
r + bo.

5 DERIVATIVE ESTIMATION FOR
LARGE TIME HORIZONS

In this section, we derive bounds for the partial
derivatives of the unreliability with respect to the
failure rates of the components. For the sake of nota-
tional simplicity, we will now assume that there is
no failure propagation. (For results in which fail-
ure propagation is allowed, see Shahabuddin and
Nakayama 1993.) Also, we use the notation
3A(M,...,AR) = %:A(/\l,...,)\a) for some func-
tion A(A1,...,AR).
Now we make some additional definitions. Let

M(s) = 1- e~ 7ed(L)s _ veq(1) se-w.q(l)”
Ne(s) = M.(s)— %(%q(l)s)z e—*r.q(l)s’
and
K= (e (14 yq(1)t - ) ~ 1~ Yea(Dt).

Also, consider component type 4, and define
7, to be the first (failure) transition of the
DTMC {Y,,n > 0} in which a component of type
fails. Nakayama (1991) showed that there exists con-
stants ; > 7, 4 = 1,..., R, (which depend on the
model) such that

Pa{r, <1p <711} =Q().
We denote the partial derivative of the unreliability
by Ue(t,1) = 8; E¢[I(Tr < t)]. Now define
ﬁe(t’ i) = ge(t,1) — h.(t,1),
where N
o, ¢ e =
ge(t,9) = IMe(t) + 7—Ue(t),

with a. = E3[G 1{ry < 7r}], B = Es[G Wrr <
Tl}]) and G = ET;‘S‘"I' 3:q(Y1, Y141 and

oY1, Yi41) '
. n; nife
h(t,3) = ——M.(t)— —=—=M(t-1)
(69) = M)~ gy M
2ni(e nze=d(Lrt

MG N - ME K,
(i D T
where (¢ = EgWninl{ry < ), € =
Es [Wminl{TF < T]_}]s and Whin = Tmin — Z- (R'eca'u
that | = max(v/%,t,/q) and n; is the total number of

components of type i.) Also, define

Qe(t) i) = Qe(ta 7') - Be(tvi))
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where
N = . Ve -
ge(tﬂ) = ge(tﬂ) - l"/_eUE(t — l)
— I_ (776 + M) Me(t _ l)
Ve Ve
20
- Iy2 Ne(t-1)
€
—g(1)v.e
- (Bl Dt k),
€

with v = Eg[GWninl{rr < 71} and 7. =
Es[GWminl{r < 7r}], and

niée - n (1
0+ 5 (g e wao
Note that a, B¢, Ve, N¢, (¢, and &, are all expectations
of random quantities that are defined over a single
regenerative cycle. Thus, we can efficiently estimate
these quantities using importance sampling and form
stable estimates of U,(t, 1) and U(¢,%).

The following result shows that U (¢,1) and U.(t, 1)
are upper and lower bounds for the derivative of the
unreliability with respect to the failure rate of com-
ponent type 2.

’_ze(t, i) =

Theorem 6 For all € and t,
U.(t,1) < Ue(t,i) < Ue(t,9).

Now we determine when the upper bound is close
to the actual value of the derivative. Let s; be the
state reached from state 1 from a component of type ¢
failing. Then the following is true.

Theorem 7 Suppose t = Q(e™™) with0 <7y <7+
rq. Then U(t,1)/Uc(t,i) — 1 as € — 0 if one of the
following holds:

(i) re<r—ri+b;

(i) 7 =r—r;+b; and one of the following hold:

(a) ifs; €U;
(b) si € F and t # 2Bc/(nive) +o(e™™);

(i) r—ri+b <ry <min{2(r—r;+8;), r—ri+b; +
re/2, T —7i+b;+ 1} ands; € U.

(iv) r¢>r—ri+b ands; € F.

Because of the subtraction of terms in the definition
of Uc(t,1), we need the conditions in (ii), (iii), and
(iv) to ensure that the highest order terms in the
upper bound do not cancel. Note that one of the
conditions of (ii) is almost always satisfied; they do
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not hold only for a small set of points. Thus, for
smaller time horizons (i.e., when r, satisfies either
condition (i) or (ii)), the upper bound is typically
good. However, for larger time horizons (i.e., when
7y satisfies condition (iii) or (iv)), the upper bound
may not be as accurate.

The following theorem shows when the lower bound
is close to the actual value of the derivative.

Theorem 8 Suppose t = Qe™™) with0 < ry <7 +
rq. Then Uc(t,1)/U,(t,i) — 1 as € — 0 if one of the
following holds:

(1) e <7 —1i+ by

(ii) 7 =7 —r; + b; and one of the following hold:
(a) s; €U;
(b) s; € F and t # 2B./(nive) + o(e™");

(i) r—ri+b <ry <min{2(r—r;+b;), r—r; +b;+
Te/2, T —ri+ b+ 1, 2(r —ri+b;+1,)/3} and
both of the following hold:

(a) s; €U;
(b) ri <7 4b;;
(iv) re>r—ri+b ands; € F.

Note that conditions (i), (ii), and (iv) of Theorem 8
are the same as those of Theorem 7. However, condi-
tion (iii) of Theorem 8 is stronger than that of Theo-
rem 7. Thus, the upper bound may be better over a
larger range of time horizons than the lower bound.

6 EXPERIMENTAL RESULTS

In this section we discuss some experimental results
obtained using the SAVE package (see Goyal and
Lavenberg 1987). The results are for a large com-
puting system, previously considered by Goyal et
al. (1992) and others. The system consists of two
types of processors, each having a spare; two sets of
disk controllers, each with a redundancy of two; and
six disk clusters, each consisting of four disks. The
system is operational as long as at least one proces-
sor of each type is operational and at least one disk
controller from each set is operational and at least
three out of the four disks in each disk cluster are
operational. When a processor of either type fails, it
causes a processor of the other type to fail simultane-
ously with probability 0.01. The failure rates of the
processors, disk controllers, and disks are 1/2000 per
hour, 1/2000 per hour, and 1/6000 per hour, respec-
tively. Each of the component types can fail in one
of two modes, each with probability 0.5. The repair
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rate in the first mode is 1 per hour, and in the second
mode it is 1/2 per hour. There is a single repair-
person who fixes failed components using preemptive
random order service.

Results for the unreliability are given in Table 1.
To see the effect of our simulation schemes for vary-
ing lengths of the time horizon ¢, we simulated for
different values of . The time horizon is given in the
first column. The second column contains results us-
ing numerical computation (i.e., non-simulation) with
the SAVE package. The CPU times expended to
numerically compute the quantities are in parenthe-
ses. The numerical computations were inefficient as it
took significant amounts of computer time (for large
time horizons) and memory (for all cases). The next
four columns contain the results using simulation. We
simulated each case for 400,000 events, which took ap-
proximately 90 CPU seconds. The third column gives
the RE corresponding to 99% confidence intervals
(CI) if we use naive simulation (i.e., without using
any importance sampling). (Estimates lie within the
CI 99% of the time). The fourth column gives the es-
timate of the unreliability and the RE using balanced
failure biasing and forcing. In the last column we give
estimates of the upper bound U(t) = 1 — e~ 4(1)7t,
This we do by estimating 4 and putting it in the
equation for U(t). The 7 can be estimated using fail-
ure biasing as done in Goyal et al. (1992). Similarly,
in the fifth column we present estimates of the lower
bound given by Equation 2. Note that in this exam-
ple E(T.) ~ 125 and E(Tr) =~ 152, 240.

As the time horizon gets larger, the RE using fail-
ure biasing and forcing increases. However the RE
on the upper bound and the lower bound estimate
remains bounded. Also, in the region where failure
biasing and forcing do not work well (i.e., for larger
time horizons), the estimate of the bounds are very
close to the actual value. Naive simulation seems to
give moderately good RE for larger time horizons.
However it is still much larger than the RE of the
upper bound estimates.

Table 2 contains the estimates for the derivative
of the unreliability with respect to the processor fail-
ure rate. All of the naive simulation estimates are
poor, especially for very small and very large time
horizons . When we used importance sampling, the
relative error of the estimator of the derivative of
the unreliability is small for small ¢, but it deteri-
orates as the time horizon grows. All of our esti-
mates of the lower and upper bounds given in the
last two columns have small relative errors. How-
ever, the lower bound estimates provide reasonably
accurate approximations to the actual values of the
derivatives only for the middle range of ¢, and they

Table 1: Estimating the Unreliability

t Num. | Naive | IS Est. | LB Est. | UB Est.
(x107*)| Sim. & RE & RE & RE
RE [(x107%)| (x107%) | (x107%)
4 | 0.016 183% 0.015 0.0016 0.025
(26s) +8% +9.6% +5.3%
16 0.087 60% 0.086 0.041 0.099
(27s) +8% +5.3% +5.3%
64 | 0.381 38% 0.381 0.258 0.397
(28s) +7% +5.3% +5.3%
256 1.55 26% 1.59 1.249 1.59
(29s) +7% +5.3% +5.3%
512 3.11 24% 3.44 2.606 3.18
(33s) +14% | 15.3% | +5.3%
1024 6.23 23% 7.58 5.314 6.34
(40s) £31% | +5.3% | +5.3%
2048 12.4 22% 15.6 10.71 12.6
(52s) +71% +5.3% +5.2%
4096 24.9 22% 39.8 21.1 25.1
(80s) +151% | +5.3% +5.2%
8192 47.8 21% 39.8 424 49.6
(170s) +151% | +5.3% | +5.2%
16384 95.3 20% 39.8 83.1 96.8
(400s) +151% | +5.3% +5.2%

are not as good for values of ¢ which are very large
or very small. Also, the upper bound estimates are
close to the actual derivatives for small and medium
values of ¢ but not for very large ¢.
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