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ABSTRACT

We describe single-stage and closed sequential proce-
dures for selecting the most probable cell of a multi-
nomial distribution. These procedures are then refor-
mulated as nonparametric techniques for selecting the
best one of a number of competing simulated systems
or alternatives. We discuss performance character-
istics of the procedures and make recommendations
concerning their use.

1 INTRODUCTION

This article is concerned with the problem of selecting
the most probable (or “best”) cell from a multinomial
distribution. We will show how procedures for solv-
ing this multinomial problem can be used to answer
the question “Which one of a number of competing
systems is the best?” The term “best” can take on a
variety of interpretations depending on the problem
at hand; e.g., we might be interested in finding:

e The most popular candidate in a political race,
e The inventory policy that maximizes profit,

o The manufacturing line layout that minimizes
makespan, or

e The most precise scale.

Similar problems often arise in the context of discrete-
event simulation when the experimenter is interested
in determining the best one of a number of alternative
simulated systems.

In the remainder of this section, we briefly review
the multinomial distribution and provide motivation
for the indifference-zone procedures to be discussed
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in the subsequent sections. In §2, we present single-
stage and closed sequential procedures for selecting
the most probable cell of a multinomial distribution.
§3 is concerned with simulation applications of the
multinomial selection problem, and §4 provides con-
clusions.

1.1 The Multinomial Distribution

Suppose that n independent trials of the same exper-
iment are conducted, each having ¢ mutually exclu-
sive and exhaustive possible outcomes (or cells). Let
pi (0<p; <1, Z:___l pi = 1) denote the single-trial
probability of the event associated with the ith cell
(1 <7<t), and let Y;, be the number of outcomes
falling in cell 7 (1 < 7 < t) after n observations have
been taken. Then 0 < ¥;, < n (1 < i < t) and
Si_, Yin = n. The t-variate discrete random vari-
able Y, = (Yin,...,Y:n) has the probability mass
function

P{Y =(y1,...,yt)} = l‘[’—n!—.—lnpgi’

i=1J" =1

and we say that Y, has the multinomial distribu-
tion with parameters n and p = (p1,...,p:). The
binomial distribution is the special case of the multi-
nomial for which there are t = 2 cells.

The next two examples are from Bechhofer, Sant-
ner, and Goldsman (1993).

Example 1 Suppose that a fair die has three red
faces, two blue faces, and one green face, i.e., the
probability vector associated with red, blue, and
green is p = (3/6,2/6,1/6). If the die is tossed
n = 5 times, then the probability of observing ex-
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actly 3 reds, 0 blues, and 2 greens is

5!

P{YS = (3)072)} = W

3302012 _

(E) (3) (E) = 0.03472.
Example 2 Continuing with Example 1, suppose
that we did not know p and that we wanted to se-
lect the color having the largest probability of occur-
ring on a single trial. (Of course, that color is red.)
Our selection rule is to take whatever color occurs the
most often during the n = 5 trials, using randomiza-

tion to break ties. The probability that we correctly
select red is

P{red wins in 5 trials}

1
= PY15>Y,5& Y3s}+ §P{Y1,5 =Y25> Y35}

1
+§P{Y175 = Y3,5 > Yz’s}.

The following table lists the Y3’s leading to a cor-
rect selection (CS) of red, along with their associated
probabilities, incorporating randomization when ties
occur.

Ys | P{Ys & CS})
(5,0,0) 0.03125
(4,1,0) 0.10417
(4,0,1) 0.05208
(3,2,0) 0.13889
(3,1,1) 0.13889
(3,0,2) 0.03472
(2,2,1) | (0.5)(0.13889)
(2,1,2) | (0.5)(0.06944)

0.60416

Thus, the probability of correctly selecting red based
on n = 5 trials is 0.6042. This probability can be
improved by increasing the sample size n.

1.2 The Indifference-Zone Approach

This subsection discusses the indifference-zone (I1Z)
approach for selecting the most probable cell of a
multinomial distribution. This approach was pop-
ularized by Bechhofer (1954) and Bechhofer, El-
maghraby, and Morse (1959). First, we establish
some notation and ground rules.

Statistical Assumptions: We take independent
observations X; = (Xij,...,Xy;) (j > 1) from a
multinomial distribution having ¢t > 2 cells with un-
known probabilities p = (p1,...,p:), where 0 < p; <
1(1<i<t)and 3! ,pi = 1. Then X;; =1 [0] if
the jth observation is [is not] from cell 7 (1 < ¢ < ¢,

iz1).

We denote the ordered values of the p;’s by pp) <
+++ < p)- Neither the values of the pf,)’s nor the
pairings of the p;’s with the pp,)’s (1 < 4,5 < t) are
assumed to be known. The observed value of X; is
given by ®; = (zyj,...,2¢4) (j > 1). The cumula-
tive sum for cell ¢ after m > 1 multinomial obser-
vations have been taken is given by yim = E;"zl
(1 €7 <t), and the ordered values of the y;,’s are
given by Yajm <00 < Yft)me-

.’L','j

Our experimentation will attempt to achieve the
following goal.

Goal 1 To select the cell associated with ppy, i.e.,
the most probable or “best” category.

We say that a correct selection is made if Goal 1
is achieved. If p; and p_1) are very close, say
P/ Pe-1) < 6* for some 6* > 1 specified by the ex-
perimenter, then for all practical purposes, it does not
matter which of the two associated cells we select. On
the other hand, if pj;; and pp;_1) are quite different,
say p[,]/p[t_ll > 6*, we would prefer to make a cor-
rect selection. The constant 6* can be interpreted as
the “smallest pp;)/p:—1) ratio worth detecting.” For
these reasons, the set

Qs = {plpp/pr-1) > 6*}

is called the preference zone, and Qf, is called the
indifference zone.

We are interested in statistical procedures that
satisfy the following indifference-zone probability re-
quirement.

Probability Requirement: For constants (6*, P*)
with 1 < 6* < oo and 1/t < P* < 1, specified prior
to the start of experimentation, we require

P{CS|p} > P* whenever p € Qs.. (1)

The probability in (1) depends on the entire vector
p = (p1,...,p:) and on the number n of independent
multinomial observations taken. In the next section,
we discuss two procedures for selecting the most prob-
able multinomial cell.

2 TWO MULTINOMIAL PROCEDURES

This section discusses a single-stage procedure and a
closed sequential procedure for achieving Goal 1 while
guaranteeing the probability requirement (1).
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2.1 A Single-Stage Procedure

The following single-stage procedure was proposed by
Bechhofer, Elmaghraby and Morse (1959) to guaran-
tee (1).

Procedure Mpggy

For the given t, and (&*, P*) specified prior to the
start of sampling, find n from Table 1.

Sampling rule: Take a random sample of n multino-
mial observations X; = (Xyj,...,Xyj) (1 < j < n)
in a single stage.

Terminal decision rule: Calculate the ordered sample
sums Yjn < -0 < Yujn- Select the cell that yielded
the largest sample sum, y[;,, as the one associated
with py). Use randomization in case of ties.

The n-values found in Table 1 and more complete
tables from Gibbons, Olkin, and Sobel (1977) and
Bechhofer, Santner, and Goldsman (1993) are given
for a variety of (¢;6*, P*). They are computed so
that procedure Mpggys achieves the nominal proba-
bility of correct selection P* when the event prob-
abilities p are in the least-favorable (LF) configura-
tion, i.e., the configuration that minimizes P{CS|p}
for p € Qs«. For procedure Mpgps, Kesten and
Morse (1959) proved that the LF configuration is

Pu) = Pp—1) = 1/(6* +t = 1), pyyy = 6*/(8* + ¢~ 1).

Example 3 Suppose that a soft drink producer
wishes to determine which of three colas is the most
popular. The company will ask each of n individu-
als which of the three brands they most prefer. The
company will declare as best that cola corresponding
to the largest sample proportion of positive responses.
The sample size n will be chosen is such a way that the
company is guaranteed that P{CS|p} > 0.95 when-
ever the ratio of the largest to second largest true (but
unknown) proportions is at least 1.4. From Table 1
with t = 3, P* = 0.95, and 6* = 1.4, we find that
n = 186 individuals must be interviewed. If it turns
out that 50 of these people prefer Brand A, 120 prefer
Brand B, and 16 prefer Brand C, then the company
can state that Brand B is the most popular and assert
that if p € Qs+, then the P{CS|p} is at least 95%.

2.2 A Closed Sequential Procedure

Sometimes it is not necessary to take all of the n
observations dictated by procedure Mpggys. For in-

stance, it is clear from the data in Example 3 that,
since Brand B had garnered a very large margin of
victory, it would have been possible to curtail sam-
pling before n = 186 observations had been taken.
For this and other reasons, the use of sequential pro-
cedures can often lead to significant savings in the
total number of observations to termination relative
to single-stage procedures that guarantee the same
probability requirement (1).

Bechhofer, Kiefer and Sobel (1968) proposed an
open sequential sampling procedure (Mpgs) for se-
lecting the most probable cell from a multinomial
distribution. By “open,” we mean that, before sam-
pling begins, the experimenter cannot place an upper
bound on the number of observations that the pro-
cedure will ultimately require before termination—
certainly, this is not a desirable property! Bech-
hofer and Goldsman (1985b, 1986) studied the perfor-
mance characteristics of procedure Mpgs and found
that the procedure always “overprotects,” i.e., the
achieved P{CS|LF} of the procedure typically ex-
ceeds its specified lower bound P* by a substantial
amount. Further, the distribution of the random
number of observations N taken by procedure Mpgs
is highly skewed to the right; sometimes the proce-
dure requires prohibitively large NV to terminate sam-
pling (with resulting large E{N|p} and Var{N|p}).
These remarks led the authors to study the effects of
truncation—stopping (or closing) a procedure once
the number of observations hits a prespecified limit.
The truncation number ng must be chosen in such a
way as to maintain P{CS|LF} > P*, while reducing
E{N|p} and Var{N|p} uniformly in p.

A second augmentation of procedure Mpgs fea-
tures the use of curtailment—stopping early when
the termination decision becomes apparent. Suppose
that, at some point in sampling, the current leading
cell achieves an insurmountable lead given the lim-
ited number of potential remaining observations be-
fore truncation were to terminate sampling. Then it
can be shown that curtailment permits early termi-
nation of the procedure at no loss in P{CS|p}.

The following closed sequential procedure for se-
lecting the most probable multinomial cell incorpo-
rates truncation and curtailment.

Procedure Mpg

For the given t, and (6*, P*) specified prior to the
start of sampling, find the truncation number ng from
Table 1.

Sampling rule: At the jth stage of experimentation
(j > 1), take the observation X; = (Xyj,..., Xij)-
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Table 1: Sample Size n for Single-Stage Procedure Mpggp, and Truncation Numbers no and E{N|LF} and
E{N|EP} for Closed Sequential Procedure Mpg (* denotes results obtained via Monte Carlo simulation; see
Bechhofer and Goldsman 1986 for details)

MpEM Mpg MpEM Mpg

t| P &* n ng | E{N|LF} E{N|EP} P*  §* n no | E{NILF} E{NIEP}
3.0 1 1 1.00 1.00 3.0 8 9 4.91 5.75

2.8 3 3 2.39 2.50 2.8 9 9 6.00 6.79

2.6 3 3 2.40 2.50 2.6 10 11 7.05 8.16

2.4 3 3 2.42 2.50 2.4 12 15 8.29 9.91
0.75 2.2 3 3 2.43 2.50 0.75 2.2 15 17 10.44 12.26
2.0 5 5 3.09 3.25 2.0 20 24 13.78 16.45

1.8 5 7 3.44 3.63 1.8 29 35 19.42 23.34

1.6 9 9 5.96 6.26 1.6 46 57 31.11 37.65

1.4 17 19 11.35 12.06 1.4 92 *124 62.31 76.01

1.2 55 67 36.75 39.28 1.2 326 *495 219.69 270.89

3.0 7 [e) 3.20 4.00 3.0 16 19 9.84 13.85

2.8 7 7 4.63 5.34 2.8 19 22 11.29 15.94

2.6 7 9 5.23 6.26 2.6 22 26 13.20 18.87

2.4 9 11 5.72 6.94 2.4 26 31 15.93 22.77

2| 090 2.2 11 15 6.33 7.84 0.90 2.2 33 39 19.79 28.39
2.0 15 15 8.90 10.59 2.0 43 53 25.71 37.31

1.8 19 27 11.04 13.91 1.8 61 *75 36.94 53.77

1.6 31 41 17.00 21.48 1.6 98 *126 58.69 86.83

1.4 59 79 32.92 41.84 1.4 196 *274 116.89 176.56

1.2 199 267 112.28 143.50 1.2 692 | *1050 413.68 627.68

3.0 9 11 5.25 6.94 3.0 23 26 12.97 20.34

2.8 11 15 5.65 7.84 2.8 26 30 14.74 23.29

2.6 13 13 7.54 9.66 2.6 31 36 17.19 27.36

2.4 15 17 8.47 11.38 2.4 37 44 20.68 33.38
095 2.2 19 23 9.43 13.13 0.95 2.2 46 56 25.75 42.16
2.0 23 27 13.09 17.90 2.0 61 *74 33.86 55.47

1.8 33 35 18.03 24.30 1.8 87 *106 47.80 79.05

1.6 49 59 26.56 37.09 1.6 139 *180 76.06 127.76

1.4 97 151 48.31 72.36 1.4 278 *380 152.72 264.25

1.2 327 455 166.54 245.31 1.2 979 | *1500 537.10 962.45

3.0 5 5 3.24 3.48 3.0 11 *12 7.44 8.95

2.8 6 6 3.70 4.15 2.8 12 *13 8.39 9.96

2.6 6 7 3.94 4.38 2.6 14 *17 9.80 11.93

2.4 7 8 5.40 5.94 2.4 17 *20 11.91 14.55
0.75 2.2 9 10 6.00 6.68 0.75 2.2 22 *25 14.99 18.20
2.0 12 13 7.97 8.93 2.0 29 *34 19.81 24.35

1.8 17 18 11.34 12.74 1.8 41 *50 28.44 34.88

1.6 26 32 17.60 20.25 1.6 68 *86 45.68 57.14

1.4 52 71 34.02 39.84 1.4 137 *184 92.68 117.62

1.2 181 *285 117.89 140.85 1.2 486 *730 329.36 421.47

3.0 11 12 6.97 8.93 3.0 21 ¥24 13.13 18.76

2.8 13 15 7.77 10.36 2.8 24 *28 15.01 21.87

2.6 15 16 9.17 11.83 2.6 29 *34 17.43 25.69

2.4 18 22 10.43 14.25 2.4 35 *42 21.17 31.66

3| 090 2.2 22 25 13.30 17.77 0.90 2.2 44 *52 26.63 39.37
2.0 29 34 17.17 23.30 2.0 58 *71 35.16 52.75

1.8 40 50 23.71 32.89 1.8 83 *104 50.34 75.69

1.6 64 83 37.26 52.61 1.6 134 *172 80.93 123.96

1.4 126 | *170 73.42 105.39 1.4 271 *374 163.55 252.55

1.2 437 | *670 254.85 369.78 1.2 964 | *1460 585.00 923.61

3.0 17 20 8.90 13.57 3.0 29 *34 16.42 27.19

2.8 19 22 10.48 15.79 2.8 34 *39 19.19 31.50

2.6 22 25 12.27 18.27 2.6 40 *46 22.55 36.87

2.4 26 31 14.48 22.09 2.4 48 *58 27.04 45.37
0.95 2.2 32 41 17.56 27.76 0.95 2.2 61 *74 34.05 57.80
2.0 42 52 23.03 35.97 2.0 81 *98 45.01 76.28

1.8 59 71 32.63 50.41 1.8 115 *142 64.37 109.09

1.6 94 125 50.32 81.43 1.6 185 *240 103.53 180.02

1.4 186 | *266 98.88 165.90 14 374 *510 209.64 365.49

1.2 645 | *960 346.42 577.82 1.2 1331 *2000 741.70 1350.73
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Stopping rule: At stage m (m > 1), calculate the or-
dered sample sums y[1jm < -+ - < Y1jm- Stop sampling
when, for the first time, either

t—-1
tm = Y _(1/8)Wm=vuim) < (1- P*)/P* (2)
i=1
or
m = ng (3)
or
Yym — Yt-1Jm > Mo — M. (4)

Terminal decision rule: Let N denote the value of
m at the termination of sampling. Select the cell
that yielded the largest sample sum, yj)n, as the one
associated with pp;). Use randomization in case of
ties.

The truncation numbers ng given in Table 1 for se-
lected (t; 6%, P*) are taken from more complete tables
given in Bechhofer and Goldsman (1986).

Remark 1 Stopping criterion (2) is simply that of
the open procedure Mpgs. Stopping criterion (3)
truncates sampling if ng multinomial observations
have been taken. Stopping criterion (4) curtails sam-
pling if the cell currently in second place can do no
better than fie the cell currently in first place.

We give several examples to illustrate how proce-
dure M pg works.

Example 4 For t = 3, P* = 0.75, and 6* = 3.0,
Table 1 tells us to truncate sampling at ng = 5 ob-
servations. Consider the following observations.

1 0 0 1

| Zim T2m I3m l Yim Yam  Y3m
0 0
0 1 0 0 0

m
1
2

We stop sampling by criterion (2) since z; = (1/3)%+
(1/3)2=2/9 < (1 — P*)/P* = 1/3. We select cell 2.

Example 5 Again suppose that t = 3, P* = (.75,
and é* = 3.0; so ng = 5. Consider the following
multinomial observations:

m | Tim T2m Z3m | Yim Yom Y3m
1 0 1 0 0 1 0
2 1 0 0 1 1 0
3 0 1 0 1 2 0
4 1 0 0 2 2 0
5 1 0 0 3 2 0

Since m = ng = 5, criterion (3) stops sampling, and
we select cell 1.

Example 6 Again suppose that ¢t = 3, P* = 0.75,
and 6* = 3.0; so ng = 5. Consider the following
observations:

m | Zim ZT2m Z

[ N S R
O = O =
SO = O =
-_0 O O O
3
<
MMr—it—-Og
<
Mwm»—-n—g
<
— o oo o

Since m = ng = 5, criterion (3) tells us to stop sam-
pling. Since we have a tie, we randomly select be-
tween cells 1 and 2.

Example 7 Again suppose that t = 3, P* = 0.75,
and §* = 3.0; so ng = 5. Consider the following
observations:

m| Tim  Tam  T3m | Yim  Yam  Y3m
1] o 1 0 0 1 0
2 | 1 0 0 1 1 0
30 0 1 0 1 2 0
41 0 0 1 1 2 1

Since cells 1 and 3 can do no better than tie cell 2
(if we were to take the potential remaining no —m =
5 — 4 = 1 observation), criterion (4) tells us to stop,
and we select cell 2.

Remark 2 It can be shown that procedure Mpg
has the same LF configuration of the p;’s as does
procedure Mg .

Table 1 illustrates performance characteristics of
procedure Mpg. In particular, we tabulate the ex-
pected number of stages in the LF configuration,
E{N|LF}, as well as the expected number of stages
required in the equal-probability (EP) configuration,
E{N|EP}, for which p; = --- = p; = 1/t. (The LF
configuration can be regarded as a “worst case” con-
figuration for all p in the preference zone, while the
EP configuration is a worst case configuration for all
p in the {-dimensional unit simplex.) We see that
the expected number of stages for procedure Mpg
is almost always less than the fixed sample size n of
procedure Mpgyr, usually by a substantial margin.

Remark 3 Many other sequential procedures have
been proposed for the goal of selecting the most prob-
able multinomial cell using the indifference-zone ap-
proach. For instance, Cacoullos and Sobel (1966) pro-
posed an inverse sampling procedure for which sam-
pling stops when the frequency of any cell reaches a
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preassigned number; Alam (1971) gave a procedure
that stops when the difference between the largest
and second-largest cell frequencies reaches a preas-
signed number; Ramey and Alam (1979) (and Golds-
man and Bechhofer 1985a) investigated a stopping
rule based on both of the above-mentioned criteria;
Chen (1992) studied a stopping rule that combines
Ramey and Alam’sstopping rule, the curtailment rule
of the Bechhofer and Kulkarni (1984), and truncation.

In terms of the expected number of stages to ter-
mination, procedure M pgg compares quite favorably
(over a broad range of practical (¢; 6*, P*)-values) to
the other procedures discussed in Remark 3. Thus, if
sequential sampling is an option of the experimenter
and appropriate truncation numbers are available, we
recommend the use of procedure Mpg.

3 APPLICATIONS TO SIMULATION

This section discusses a nonparametric application of
the multinomial selection problem. In particular, we
give an interpretation that enables us to select that
one of ¢ competing simulations having the highest
probability of producing the “most desirable” out-
put statistic from a given vector-observation of the
competing simulations’ output statistics. This non-
parametric interpretation follows from remarks due
to Bechhofer and Sobel (1958) and further studied
by Dudewicz (1971).

Let Wyj,...,W;; (j > 1) be independent out-
put statistics from ¢ > 2 simulations; the W;;’s can
be discrete or continuous random variables with un-
known probability density or mass functions. For
example, W;; could represent the cost incurred in
the jth independent simulation replication of the ith
inventory policy under consideration. Suppose we
take independent and identically distributed vector-
observations W; = (Wy;,...,Wy;) (j > 1). Fora
particular vector-observation Wj, suppose that the
experimenter can determine which one of the ¢ ob-
servations W;; (1 < ¢ < t) is the “most desirable.”
The term “most desirable” is based on some crite-
rion of goodness designated by the experimenter, and
can be quite general. For instance, as described in
Bechhofer, Santner, and Goldsman (1993), the “most
desirable” observation might correspond to:

e The largest crop yield based on a vector-
observation of ¢ agricultural plots using compet-
ing fertilizers.

e The smallest sample average customer waiting
time based on a simulation run of each of ¢ com-
peting queueing strategies.

e The smallest estimated variance of customer
waiting times (from the above simulations).

e The smallest sample proportion of customer
waiting times (from the above simulations) that
are greater than some designated bound w.

Suppose that X;; = 1 [0] if Wj; is [is not] the “most
desirable” of the components of W; (1 < i<t j >
1) (ties are not allowed). Then X; (j > 1) has a
multinomial distribution with probability p, where

pi = P{W;; is the “most desirable”
component of W1} (1 <i<t).

The problem of finding the cell having the largest
p; can be interpreted as that of finding the compo-
nent of W; having the highest probability of yielding
the “most desirable” observation from a particular
vector-observation; this reformulated problem can be
approached using the multinomial selection methods
described in this article.

Example 8 We will use procedure Mpg to deter-
mine which of t = 3 job shop set-ups is most likely to
yield reasonable times-in-system for a certain man-
ufactured product. Due to the complicated config-
urations of the candidate job shops, it is necessary
to simulate the three competitors. Suppose that the
jth simulation run of configuration 7 (1 < i < 3,
j > 1) yields W;;, the proportion of 1000 times-in-
system greater than 20 minutes. Management has
decided that the “most desirable” component of W;
will be that component corresponding to the small-
est Wi; (1 < i < 3). If p; denotes the probability
that configuration ¢ yields the smallest component of
W, then we wish to select the job shop configuration
that corresponds to p(3). By the above remarks, this
problem is the same as that of selecting the multino-
mial cell associated with p(3). Suppose that we specify
P* =0.75and é* = 3.0. The truncation number from
Table 1 for procedure Mpg is ng = 5. We apply the
procedure to the data found in the table below, and
select cell 2 (i.e., shop configuration 2).

m | Wim Wm W3m Lm . Ym

1 (013 0.09 0.14 (0,1,0) (0,1,0)
2 |0.24 010 0.07](0,0,1)] (0,1,1)
31017 0.11 0.12 (0,1,0) (0,2,1)
4013 008 0.02 (0,01 | (022
5014 013 0.15 | (0,1,0) | (0,3,2)

4 CONCLUSIONS

Multinomial selection procedures are quite useful in
the simulation arena. In particular, sequential proce-
dures such as procedure M gg are readily adapted as
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nonparametric methods for selecting the “best” of a
number of competing simulations.

There are a number of extensions of and comple-
ments to the above work. For instance,

e To facilitate the use of the procedures discussed
in this article, Adelman, Goldsman, and Hart-
mann (1993) provide an algorithm that com-
putes on-line truncation numbers as well as the
resulting performance characteristics of the pro-
cedures.

e Bechhofer, Goldsman, and Jennison (1989) con-
sider a multivariate generalization of the single-
stage procedure discussed in §2.1.

e Dudewicz (1971) and Auclair (1993) investigate
robustness aspects of multinomial nonparametric
procedures.

e Another important multinomial problem is that
of finding the least probable cell. Chen (1992),
among others, gives a procedure for this problem.

e Gupta (1956) devised the subset selection ap-
proach, resulting in a set of statistical techniques
that are complementary to indifference-zone pro-
cedures. Chen (1988) provides a tutorial on
subset selection procedures for the multinomial
problem.
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