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ABSTRACT

In this paper we present an easily implemented pro-
cedure for the generation of autocorrelated random
variables having a specified marginal distribution and
a fixed lag-one autocorrelation function.

1 INTRODUCTION

Simulation has become a very powerful tool for the
analysis of a wide variety of problems. Estimation
of a system’s performance by means of simulation of-
ten requires autocorrelated random variables as in-
put. Some examples of queueing models with cor-
related arrival and service times are given by Heffes
(1973 and 1980), Heffes and Lucantoni (1986), and
Lee et al. (1991).

A series of autocorrelated random variables (auto-
correlated series) can usually be characterized by two
factors: its marginal distribution and its correlation
structure. We consider a simple case: generation of
a stationary series {Y;}I'_,, which we refer to as a
target series, with a marginal distribution Fy and
a lag-one autocorrelation py. Most existing meth-
ods for generating autocorrelated series fall into three
classes:

(1) Correlation-oriented approach: This approach
is exemplified in most of the papers by Lewis and
co-workers (Lewis [1980, 1985], Lawrance and Lewis
(1981, 1987]). This approach develops a recursive al-
gorithm for Y; given Y;_;. For each marginal dis-
tribution Fy, py is provided as a parameter to the
algorithm. The advantage is that the autocorrela-
tion function is tractable (therefore, we use the name
correlation-oriented). The limitation is that a sepa-
rate algorithm must be devised for different Fy-.
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(2) Marginal-oriented approach: This approach
first transforms a known autocorrelated series, which
is referred to as a reference series, into its corre-
sponding uniform autocorrelated random variables,
then applies an inverse transformation method to
generate the target series. The marginal distri-
bution is easily preserved (therefore, we use the
name marginal-oriented), while the correlation be-
comes intractable through two stages of transforma-
tion. Lakhan (1981) presented this approach and em-
pirically derived the relationship among the autocor-
relations of the uniform, Rayleigh, and exponential
distributions corresponding to a given autocorrela-
tion. But Lakhan’s results are affected by error in
the autocorrelation of his reference series. Schmeiser
(1990) also presented this approach to generate a ran-
dom vector. However, he did not discuss how to get a
specified correlation for the random vector. Melamed
et al. (1992) presented a special case, called TES
methodology, that uses correlated uniform series as a
reference series, therefore avoiding the first transfor-
mation in the marginal-oriented approach. A heuris-
tic search is used in TES methodology for obtaining
the correlation of the target series.

(3) Joint-distribution oriented approach: In this
approach, the conditional probability of Y;;; given
by Y; is derived by dividing the bivariate distribu-
tion of ¥; and Y;,; by the marginal marginal dis-
tribution of Y;. This approach shifts the problem
to one of generating bivariate distributions. John-
son and Tenenbein (1981) describe a general scheme
for generating continuous bivariate distribution with
specified marginals and several dependence measures.
Schmeiser and Lal (1982) show how to generate bi-
variate gamma random vectors with any correlation.

In this paper, we follow the marginal-oriented ap-
proach to reach our goal. As mentioned above, au-
tocorrelation is not invariant through the necessary
conversions. We give an iterative procedure for de-
termination of a lag-one autocorrelation of a refer-
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ence series {X,} such that the resulting target series
{Y.} exhibits a specific value of py. Fortran imple-
mentation which allows very general choices as to the
marginal distribution in the target series is available
from the authors.

2 PROCEDURE

To generate a stationary series Yi,Y5,-.-, with a
marginal distribution Fy and a lag-one autocorrela-
tion py, we propose an iterative procedure. Each it-
eration goes through Steps 1-5. Step 0 is a setup for
initialization. We denote % as the iteration number,
and use hy,ly, hx, and lx as intermediate variables.
Below is a statement of our algorithm. An explana-
tion follows this statement.

Step 0. Initialization.

k := 1, the first iteration,
px = py, the initial approximation of py,
hy = 1,

1}' = —l,
hx =1,
l,\' = -1

(The symbol := is read “given the value of.”)
Step 1. Apply marginal-oriented approach.

(i) Generate a reference series {z;}"_;,
with a lag-one autocorrelation px .
e.g. X; ~ AR(1), ie,, X; = ¢Xi_1 + €,
where €; ~ iid Normal(0,02 = 1 — ¢? ),
and ¢ = px. Then X; ~ Normal(0,1).

(i) wi = Fx(z:) = P(X < 2),i=1,2,--,n
(iii) v = Fy '(w),i=1,2,---,n

Step 2. Estimate corr(Y;, Yit1).

Repeat Step 1.(i)-(iii) m times, each with a size
n. Each replication generates one estimate of

corr(Y;,Yir1). We then have m estimates which

are denoted as ﬁg'l), ﬁg?), ) ﬁgf")~

The estimator of corr(y:, ¥i+1) and its standard
error at iteration k are defined as

mo (3)
ﬂ(k) = ﬁ}’ = =1 7

(k) = s.e.(By) =

If |a(k) — py| < &(k), no further iteration is
needed and stop.

Step 3. Update intermediate variables.

if (k) > py,

hy = ﬂ'(k):
hx :=px;
if A(k) < py,
Ly = ﬂ‘(k)r
lx = px.

Step 4. Adjust px.

px = px + A, where

Ay i (k) <py and ifhy =1
—-A; if p(k) > py  and ifly = -1
A, ifa(k)<py and ifhy <1

—Ns if (k) >py and ifly > -1

A

The increment or decrement values are defined

Al = |ﬂ(k) — PY |1
_ ley — A(k)][hx — px]
AQ = | hy _ ﬂ(k) |1
_ (ley — A(k)]lpx — Ix]
B = P gm -y "

Step 5. Update the iteration number.

k:=k+ 1 and go to Step 1.

We start with a selected autocorrelated series as a
reference series in Step 1(i). A reference series is not
fully determined by the specification of Fy and py
for the target series; one may still choose among vari-
ous autocorrelated series. The first-order autoregres-
sive (AR(1)) process with normal marginal distribu-
tion (Box and Jenkins 1976), exponential AR(1) with
exponential marginal distribution (Lewis 1980), and
Correlated U(0,1) (Melamed 1991) have all been used
with success. Inspection of the bivariate joint distri-
bution, shown in Song et al. (1993), motivates selec-
tion of AR(1) as a reference series for a broad range
of systems. The unusual behavior in the end effect
exhibited by Correlated U(0,1), and the truncated
characteristic exhibited by exponential AR(1) recom-
mend those series for certain purposes. See Melamed
(1991).

We choose AR(1) as a reference series in Step
1(i). As an initial approximation, we choose the lag-
one autocorrelation py equal to the target value py.
Steps 1(i and ii) generate correlated random numbers
for use in the inverse transformation in Step 1(iii).
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Since Steps 1 (ii and iii) are both nonlinear trans-
formations, the autocorrelation py will usually vary
from px. Empirical results (Song et al. (1993)) show
that the relation between py and px is always mono-
tonically increasing. Thus, if the value of py used in
Step 1(i) does not produce the target py-, we can ad-
just px in the same direction as the necessary change
in py.

In Step 2 we estimate the lag-one autocorrelation
of Y, corr(Y;,Y;+1). The estimator of corr(Y;, Yit1)
and its standard error at iteration k are denoted as
f1(k) and 6(k). We take |a(k)—py | < 6(k) as our cri-
terion for accepting px and terminating the iterative
procedure. If py fails this criteria, proceed to Step 3.

In Step 3, we update intermediate variables. In
Step 4, we adjust px. For the first iteration (i.e.
k = 1), if g(1) > py, we adjust px by taking
Ay = |(1) — py| as the decrement. If (1) < py, we
take A; as the increment. In subsequent iterations
(k=2,3,...), we keep taking A, = |z(k) — py | as the
decrement if i(j) > py for any iteration j < k. Simi-
larly, we keep taking A; as the increment if 4(j) < py
for any iteration j < k. Otherwise, we use interpola-
tion to adjust px. The corresponding increment and
decrement are given by A; and As.

In Step 5, we update the iteration number k and
proceed by reapplication of Steps 1 through 5.

3 EXAMPLES

We apply the procedure of Section 2 to a variety of
target series. In all examples the reference and target
series length n = 1000 and the number of replications
m = 20. The values of target lag-one correlations py
are 0.1,0.2,...,,0.9. Distributions of target marginals
Fy are Exponential with rate 1, Gamma distribu-
tion with shape parameter 7 and scale parameter 1,
F distribution with degrees of freedom 7 and 10; see
Song et al. (1993) for more examples. For the inverse
transformation in Step 1(iii) we use the Fortran code
provided by Ding (1987).

In Tables 1 to 3, the first column is the target value
py . The second column gives the number of iterations
required to reach a suitable py. The third column is
the resulting value of px (for which jy satisfies the
termination criterion). Corresponding values of py
and s.e.(py ) are given for reference in columns 4 and
5, respectively.

The procedure converges rapidly, never requiring
more than three iterations in any of the example
cases. The computation time per iteration is not more
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than two and half minutes on 486-based PC com-
puter. Most of the computation time results from
computing the inverse transformation in Step 1(iii).

Table 1. Exponential (1)

target | iterations | resulting Py
oy required px given px s.e.(zl.)

0.1000 3 0.1192 0.1022 0.0076
0.2000 3 0.2321 0.2006 0.0076
0.3000 3 0.2405 0.3002 0.0075
0.4000 3 0.4452 0.4015 0.0070
0.5000 3 0.5458 0.5024 0.0065
0.6000 2 0.6501 0.6068 0.0071
0.7000 2 0.7438 0.7034 0.0062
0.8000 2 0.8344 0.8017 0.0047
0.9000 2 0.9201 0.8977 0.0031

Computer time per iteration about 1 min. (486PC,DX-33)

Table 2. Gamma(7,1)

target | iterations | resulting Py
oY required pX given px s.e.(_ﬁy)

0.1000 1 0.1000 0.0960 0.0066
0.2000 1 0.2000 0.1943 0.0068
0.3000 1 0.3000 0.2934 0.0068
0.4000 1 0.4000 0.3934 0.0066
0.5000 1 0.5000 0.4941 0.0061
0.6000 1 0.6000 0.5959 0.0056
0.7000 1 0.7000 0.6974 0.0050
0.8000 1 0.8000 0.7994 0.0043
0.9000 1 0.9000 0.8989 0.0033

Computer time per iteration about 1.5 min. (486PC,DX-33

Table 3. F(7,10)

target | iterations | resulting Py

Y required px given px s.e.(py)
0.1000 2 0.1206 0.0994 0.0084
0.2000 2 0.2393 0.1977 0.0090
0.3000 2 0.3538 0.2951 0.0096
0.4000 2 0.4635 0.3941 0.0101
0.5000 2 0.5682 0.4947 0.0105
0.6000 2 0.6674 0.5937 0.0098
0.7000 2 0.7595 0.6963 0.0072
0.8000 2 0.8478 0.8032 0.0050
0.9000 2 0.9275 0.9000 0.0026

Computer time per iteration about 2.5 min. (486PC,DX-33
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For certain types of the target distributions, the re-
sult that shows the relationship between py- and px is
independent of the distribution parameters chosen for the
computation. Thus, in Table 1 the exponential (1) was se-
lected, but the reported result is not dependent upon that
selection of parameter 1. This is so because the distribu-
tion is invariant with linear transformation of the random
variable. For the same reason, the mean and variance
for Normal distribution, the rate for Rayleigh distribu-
tion, the scale parameter for Gamma distribution, and
exchanging two parameters for beta distribution do not
affect results.

4 CONCLUSION

Simulation modeling frequently calls for generating auto-
correlated processes. The algorithm presented in this pa-
per can be efficiently applied to any distribution for which
the inverse transformation of the cumnulative distribution
function can be calculated or approximated.
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