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ABSTRACT

In this paper, statistical information theory-based
procedures are applied to sensitivity analysis in com-
puter simulation. Information theory, through use of
the conditional entropy functional, provides a non-
parametric approach to qualitatively assessing the
sensitivity of the distributional relationships of the
input and output processes of a simulation model.
Since the conditional entropy functional quantifies
the amount of uncertainty in the distribution of a
set of random variables, it can be used as the basis
for a methodology to assess the relative strengths of
the statistical dependencies among the input/output
processes. The application of information theory in
this paper focuses on assessing the uncertainty in the
simulation output processes attributable to the sim-
ulation input processes. This approach to sensitivity
analysis is illustrated by an example.

1 INTRODUCTION

In computer simulation, sensitivity analysis usually
concerns the sensitivity of output performance mea-
sures (such as the expected value) to changes in
specified deterministic input factors (or parameters).
Specifically, this type of sensitivity analysis is con-
cerned with the quantification of changes in simula-
tion performance measures to changes in determin-
istic input factors and is therefore a parametric ap-
proach. Procedures such as factor screening (see, for
example, Kleijnen (1987)) and gradient estimation
(see, for example, Glasserman (1991)) are represen-
tative forms of this type of sensitivity analysis.

This paper considers a different type of sensitivity
analysis using the concepts of entropy and informa-
tion theory. The approach examines the joint statisti-
cal dependencies in the distribution of the simulation
input and output processes. Since the entropy func-
tional operates on the joint probability of occurrences
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of a set of random variables, it is nonparametric in
nature. In contrast to the typical deterministic para-
metric approaches to sensitivity analysis, this non-
parametric entropic approach is applicable if the sim-
ulation input processes are generated by parametric
probability distributions, empirical distributions, or
trace driven data. The objective of this type of pro-
cedure is to identify input processes which account for
a significant portion of the uncertainty in the simu-
lation output process. Additionally, this type of in-
formation can be used to determine the allocation of
resources for improving the quality (i.e., reducing the
uncertainty) of simulation input data.

The remainder of the paper is organized in the fol-
lowing way. Section 2 contains a description of en-
tropy and techniques in information theory that are
used in the sensitivity analysis procedure presented
in this paper. Section 3 describes an approach to
simulation sensitivity analysis using conditional en-
tropy and related information theoretic measures. A
queueing example is provided to illustrate this pro-
cedure. Section 4 contains some concluding remarks
and future research directions.

2 INFORMATION THEORY AND EN-
TROPY

Entropy is a qualitative measure of the degree of de-
pendence between a set of random variables. It is an
accepted nonparametric measure of the statistical de-
pendencies between the input and output processes
in a stochastic system. Entropy-based information
theory can be used to identify those input processes
which account for a statistically significant amount
of uncertainty in the distribution of the output pro-
cesses. The statistical entropy function is defined as
the logarithmic decomposition of the joint probabil-
ity distribution (see equation (1) below), and requires
only a few assumptions for its use.

The unconditional eniropy funciion is the basic
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measure used in calculating the measures of uncer-
tainty in the input/output distribution that are the
basis for the sensitivity analysis procedure. To de-
fine the entropy function, let X = (X,,..., X,,) be a
set of random variables where each X;,j = 1,...,n
has a finite number outcomes that are not necessar-
ily integer-valued. The m — th order unconditional
entropy Hy(X1,...,.X'n) where m < n < 0o can be
expressed as:

kl km
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The indices ky, ..., k,, are defined as the number of
possible outcomes in each of the respective sample
spaces of the random variables (\X1,..., X,,). The
quantity p;, _; _ is the multivariate joint probability
of the set random variables (\X,..., X};,) taking on
the set outcomes (z;,,...,z; ).

The conditional entropy functlion quantifies the
amount of information in the joint distribution of the
contingent variables at different known levels of the
ezplanatory variables. In the framework of a simu-
lation experiment, the contingent variables are the
output processes and the explanatory variables are
the input processes. The conditional entropy can
also be interpreted as the amount of uncertainty re-
maining in the distribution of the output after the in-
put processes are realized. From logic and algebraic
techniques (see Guiasu (1977) or Yaglom and Yaglom
(1983)), the conditional entropy can be expressed in
terms of the unconditional entropy in the following
manner:

H (X[Y) = Hy(X,Y) — Hu(Y) (2)

where X = (X1,...,X,) are the n contingent vari-
ables and Y = (Y1,...,Yy,) are the m explanatory
variables.

The next measure concerns the amount of shared
or redundant information that a set of explanatory
variables supplies about a set of contingent variables.
Using the measures of unconditional and conditional
entropy, the amount of shared or redundant informa-
tion 1s defined as:

Hyi(X,Y) = Hu(X)- H(X]|Y) (3)
Hu(x) + Hu(Y) - Hu(X’Y)

where the last step follows by substituting equa-
tion (2) into equation (3). From the definition of un-
conditional and conditional entropy, equation (3) can
be interpreted as the difference between the amount
of uncertainty in the contingent variables before and

after having observed the explanatory variables. In
other words, it quantifies the reduction in uncertainty
in the contingent variables due to the information fur-
nished by the explanatory variables. In the simula-
tion framework, H,; is a measure of the uncertainty
in the conditional relationship between the input and
the output processes and can be used in a qualitative
procedure to assess which input processes account for
significant amounts of the uncertainty in the distri-
bution of the output process.

The quantity H,; provides a means for statistical
testing of the strength of a relationship between ran-
dom processes over the continuum from complete in-
dependence to complete determinacy. If the set of
contingent variables X is independent of the set of
explanatory variables Y, then H,; calculated from a
sample of size N, converges to zero at a rate of (1/N).
It can be shown that under these conditions 2+ NxH;
is asymptotically distributed as a chi-square distribu-
tion with (kx, ---kx, — 1)(ky, - - - ky,, — 1) degrees of
freedom where kx, ,i=1,...,nand ky,,j=1,...,m
are the number of possible discrete responses for the
contingent and explanatory variables, respectively
(for a discussion on the convergence rate and the
asymptotic distributional properties, see Gokhale and
Kullback (1978)).

The final measure is the percentage of shared infor-
malion. It is defined as:

100(H:(X,Y))

HPs(xx Y) Hu(X) (4)
100(Hy(X) — He(X[Y))
Hy(X)

where the last step follows by substituting equa-
tion (3) into equation (4). The percentage of shared
information is similar to the regression-derived ex-
plained variance measure R?. Both can be viewed
as attempts to assess the input/output dependen-
cies as a function of the reduction in the amount of
uncertainty inherent in a set of contingent variables
from the measurement or observation of a set of ex-
planatory variables. However, unlike the R? crite-
rion, the H,, does not require that the relationship
between the contingent and explanatory variables to
be linear and is a nonparametric measure that can be
readily calculated (in theory) for any bounded order
of dependency of the distribution (see Golden et al.
(1990), Appendix 1) .

The quantities Hy; and H,; are the primary mea-
sures used in the next section for simulation sensitiv-
ity analysis.
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3 INFORMATION THEORETIC SENSI-
TIVITY ANALYSIS

In order to mimic stochastic systems in business and
engineering, computer simulation models are driven
by stochastic input processes and therefore generate
stochastic output processes. The information the-
oretic measures based on entropy described in sec-
tion 2 can be used to quantify uncertainty in the
input/output relationships in a computer simulation
model. More specifically, these measures can be used
to quantify the uncertainty in the distribution of a
stochastic output process which can be attributed
to the uncertainty in the distribution of a stochas-
tic input process. This type of information is very
important because it can be utilized to assess the
quality of simulation input. For example, if a large
amount of uncertainty in a simulation output process
is attributable to a particular input process, then re-
sources should be allocated to improve the quality of
(i.e., reduce the uncertainty in) the data associated
with this input process.

As indicated in section 1 and illustrated in sec-
tion 2, entropy-based measures provide a nonpara-
metric approach to sensitivity analysis. These mea-
sures examine the distributional relationship via the
associated probabilities of the possible realizations of
the stochastic processes driving the simulation and
the stochastic processes generated by the simulation.
The input processes need not be generated by para-
metric probability distributions. They may, for exam-
ple, be generated by empirical distributions or trace
driven historical data. Even if the data is gener-
ated by parametric distributions, the analysis remains
nonparametric because the parameter values remain
fixed.

It is important to note that the objective of the
information theoretic approach to sensitivity analysis
differs from the objective of a procedure like factor
screening. The objective of factor screening is to dis-
tinguish between the input factors that have a sig-
nificant impact on an output performance and those
input factors that do not. Factors which have little
or no impact on the performance measure are elimi-
nated from consideration in any subsequent sensitiv-
ity analysis (for example, gradient estimation). The
objective of the information theoretic to sensitivity
analysis is not to eliminate input factors or even in-
put processes. It is to identify the processes which
contribute the most to the uncertainty in the distri-
bution of the stochastic output processes. Those in-
put processes which contribute very little to the un-
certainty in the distribution of the output are not
necessarily unimportant, but instead, may have very

little uncertainty associated with their distribution.
An extreme example of this is a constant input pro-
cess whose value directly impacts an output process.
Since this input process remains unchanged during
the analysis, no uncertainty in the data series of the
output process can be attributed to this factor.

The following example is an illustration of the im-
plementation and analysis of the entropic approach
to sensitivity analysis.

Example: Consider an M/M/1 queue with first-in,
first-out service discipline with infinite queue capac-
ity. The model has two input processes: an exponen-
tial interarrival process and an exponential service
process. The output data series of interest is the sys-
tem waiting time. The objective of this analysis is
to measure the amount of uncertainty in the system
waiting time attributable to the interarrival and ser-
vice processes. Using the notation of section 2, let X
be a random variable representing the system wait-
ing time (the contingent variable) and let Y7 and Y,
be random variables representing the interarrival and
service times respectively (the explanatory variables).

The information theoretic measures used in this
analysis are those found in equations (1), (2), (3) and
(4). Tt is important to note that since the underlying
processes have continuous probability distributions,
it is the relative values (not the actual values) of the
entropies which provide meaningful information (see
Papoulis (1984), page 525). By definition, this type of
relative information is provided by H,; and Hp,. In
the following analysis relative comparisons will also
be made across different run scenarios (i.e., for differ-
ent traffic intensities and different sample sizes).

Table 1 contains estimates of H,, H., Hs;, and Hp,
along with the observed significance level (p-values)
for the chi-square test statistic described in section 2
for H,;. For each traffic intensity, the data were pro-
duced by making 1,000 independently seeded replica-
tions (or simulation runs) of 2,000 customer service
completions per run (i.e., a total of either 2,000,000
service completions). Each replication was initialized
by sampling waiting times from the steady state dis-
tribution. On each replication, the sample mean for
each process was computed and used as a single data
point in the estimation of H,, H., H,;, and Hp,.
Therefore, the data in Table 1 were actually derived
from 1,000 independent sample means from each of
the input and output processes. The experiment was
designed in this way to circumvent the difficulties as-
sociated with estimating the entropy functional for
serial correlated data in the waiting time process. It
turned out that using sample means as a surrogate
measure for each of the processes provided very use-
ful information.
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Table 1: Measures of Shared Information for M/M/1 Queue with 1,000 Replications 2,000 Observations Initial-

ized in Steady State

Traffic | Hy(X) Between Y; and X Between Y3 and X
Intensity H. | Hy; | Hps | P-value | H. | H,; | Hp, | P-value
0.3 1.87 | 1.87 | 0.00 | 0.00 1.00 | 1.55 | 0.31 | 16.9 0.00
0.5 1.85]1.83 | 0.02 | 1.10 1.00 | 1.64 | 0.20 | 11.0 0.00
0.7 1.60 | 1.54 | 0.06 | 3.76 0.00 | 146 | 0.14 | 8.71 0.00
0.9 1.46 | 1.39 | 0.08 | 5.26 0.00{1.35|0.11 | 7.59 0.00
0.95 1.48 | 1.41 | 0.08 | 5.10 0.00 | 1.39 | 0.09 | 6.09 0.00

Table 2: Measures of Shared Information for M/M/1 Queue with 1,000 Replications 1,000 Observations Initial-

ized in Steady State

Traffic | Hy(X) Between Y; and X Between Y, and X
Intensity H. | Hy; | Hys | P-value | H. | Hs; | Hp, | P-value
0.3 1.85 | 1.85 | 0.00 | 0.00 1.00 | 1.54 | 0.31 | 16.5 0.00
0.5 1.60 | 1.59 | 0.01 | 0.63 1.00 | 1.42 { 0.19 | 11.6 0.00
0.7 1.33 | 1.30 | 0.03 | 1.89 1.00 | 1.21 | 0.12 | 9.01 0.00
0.9 1.36 | 1.31 | 0.06 | 4.14 0.01|1.26 |0.11 | 7.71 0.00
0.95 1.40 | 1.35 | 0.05 | 3.52 0.09 | 1.32 { 0.07 | 5.20 0.00

Calculation of the statistics in Table 1 was per-
formed by a FORTRAN computer program developed
by Dalle Molle (1989). A complete description of the
details of the calculations is given in this reference.
For each of the processes (i.e., interarrivals, services,
and waiting times), the sample mean data was cat-
egorized into ten intervals in order to estimate the
entropies. Based on this categorization, the statistics
2%1,000* H,;(X,Y1) and 2% 1,000 * H,;(X,Y3) have
approximate chi-square distribution with 81 degrees
of freedom.

Each row of Table 1 contains results for a different
system traffic intensity. In all cases the mean inter-
arrival was held at one and the mean service time
was changed to control the traffic intensity. A clear
and explainable pattern emerges for the relationship
between the interarrival and waiting processes. For
lower traffic intensities (i.e., 0.3 and 0.5), the p-values
are very close to one indicating that the uncertainty
in the waiting time process has very little to do with
uncertainty in the arrival process. These results can
be understood by noting that at low traffic intensi-
ties, the waiting times are almost completely deter-
mined by the service times and the interarrival times
contribute very little to the uncertainty in the wait-
ing times. As the traffic intensities increase to 0.7,
0.9, and 0.95, on average, more customers spend time
waiting in queues. The portion of the time a customer

spends waiting in a queue is directly impacted by in-
terarrival times. Hence, at higher traffic intensities,
the uncertainty in the interarrival time process has a
much greater impact on the uncertainty in the wait-
ing time process (note the smaller p-values).

At all traffic intensities, a significant amount of the
uncertainty found in the waiting time process was at-
tributed to the uncertainty in the service time process
(p-values are close to zero in all cases). This is to be
expected since waiting times always contain a service
time component. Therefore, the uncertainty in the
latter contributes to the uncertainty in the former
at all traffic intensities. Note that the magnitude of
Hps(X|Y2) decreases as the traffic intensity increases
because of an increase in the variability of the waiting
time process attributable to the interarrival process.

To test the effects of sample size on the results,
Tables 2 and 3 contain the same information as Ta-
ble 1 for 1,000 replications of 1,000 and 100 obser-
vations, respectively. It appears from these results
and other empirical evidence collected by the authors
that more observations per replication provide more
definitive results. For example, the p-values for the
shared information between interarrivals and waiting
times decrease to zero as the traffic intensity increases
for 2,000 observations per replication. For 1,000 ob-
servations per replication the same general pattern
occurs, but the drop off of the p-values is not quite
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Table 3: Measures of Shared Information for M /M /1 Queue with 1,000 Replications 100 Observations Initialized
in Steady State

Traffic | Hy(X) Between Y; and X Between Yy and X
Intensity H. | Hy; | Hps | P-value | H. | Hy; | Hps | P-value
0.3 169|168 | 0.01 | 0.72 1.00 1 1.33 ] 0.36 | 21.4 0.00
0.5 1.58 [ 1.556 | 0.03 | 2.16 0.84 | 1.32 | 0.26 | 16.4 0.00
0.7 1.50 | 1.45 | 0.06 | 3.87 0.01 { 1.31 | 0.19 | 12.6 0.00
0.9 1.57 | 1.53 | 0.04 | 2.72 0.35 | 1.48 | 0.09 | 5.55 0.00
0.95 1.62 | 1.60 | 0.02 | 1.37 1.00 | 1.58 | 0.04 | 2.23 0.75

Table 4: Measures of Shared Information for M/M/1 Queue with 1,000 Replications 1,000 Observations Initial-
ized Empty and Idle

Traffic | Hy(X) Between Y; and X Between Y, and X

Intensity H. | Hyi | Hps | P-value | H, | Hy; | Hps | P-value
0.3 1.85 [ 1.85 | 0.00 | 0.00 1.00 | 1.54 | 0.31 | 16.5 0.00
0.5 1.60 | 1.59 | 0.01 | 0.64 1.00 | 1.42 | 0.19 | 11.7 0.00
0.7 1.32 1 1.29 |1 0.03 | 1.95 1.00 | 1.19 | 0.12 | 9.16 0.00
0.9 1.24 | 1.18 | 0.06 | 4.85 0.00 [ 1.14 | 0.10 | 8.28 0.00

0.95 1.46 | 1.37 | 0.09 | 6.30 0.00 | 1.34 | 0.13 | 8.83 0.00

as abrupt and the results seem to be less stable for
higher traflic intensities. For 100 observations per
replication, the results appear to be very unstable at
higher traffic intensities. The problem of instability
of the results at higher traffic intensities is caused by
high variability in the data. As the number of obser-
vations increases per replication, the sample means
exhibit less variability making the entropy statistics
easier to estimate. By comparing H, and H, for
1,000 and 2,000 observations, the results appear to
have almost reached a stable level by 1,000 observa-
tion per replication (i.e., the H,’s and the H.’s are
very similar across the scenarios of 1,000 and 2,000
observations per replication). Since the correspond-
ing results are quite different for 100 observations per
replication, this sample size does not appear to be
large enough to properly characterize the uncertainty
in the distributions of the input and output processes.

To conclude this example, the data in Table 4 illus-
trates the effect of initialization bias on the informa-
tion theoretic statistics. In each case the simulation
run was initialized with an empty queue and an idle
server. Even with initialization bias, this procedure is
able to detect the same general pattern of sensitivity
noted from the results in Table 1.

4 CONCLUDING REMARKS

This paper has illustrated an information theoretic
approach to computer simulation sensitivity analy-
sis. The approach, which is based on the conditional
entropy function, is nonparametric and requires very
few assumptions for its use. This procedure provides
information on the uncertainty in the distribution of
the simulation output processes attributable to the
simulation input processes. In turn, this information
can be used as an aid in decisions regarding resource
allocation for the improvement of the quality of sim-
ulation input data.

Future research includes applying another informa-
tion theoretic measure to simulation sensitivity anal-
ysis. The marginal incremental information measures
the conditional relationship between a set of contin-
gent variables and a set of explanatory variables af-
ter accounting for the conditional information in the
set of contingent values with respect to a second dis-
Jjoint set of explanatory variables. In the simulation
context, this measure allows for quantification of the
relative importance of a specific subset of the input
processes in addition to the information already sup-
plied by another subset of input processes.

In the queueing example, the sample means of the

processes were used in the analysis rather than the
raw data. Although this approach provided good re-
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sults, it is conceivable that some information was lost
due to the smoothing effect associated with averag-
ing the data. Therefore, a future research direction is
to develop a procedure which makes direct use of the
uncertainty in the raw data. Finally, it is important
to note that input/input and output/output distri-
butional relationships could also be examined using
the sensitivity analysis procedure developed in this

paper.
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