Proceedings of the 1993 Winter Simulation Conference
G.W. Evans, M. Mollaghasemi, E.C. Russell, W.E. Biles (eds.)

SIMULTANEOUS RANKING, SELECTION AND MULTIPLE COMPARISONS FOR
SIMULATION

Frank J. Matejcik

Industrial Engineering
South Dakota School of Mines & Technology
Rapid City, South Dakota 57701-3995

ABSTRACT

We present three experiment design and analysis
procedures that simultaneously provide indifference-
zone selection and multiple-comparison inference for
choosing the best among k systems. One procedure is
appropriate when the systems are simulated indepen-
dently; the other two are appropriate in conjunction
with common random numbers. All are easy to apply.
We illustrate all three procedures with a numerical
example.

1 INTRODUCTION

In this paper we consider the problem of comparing a
small number of systems, say 2 to 20, in terms of the
expected value of some stochastic performance mea-
sure. We assume that expected performance will be
estimated via a simulation experiment. At a gross
level we are interested in which system is best, where
“best” is defined to be maximum or minimum ex-
pected performance. At a more refined level we may
also be interested in how much better the best is rel-
ative to each alternative, since secondary criteria not
reflected in the performance parameter (such as ease
of installation, cost to maintain, etc.) may tempt us
to choose an inferior system if it is not deficient by
much.

Since we are estimating expected performance we
can neither select the best system nor bound the dif-
ferences between systems with certainty. Instead,
we present procedures that simultaneously control
the error in selecting the best and bounding the
differences. These procedures unify standard rank-
ing and selection procedures—that control the er-
ror when choosing the best—and standard multiple-
comparison procedures—that control the error in
making simultaneous comparisons. The procedures
depend upon having normally distributed data, but
they do not require known or equal variances across
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systems, and some of the procedures allow the use
of common random numbers to reduce the computa-
tional effort. When the simulation outputs are sample
averages, the normality assumption is typically not a
serious restriction.

The paper is organized as follows: The next sec-
tion presents a motivating example that will be used
throughout the paper to illustrate the new proce-
dures. We then provide background necessary to un-
derstand the inference that the new procedures pro-
vide. Section 4 contains the procedures themselves
along with a numerical example. We close with some
conclusions in Section 5.

2 A MOTIVATING EXAMPLE

Consider an (s, S) inventory system in which some
discrete item is periodically reviewed. If the inven-
tory level is found to be below s units, then an order
is issued to bring the inventory level up to S units;
otherwise no additional items are ordered. Different
(s, S) inventory policies result in different inventory
systems. Koenig and Law (1985) used this example
to illustrate a subset selection procedure; see their
paper for a detailed description of the model. The
only stochastic input process in the simulation is the
demand for inventory in each period.

Suppose that five (s,S) inventory policies have
been identified for study, and we are interested in
which policy has the minimum expected cost per pe-
riod for 30 periods, where cost is measured in thou-
sands of dollars. Differences of less than 1 (thou-
sand dollars) are considered practically insignificant,
so while we want to choose the best system we also
want to know which policies are practically equivalent
to the best policy.
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3 BACKGROUND

Let Y;; represent the output from the jth replication
(or batch mean) of system ¢, for i = 1,2,...,k, so
that Y; = (Ylj,Yzj,...,ij)' is the k x 1 vector of
outputs across all systems on replication j. We as-
sume throughout that Y,;,Y,,... arei.i.d., and that
Y; ~ N(u, E), the multivariate normal distribution
with unknown mean vector p = (g1, g2, ..., )" and
unknown variance-covariance matrix

011 012 -+ Ok

021 022 -+ O
3y =

Ok1 Ok2 *'° Okk

We are interested in comparing the k systems in terms
of their expected performance, y;. In the inventory
example there are k = 5 policies, Y;; is the average
cost for 30 periods observed on the jth replication of
the ith inventory policy, and yu; is the expected cost
per period of the ith inventory policy

If we simulate the systems independently—
meaning we use different random numbers to drive
the simulation of each system—then

o1 0 .o 0

0 o2 -+ 0
Yy =

0 0 cee Okk

However, since using common random numbers
(CRN) across systems is known to reduce the vari-
ance of comparisons, we are also interested in the case
when CRN forces the covariances oy; > 0, for i # j.
In the inventory example we used CRN to force each
inventory policy to be subjected to the same sequence
of demands, providing a fairer comparison of policy
performance.

Output-analysis methods that exploit CRN and
furnish appropriate statistical inference have long
been of interest to the simulation community. Yang
and Nelson (1991) provide additional references and
some solutions for multiple comparisons in conjunc-
tion with CRN. This paper provides methods for si-
multaneously selecting the best system and providing
confidence-intervals for the differences under CRN, as
well as for independently simulated systems. More-
over, all of our methods allow for unequal and un-
known variances across the systems.

The following sections present the confidence-
interval procedure, multiple comparisons with the
best, and the decision-theory procedure, indifference-
zone selection. We show that both types of inference
can be attained simultaneously from a single experi-
ment.

3.1 Multiple Comparisons with the Best

Suppose that larger y; is better. Multiple Compar-
tsons with the Best (MCB) provides simultaneous
confidence intervals for the parameters

Hi — 1}1:3( Hj

for : = 1,2,...,k. These confidence intervals bound
the difference between the performance of each sys-
tem and the best of the others with prespecified con-
fidence level. For minimization problems, such as the
inventory example, we consider p; — min;x; p;, for
1=1,2,...,k.

Most MCB procedures assume the variances across
systems are equal. See Hochberg and Tamhane
(1987) for a general discussion of MCB procedures.

3.2 Ranking and Selection

Let
1y < p2) <0 S k)

be the (unknown) ordered means. Two-stage,
indifference-zone selection procedures yield estima-
tors fi;, 1 = 1,2,...,k, that guarantee

Pr{fw) > By, Vi# klpgy —pe) > 8} >1—a

independent of the system variances, where f;) is the
estimate associated with the (unknown) system hav-
ing the ¢th smallest expectation. The user-specified
value § is called the indifference zone. The implica-
tion is that if we use the procedure and then select
the system with the largest performance estimate f;
as the best system we will be correct with probability
> 1 — a when the best is at least § better than the
others. In the inventory example we could set § = 1
thousand dollars since we are indifferent to policies
with expected costs that differ by less than 1 thou-
sand dollars.

Indifference-zone-selection procedures typically do
not exploit CRN, and do not provide inference about
systems other than the best. Goldsman (1983) pro-
vides an exposition of indifference-zone selection and
related topics.

3.3 Simultaneous Ranking, Selection and
Multiple Comparisons

In this section we establish that MCB intervals and
indifference-zone selection can be derived simultane-
ously from the same experiment. We begin with a
result, due to Hsu (1984), that establishes sufficient
conditions under which MCB intervals can be formed.
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Result (Hsu): If

Pr{fr) — By = () — 1) > —w, Vi# k} > 1-a

then with probability > 1 — «a

Hi = Max p; €
- +
- (ﬁ-' — maxfi; — w) ) (ﬁ-' — maxp; + W>
J# J#i
fori=1,2,...,k, where —z~ = min{0,z} and z* =

max{0, z}.

The quantity w is the whisker length of the MCB
intervals, and it is analogous to the half width of
symmetric confidence intervals. In standard MCB
procedures w is a random variable, but the next the-
orem establishes that the estimators resulting from
indifference-zone-selection procedures with indiffer-
ence zone § satisfy the condition in Hsu’s result with
w = §. Therefore, both types of inference can be de-
rived simultaneously from the same experiment, and
the whisker length of the MCB intervals can be spec-
ified in advance. This theorem and its proof appear
in Matejcik and Nelson (1992).

Theorem (Matejcik & Nelson): For standard
ranking and selection estimators f; (e.g., sample
means and generalized sample means), the statement

Pr{figx) > By, Vi# klpgy —pu > w}>1-a
implies that

Pr {fx) =BGy = (Br) — #)) > —w,Vi£k} > 1-a

for any values of the true means.

The primary consequence of this result is that we
can use the outcome of a two-stage, indifference-
zone-selection procedure to form MCB intervals with
whisker length equal to the indifference zone, and si-
multaneously guarantee both the probability of cor-
rect selection and coverage of the MCB differences
with overall confidence level 1 — a. In the following
section we present procedures that exploit this theo-
rem.

4 PROCEDURES

We now present three combined indifference-zone se-
lection and MCB procedures, and illustrate them us-
ing the inventory example described in Section 2. As

is traditional, the procedures are stated in a maxi-
mization context, but the inventory example used to
illustrate the procedures is a minimization problem.

The first procedure assumes the systems are simu-
lated independently (different random numbers). The
second and third procedures allow CRN. All of the
procedures assume that the simulation output data
are normally distributed. We present versions of each
procedure that are easy to apply in practice; there are
more complex versions that have advantages in cer-
tain situations.

In the procedures we use the convention that a
“.” subscript indicates averaging with respect to that
subscript. For example, ¥;. is the sample average of
},ilx),ﬂ)"';},in-

4.1 Rinott’s Procedure

The first procedure, which requires independently
simulated systems, is an extension of Rinott’s (1978)
indifference-zone-selection procedure.

Procedure R

1. Specify w, a, and ny. Let h solve Rinott’s inte-
gral for no, k and o (see tables in Wilcox 1984).

2. Take i.i.d. sample Y1, Ys,...,Yi,, from each of
the k systems simulated independently.

3. Compute the sample variances

Z;L(Yij - 17')2

S? =
‘no—l

fori=1,2,...,k.
4. Compute the final sample sizes
N; = max {no, [(th/w)2]}
fori=1,2,...,k.

5. Take N; — ng additional i.i.d. observations from
system %, independently of the first-stage sample
and the other systems.

6. Compute the overall sample means

- 1 N:
Fo==Y v,

fori=1,2,...,k.

7. Select the system with the largest Y. as best and
simultaneously form the MCB confidence inter-

vals
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Hi — I?:-l?ﬁﬂj €

J#i

fori=1,2,...,k.

To illustrate the procedure we simulated the k =
5 inventory systems independently with first-stage
number of replications ny = 10, indifference-zone
w = 1 (thousand dollars), and confidence level 1—a =
0.95. From the tables in Wilcox (1984) we obtain
h = 3.692. The procedure selected inventory pol-
icy 2 as the best (that is, policy 2 had the smallest
estimated cost per period), and provided the MCB
intervals in Table 1. Recall that these are confidence
intervals on g; — min;x; pj, where p; is the unknown
expected cost per period of inventory policy 3.

The point estimate for gy —minj.o pj is —1.4, indi-
cating that policy 2 appears to be 1.4 thousand dol-
lars less expensive than the best of the other policies.
The intervals tell us that, with confidence level 0.95,
policy 2 is no worse than any of the others (the up-
per endpoint of the confidence interval is 0), and it
may be as much as 2.4 thousand dollars less expen-
sive (the lower endpoint is —2.4). Notice that the
whisker length is w = —1.4 — (—2.4) = 1, precisely as
specified.

The intervals also indicate that the other four poli-
cies are inferior to policy 2 (the lower endpoints of
their intervals are all 0), and may be as much as
2.4,18.1,18.6 and 35.3 thousand dollars more expen-
sive for policies 1, 3,4 and 5, respectively. These con-
strained intervals—which either contain 0 or have 0 as
one endpoint—are a feature of MCB. Technically, the
most MCB can declare is that a system is no worse
than the best, it cannot declare that the system is
better.

Also presented in Table 1 are the total sample sizes
(number of replications) for each policy, N;. They
range from 130 replications for policy 5 to 270 for
policy 3, for a total of 1072 replications. The dif-
ferences are a function of the variances of the sys-
tems; the larger the variance the greater the number
of replications. Procedures that exploit CRN should
reduce the number of replications required to attain
the same confidence level and whisker length.

4.2 Clark and Yang’s Procedure

The second procedure, which allows the systems to
be simulated under CRN, is an extension of Clark

= = - = = +
- <Y,-. —maxY;. — w) , (Y,-. — m:.ij. + w)
i

Table 1: MCB Results for Procedure R

i| N; |lower Y, — min;»; Y;. upper
1| 220 0 1.4 2.4
2 (211 -2.4 -1.4 0
3 | 270 0 17.1 18.1
4 | 241 0 17.6 18.6
5| 130 0 34.3 35.3

and Yang’s (1986) indifference-zone-selection proce-
dure. This procedure exploits the Bonferroni inequal-
ity to account for the dependence induced by CRN.
Thus, it is a conservative procedure that typically
prescribes more replications than actually needed to
make a correct selection under CRN. In the proce-
dure, t = t;_ e o1 is the (1 — $27)-quantile of the
t distribution with no — 1 degrees of freedom.

Procedure CY
1. Specify w, a and ng. Let t = ti_ e ne—1-

2. Take i.i.d. sample Y;y,Yio,. .., Yin, from each of
the k systems using CRN across systems.

3. Compute the sample variances of the differences

1 & -
S = ——5 > (Y = Yj ~ (Vi - ;)

n —
0 =1

for all ¢ # j.

4. Compute the second-stage sample size
N = max {no, ‘rmax(tS;j/w)z‘I } .
J#

5. Take N — ng additional i.i.d. observations from
each system, using CRN across systems.

6. Compute the overall sample means

- 1
Y, = 'ﬁjz_:lyu

fori=1,2,...,k.

7. Select the system with the largest ¥;. as best and
simultaneously form the MCB confidence inter-
vals
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ui—l?gfuje

i

for:=1,2,...,k.

We performed the same experiment for the inven-
tory example, but this time using CRN across sys-
tems. The value of ¢ = ¢, _o.0s g = 2.685. This pro-
cedure also selected inventory policy 2 as the best,
but did so with many fewer total replications (875 to
1072). The MCB results are displayed in Table 2.

Procedure C) is clearly superior to R in this exam-
ple. Unfortunately, procedures based on the Bonfer-
roni inequality become more conservative as the num-
ber of systems, k, increase. At some point this con-
servatism overwhelms the benefit from CRN; avoid-
ing this problem is the motivation for the procedure
presented in the next section.

Table 2: MCB Results for Procedure CY

i| N |lower ¥i — min;; I=/]~. upper
1| 175 0 1.4 2.4
2 (175 | -2.4 -14 0
3| 175 0 17.9 18.9
4| 175 0 18.1 19.1
51175 0 34.4 35.4

4.3 Nelson and Matejcik’s Procedure

The third procedure, which also allows the systems
to be simulated under CRN, is an extension of Nel-
son’s (1993) robust MCB procedure. This procedure
assumes that ¥ has a particular structure known as
sphericity, specifically

291 + 72 Y1+ 9o Y1+ %,
5 Yo +91 29+ 72 Yo + ¢,
1/)7‘ + ¢'1 ¢r + ¢'2 2¢’r + 72

Sphericity implies that
Var(Y;; — Yy;] = 272

for all ¢ # £. In other words, the variances of all
pairwise differences across systems are equal, even
though the marginal variances and covariance may be

- = = +
- (f’i. —maxY;. — w) , (Y.-. - m:z.;ch. + w) ]
VE]

unequal. Sphericity generalizes compound symmetry,
which is

1 p P
3 =02 o1 d
p P 1

Compound symmetry has been assumed by many re-
searchers to account for the effect of CRN.

The procedure below is exact when X satisfies
sphericity. Nelson (1993) showed that an MCB proce-
dure based on the assumption of sphericity is remark-
ably robust to departures from sphericity provided
that the covariances a;; > 0, the assumed effect of
CRN. The combined indifference-zone-selection and

MCB procedure will be similarly robust.
(1-a)
71-14k—1xn0

(1 — a)-quantile of the maximum of a multivariate ¢
random variable of dimension k—1 with (k—1)(no—1)
degrees of freedom and common correlation 1/2; see,
for instance, Table 4 in Hochberg and Tamhane
(1987).

In the procedure, g = _1),1 is the
]

Procedure N M

T(l—a)

1. Specify w, a and ng. Let g = k—1,(k=1)(mo=1),3"

2. Take ii.d. sample Y;1,Y;,...,Yin, from each of
the k systems using CRN across systems.

3. Compute the approximate sample variance of the
difference

k % o o 12
2 2 X (Y- Y-V +7)

s (k— Dmo 1)

4. Compute the second-stage sample size
N = max{no, [(gS/w)z]} .

5. Take N — ng additional 1.i.d. observations from
each system, using CRN across systems.

6. Compute the overall sample means

- 1 N

fori=1,2,...,k.

7. Select the system with the largest Y. as best and
simultaneously form the MCB confidence inter-
vals
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{ —maxu,; €
Hi yove Hj

fori=1,2,...,k.

We performed the same experiment for the inven-
tory example using CRN across systems. The value

of g = Tig’:’? = 2.24. This procedure also selected

inventory policy 2 as the best, but did so with signif-
icantly fewer total replications (330 to 875 to 1072).
The MCB results are displayed in Table 3, and are
nearly identical to the results obtained by the other
procedures.

Table 3: MCB Results for Procedure N’ M

i| N |lower Y, - min;x; Y;. upper
1] 66 0 1.5 2.5
2 (66| -25 -1.5 0
3|66 0 18.2 19.2
4 | 66 0 18.2 19.2
5 | 66 0 34.7  35.7

5 SUMMARY AND CONCLUSIONS

In this paper we have presented three new procedures
that simultaneously control the error in selecting the
best of k systems, and comparing the best system to
each of the other competitors. These procedures are
based on a theorem that allows MCB confidence in-
tervals to be appended to indifference-zone-selection
procedures, thereby unifying an inference approach
and a decision-theory approach. This inference can
be displayed in an intuitive graphical representation,
and facilitates making selections based on secondary
criteria that are not reflected in the performance pa-
rameter.

Two of the procedures allow CRN to be used to
reduce the sample size required to attain a fixed pre-
cision. This is in contrast to most applications of
variance reduction that increase the precision of an
estimator for a fixed sample size.

Each of the procedures employs a two-stage-
sampling approach, which is more natural in simu-
lation than in most other sampling experiments. The
procedures that incorporate CRN have equal second-
stage sample sizes for all systems, which is convenient
for programming purposes.

= = - = = +
- (Y,-. - 1}12';ch. - w) ) (Y.-. - m;uch. + w)
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