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ABSTRACT

We explore experimental procedures for comparing
the capabilities of complex discrete event service sys-
tems. Instead of measuring system capability by an-
alyzing or simulating the system with a constant rate
of arriving work, system capability is measured as the
maximum rate of work arrival for which the system
has a steady state. Hence, we seek the arrival rate
which causes the system to be at full capacity. This
rate is arguably the best indication of the service sys-
tem’s capability.

1 INTRODUCTION

As industrial engineers, applied probabilists, simu-
lationists, and systems analysts, we are often called
upon to evaluate systems which service input traffic
and produce finished products. These systems are
sometimes traditional queues or networks of queues,
but are often systems with queue-like characteristics
which cannot accurately be modeled as traditional
queuing systems. In practice and in the literature,
this evaluation is traditionally based on exercising
a model of the service system by subjecting it to a
stream of input traffic and estimating or calculating
some expected system performance measure.

We feel that this typical experimental design is
lacking, and that the shortcomings stem from the ar-
bitrary choice of the distribution of the input pro-
cess. Especially problematic are cases where the ser-
vice system being modeled does not currently exist,
where worst-case behavior is sought, or where we wish
to evaluate the system in situations which are not ac-
cessible for data collection. Practical service system
analysis is interesting only when the service system
1s in an environment where the workload is high rel-
ative to the system’s capability to serve. In all that
follows, we are interested in finding the intensity of
the input process that taxes the service system to the
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extremes of its capabilities, and using this intensity
as a measure to compare systems.

2 THE GENERAL SERVICE MODEL

The service systems considered all have the following
features:

1. a centralized, controlable, nonlattice process
which generates tasks at a rate A per unit time;

2. tasks are admitted upon generation and pro-
cessed by the system:;

3. a completed task is ejected from the system;

4. the system has the capability to process as many
as u tasks per unit time on average.

We will call such systems Discrete Event Service
Systems (DESSs), see figure 1. In this work, we study
the behavior of systems where there is a one-to-one
correspondence between the tasks we submit for pro-
cessing and the finished tasks the service system pro-
duces. Work-conserving queuing models do not allow

e tasks to expire while in service;

o tasks to create other tasks while in service;
o tasks to be split or combined;

o tasks which never finish service.

Work-conserving queuing system models are com-
mon in both the practice and literature of applied
probability. In a typical experiment, we generate in-
put to the system at a constant rate, monitor the
performance of the system either at fixed intervals or
upon departure from the system, and employ well-
known methods of steady-state analysis to estimate
the steady-state average of the performance measure.

A maxim of the analysis of service systems is that
the system will have stationary long-run behavior if
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Figure 1: A simple DESS.

and only if the number of arriving tasks are, on av-
erage, less than the number of tasks the system is
capable of processing. If our overall system can work
at a maximum of u tasks per unit time, we can input
as many as p per unit time and the system will remain
stationary. If A is our arrival rate for the system, we
wish to manipulate A to expose p.

3 GENERATING DATA

There are two ways we can generate data from a
work-conserving system which will reveal the maxi-
mum processing rate in the system. They are:

e input tasks to the system at a rate known to be
much higher than the system can handle;

o fill the system, then input a new task every time
that a task completes.

In the former, the rate of outgoing jobs eventually
converges to u. Instead of choosing a very high in-
put rate and dealing with the problems of exploding
buffer contents and a nonrecurrent system, we will
simply close off the system and recirculate the tasks
which finish. Hence, we take the second approach.

Thus, we examine a special kind of closed queu-
ing network — one with a single loop-back which all
tasks traverse. Let A(t) be the time-dependent rate
of recirculation of tasks in the system. So long as
the system contains enough tasks to keep it work-
ing at capacity, we have A(t) — p ast — oo. Kelly
(1979) and Walrand (1988) both show this for expo-
nentially distributed service, and Disney and Kiessler
(1987) make the extension to Jackson networks. The
result can be extended in the obvious way by treating
Phase-type distributions for service times, to produce
the result we seek (\(t) — p as t — o0o0) for generally
distributed service.

4 DETECTING
STEADY STATE

TRANSITION TO

Let us simulate the completion of the first N cus-
tomers serviced by the closed system for M inde-
pendent replications. Let T;; be the jt* time be-
tween recirculation during the i replication. Thus,
Tij,i=1,2,...,M is a set of 1id samples. Let TJ =
Zf__l T; j/M be the average recirculation time pro-
cess. We seek the index N* such that ET; ; = ET; =
p for all § > N*. Hence, we are in the setting of a
traditional initial transient detection problem.

There exist many ways to tackle this problem, in-
cluding

e cross-replication confidence intervals, Welsh

(1983)
o tests for significant drift;

e standardized time series (STS), Schruben (1982).

In our experiences, we have found STS useful, es-
pecially in a slightly modified version we have devel-
oped, which we call ratio STS (RSTS).

4.1 Ratio STS

The method of standardized time series (STS),
Schruben (1982) produces confidence intervals from
autocorrelated, stationary data. This method was
used in Schruben, Singh, and Tierney (1983) to de-
tect the existence of initialization bias in simulation
output, and was sharpened to produce optimal tests
when the functional form of the initialization bias is
known.

Suppose that we have M independent samples of
n points each, with Y; ; being the j** point in the **
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Figure 2: A Jackson Network designed to have a maximum service rate of 0.5. The numbers in parentheses are
the number of servers at each station, and the routing probabilities are shown on the workstation connections.
All servers have unit service time, and all buffers are infinite. The dashed line shows the recirculation route

added to force the system to serve at the maximum rate.
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Figure 3: Trajectory of the mean process 7} and the confidence intervals.
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independent sample. Let

J
Yij =37 Yk (1)
k=1
for i =1,2,..., M, and with Y; o = 0 for each i. The
time series S;(k),k = 1,2,...,n is constructed for

each independent replication : as

o ?;n-}_/z 0 k<

Let o be the variance of Y;. If S;(k) is divided by
o\/n/k and scale the index k so that the result resides
in the unit interval [0,1], the resulting time series
T;(t),0 <t < 1is known to approximate a Brownian
bridge as n — oo. This is the fundamental result
of Schruben (1982), and the theoretical basis of this
sequential procedure.
Schruben shows that scaling and summing T;(t),

Ai=oymy_ Ti(kn) (3)
k=1

results in a normal random variable 4; with variance

given by

c’n(n? —-1)
12 '

Note that, except for a factor of 02, VAR(A;) is inde-
pendent of the data, it relies only on the parameters
of the experiment. Hence, for any integer d < M,

VAR(A;) = (4)

d
2 Ai 2
g ~ (——=) (5)
! ; VVAR(A,)
) d
- 2 s (6)

oin(n? - 1)

=1

The original STS used to detect initial transients used
x?i as a test statistic for stationarity of the mean re-
sponse. If we form a ratio of x5 and x3,;_,, we can
eliminate the need to estimate o2, forming

— d 2
d IZi:]lWA{ ) (7)
(M - d)_l Zi:]\/f—dAf

This test statistic, which we call the RSTS
test statistic, is easy to use in all of the ap-
plications where STS is applied. In particular,
if we are interested in determining the onset of
steady state, we can form the backward-moving se-
quences A;j,j=n—1,n—2,...,1 for each replica-
tion i, where A;; is formed from the subsequence

Fop—a~

Yik,k=j,j+1,...,n, the portion of the ith replica-
tion between j and n. Thus, we form the sequence of
F-statistics

- d 2
d 1Z:i:l Ai,j )
(M —d)~! Zz}"iM—d A?,j

Fgpr—alg) ~ (8)

If we assume that the system is in steady state when
each of the A; , are collected, then we can detect the
transition of the system into steady state by looking
at the first index N* where Fy pr_qa(N*) exceeds the
critical value for an F' random variable with identical
degrees of freedom. This method is demonstrated in
the following example.

Continuing with the work-conserving system exam-
ple, suppose that we

o start the system with 25 tasks enqued at work-
station 1 at time 0.0;

e simulate N = 500 customer recirculations;
o replicate M = 20 times.

Figure 3 shows the trajectory of T] and the as-
sociated confidence interval process for the first 140
recirculations. Clearly, by sample N* = 80 we have
passed the criteria for being in steady state accord-
ing to Welsh’s cross-replication confidence interval
method. Furthermore, we can see that any detectable
slope in the mean process is negilible. When tested
for our 20 independent samples, the drift of tested to
be insignificant (Ho: no drift has p-value =~ 0.4).

The mean time between recircu-
lations in 100, 101, ..., 140 was T = 0.56, (confidence
interval (0.55330,0.56691)), clearly not as fast as the
p = 0.50 which we know to be the system’s capacity.
Performing unweighted RSTS in the first 140 samples
showed no transilion to steady state delectable — the
procedure seemed to be accurate enough to discern
that the transition had not yet occured, see figure 4.

When we extend the length of the runs we con-
sider to the full 500 samples, we see that RSTS was
able to indicate a strong transition to steady state
around the N = 330 sample, see figure 5. Averaging
the samples collected in 350,351, ...,500, we observe
an overall average of T = 0.501 (confidence interval
(0.49816,0.50389)).

RSTS clearly dominated the other traditional ini-
tial transient methods. In the case of the recirculat-
ing jobs, we clearly have a very gradual descent to
the steady-state average. The detection method is
not important to our overall theme, though we must
issue a general caution: The choice of N* should be
made very conservatively.
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Figure 4: RSTS performed on the first 140 sample recirculation times, using 12 numerator degrees of freedom
and 8 denominator degrees of freedom. Conclusion: no transition to steady state was evident.
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Figure 5: RSTS performed on the first 500 sample recirculation times.
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5 CONCLUSION

In this work, we have described the analysis problems
which arise when we are attempting to determine the
service capacity of a black boz service system. We
concentrated this investigation on simple queuing sys-
tems which conserve work. In this case, we showed
the advantages of closing the system so that output
from the system was recirculated, as the time between
recirculations converges to the system’s service rate.
We investigated ways to detect this convergence, and
showed how difficult this is in a simple Jackson net-
work example.

The wider significance of this work is the beginning
of an exploration for empirical methods for determin-
ing the capacity of a service system. This exploration
is done not by representing the system using a queu-
ing model which we know how to analyze a priori, but
by using a realistic model of the system and measur-
ing its performance in terms the user has in mind.
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