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ABSTRACT

We analyze two strategies for randomly generating
optimization test problems with two types of coef-
ficients. One strategy is to generate test problems
with independent coefficients; the other strategy is
to generate test problems with induced correlation
between the coefficient types. We discuss the likely
effect of test problem size, i.e., the number of decision
variables, on the sample correlations among the test
problem coefficients generated with each strategy. We
also propose some guidelines for experimenters based
on our analysis.

1 INTRODUCTION

Typically, synthetic test problems are randomly gen-
erated when an evaluation of solution methods for an
optimization problem is conducted because the pool
of real-world instances with known optimal solutions
is too small to provide enough distinct test cases. Un-
fortunately, the generation of synthetic problems is
rarely viewed as the multivariate sampling problem
it truly is.

In order to generate test problems, certain assump-
tions about the coefficients must be made. For exam-
ple, a distribution must be specified for each coeffi-
cient type, and relationships between the coefficient
types and/or the constants in the test problems may
also be specified. There are exceptions, but it is com-
mon to assume that some or all of the coefficient types
are mutually independent and to assume that each
coefficient type is uniformly distributed.

The primary motivation for this paper is the ran-
dom generation of synthetic test problems with two
types of coefficients. However, the work that is pre-
sented here applies to the more general problem of
generating samples of a bivariate discrete random
variable with specified marginal mass functions.

In the next section, we review some background
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material. In §3, we suggest an estimator for the ex-
pected correlation between two random variables that
is the basis for our later comparison of alternative in-
put models. In §4, we state the assumptions that we
make for our analysis and discuss some of the conse-
quences of our assumptions. We consider two strate-
gies for generating test problem coefficients: generat-
ing pairs of coefficients under the assumption of in-
dependence (§5) and generating coefficient pairs with
induced correlation (§6). We address the effect of test
problem sige on the range of sample correlations be-
tween the two types of coefficients and suggest guide-
lines for test problem dimensions and the number of
test problems. We conclude with a brief discussion in
§7.

2 BACKGROUND

In this section, we review the concept of a paramet-
ric envelope for a bivariate discrete random variable
(X,Y), as well as conventional mixtures of bivari-
ate pmfs that are often used to simulate values of
(X,Y) when p = Corr(X,Y) is specified. We also
discuss some relevant computational experiments on
synthetic optimigation problems.

2.1 Parametric Envelope for (X,Y)

Let X be a discrete random variable distributed over
n; valuesin Sx = {z1,%2,...,2Zn,}, where 2; <22 <
+++ < Tp,, according to the pmf f,(z) and Y be a dis-
crete random variable distributed over ny values in
Sy = {yl)yzv-"xyﬂz}) where n <y << Ynp
according to the pmf f,(y). A curve that plots 6
as a function of p, where 8 is the largest possible
value of the smallest joint probability over the bivari-
ate support Sx x Sy, can be constructed following
the solution of a parametric linear program (Peterson,
1990; Peterson and Reilly, 1991). Peterson and Reilly
(1991) and Reilly (1991) suggest that this paramet-
ric curve defines a parametric envelope of all feasible



A Comparison of Alternative Input Models for Synthetic Optimization Problems 357

combinations of p and 6. At least one pmf is associ-
ated with each point in the parametric envelope.

We adopt the parametric envelope concept sug-
gested in Peterson and Reilly (1991) and Reilly (1991)
and relate it to the random generation of optimiza-
tion test problems.

2.2 Conventional Mixtures

A common way to characterize the pmf for (X,Y)
when p = po is to mix values of (X,Y) generated
under the assumption that X and Y are indepen-
dent and values of (X,Y) generated under the as-
sumption that X and Y have extreme correlation.
(For example, see Schmeiser and Lal (1982).) Let
gmin (&, y) be the minimum-correlation pmffor (X,Y)
and gmaz(z,y) be the maximum-correlation pmf for
(X,Y). Conventional mixtures have the form:

A5t fi(2) fa(y)+
Act29maz(2,y) if po > 0;
ge(z,y) = (1)
A5~ fi(z) f2(v)+

Aringmin(2,y)  if po < 0;

where A5, = po/Pmaz, ASt = 1 = ASh,, Ao, =
Po/Prmin, AS_ =1- A:n_im and pmgr and pmin are
the maximum and minimum values possible for p,
respectively.

Conventional mixtures (1) can be used to generate
values of (X, Y) for any feasible py. However, for each
feasible pg, there is a unique conventional mixture. If
we are interested in generating values of (X,Y’) with
X and Y dependent and uncorrelated, a conventional

mixture will not suffice.

2.3 Related Computational Experiments

There have been many, many computational evalua-
tions of solution methods conducted. We summarize
some of the studies pertinent to our analysis.
Loulou and Michaelides (1979) use two different
distributions, the uniform and the 2-Erlang, for the
constraint coefficients in multidimensional knapsack
problems. They conclude that the statistical prop-
erties of test problems can affect the performance of
solution methods. Similar conclusions about the ef-
fect of correlation have been drawn in other studies
(Martello and Toth, 1979; Balas and Martin, 1980;
Balas and Zemel, 1980; Potts and Van Wassenhove,
1988; John, 1989; Moore, 1989; Moore, 1990)
Martello and Toth (1979) compare the performance
of algorithms for the 0-1 knapsack problem on test
problems in which the objective and constraint coef-
ficients are uncorrelated (independent), “weakly cor-
related”, and “strongly correlated” (p = 1). They

vary the correlation between the coefficient types by
changing the distribution of the objective function
coeflicients.

Balas and Zemel (1980) report on an evaluation of
solution methods for the 0-1 knapsack problem us-
ing the same types of test problems as Martello and
Toth. Potts and Van Wassenhove (1988) and John
(1989) use a very similar approach to generate syn-
thetic scheduling problems.

Balas and Martin (1980) include capital budget-
ing test problems in which the constraint coefficients
for each variable are related to the objective function
coefficient for that variable.

Moore (1989) studies 0-1 knapsack problems that
are generated using conventional mixtures (1) in or-
der to assess the effect of the expected correlation
between the objective and constraint coefficients on
the performance of a simple implicit enumeration rou-
tine. Moore (1990) uses conventional mixtures (1)
to generate weighted set covering problems in which
correlation is induced between the objective function
coeflicients and the sum of the binary constraint co-
efficients.

Hoffman and Jackson (1982), Greenberg (1990),
and Jackson, Boggs, Nash, and Powell (1991) are
examples of papers that provide some guidance for
designing and reporting computational experiments.

8 A CORRELATION ESTIMATOR

Let h(z,y) be any valid pmf for (X,Y) and consider
the random variable XY . By definition,

n, n2

Bxyin =Y, Y zivh(zi, ;)
1=17=1
and
n; n2
”,2\'Y|h = Z Z(z;yj)zh(z,-, yi) - "'ZXYlh'
i=1j=1

Suppose that N observations of (X,Y) are gener-
ated using h(z,y), and let
N
_ k=1 Tk /N — pxpy

RNIh = oxoy .

Rp|n is an unbiased estimator of pp, = Corr(X,Y |h).
Furthermore, Ry, is asymptotically normally dis-
tributed with mean
_ BXY|h — BX My

oxoy

Ph

and variance
e
o _ " XYlh
Rvn © N o%ol’
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(ning)™!

Pmin 0 Pmaz

Figure 1: Parametric envelope for (X,Y)

In §5 and §6, we use the estimator Ry, to analyze
the generation of values of (X,Y) with independent
sampling and sampling with induced correlation, re-
spectively.

4 ASSUMPTIONS

Throughout the remainder of this paper, we assume
that X and Y are discrete random variables such that
X ~U{1,2,...,nq} and Y ~ U{1,2,...,n2}. It
follows that px = (ny + 1)/2, 0% = (n? - 1)/12,
py = (ng + 1)/2, and o = (n2 - 1)/12.

Peterson and Reilly (1991) show that when X and
Y are uniformly distributed the parametric envelope
is an isosceles triangle, symmetric about p = 0.
(See Figure 1.) The three points that define the
triangle are (0, (n1n2)™!), (Pmaz,0), and (Pmin,0).
The points on the parametric curve, i.e, the points
between (pmin,0) and (0,(nin2)~!) and between
(0,(r1n2)~ ") and (pmaz,0), correspond to conven-
tional mixtures (1).

We also assume that n; > 3 and ¢ = ny/n,; is
integer. In this case, Reilly (1991) and Peterson
and Reilly (1991) characterize the minimum- and
maximum-correlation pmfs for (X,Y):

A ifg(m —z)<y<
gmin(z,y) = q(nl —rt 1);

0, otherwise;

Reilly

and

A fa(z—1)<y<gz;
gmaz(za y) =
0, otherwise.

It follows that

pmaz = ¢ (02 = 1)/(n - 1))*

and that pmin = —Pmaz-

For any point (po, ) in the parametric envelope,
there is a unique pmf that is a mixture of f,(z)f(y),
gmin (2, ), and gmaz(Z, y) (Peterson and Reilly, 1991;
Reilly, 1991). Specifically,

gp(z’ y) = Agfl(Z)fz(y) + Afningmfn(z’ y) +
M'nazgmu(z: y)v (2)

where
AP = ninabo,

AP = (1= nin260 — po/Pmaz)/2,

and
A{"rm:n: = (1 - n1n200 + pO/Pmaz)/2~

We refer to mixtures of the form (2) as parametric
mixtures.

Parametric mixtures (2) are a more general class
of mixtures that includes all conventional mixtures
(1). Note that it is very easy to generate values of
(X,Y) using (2). Reilly (1991) generates 0-1 knap-
sack problems using (2), and Pollock (1992) uses (2)
to generate weighted set covering problems.

5 INDEPENDENT SAMPLING

Suppose that we generate N observations of (X,Y)
with X and Y independent. In this case, Rn|s,f,
is asymptotically normally distributed with mean
P 1, = 0 and variance

2
_ %XYInt

2
TRuipg, = 2 2
12 Nosoy

where

0’1—},”1!2 = ux py (711.111,2 —n] — N2 — 5)/36

If we are interested in predicting how likely we are to
observe sample correlations with absolute value v or
greater, we can calculate

Pr(|Rnjp, g 2 7) =2 (1 -3 (M)) :

OXY|f1f2
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Table 1: Example values of Pr(|Rn |y, 4,| > )

N
v 100 1000 | 10000

0.01 | 0.970 | 0.907 | 0.711
0.05 | 0.853 | 0.559 | 0.064
0.10 | 0.711 | 0.242
0.20 | 0.459 | 0.019
0.30 | 0.267 0
0.40 | 0.139
0.50 | 0.064
0.60 | 0.026
0.70 | 0.010
0.80 | 0.003
0.90 | 0.001
0.95 0

O OO O OO OOOoO OO

O oo oooo

where @ is the cdf for the standard normal random
variable. Clearly, as N increases, the probability (3)
decreases. If N is large, there is likely to be little vari-
ability in the sample correlations between observed
values of X and Y.

Suppose that n; = 25 and ny = 100. Table 1 shows
values of Pr(|Rpyjs,¢,| > 7) for various combinations
of N and 4. It is interesting to note that for nearly
three of every ten samples of size 10000, Ryy, s, is
likely to be between -0.01 and +0.01. Furthermore,
it would be rare indeed to find |Ryy4,4,| > 0.30 if
N > 1000.

The probabilities (3) in Table 1 suggest that if we
hope to see some specified level of correlation between
observed values of X and Y, we must be prudent in
choosing N. Define Ny,, to be the maximum value
of N such that Pr(|Rn|s,s,| > 7) > a. It can be
shown that

2
2 Oy
N. _ -1 a XY|f1f2

Suppose again that n; = 25 and n,; = 100. Table 2
shows values of Ny, for various combinations of v
and a. When values of X and Y are generated in-
dependently, N should be quite small if we hope to
observe near-extreme sample correlations.

In addition to choosing a value for N, we may also
decide in advance on how many test problems to gen-
erate. Consider the following Bernoulli random vari-

able: .
1 if [Rnyggal 275
B =

0 otherwise.
If we generate £ test problems of size N with the pmf

Table 2: Example values of Nyp,,

a
¥ 0.50 0.10 0.01

0.01 | 33259 | 197802 | 485040
0.05 | 1330 7912 19401
0.10 332 1978 4850
0.20 83 494 1212
0.30 36 219 538

0.40 20 123 303
0.50 13 79 194
0.60 9 54 134
0.70 6 40 98
0.80 5 30 75
0.90 4 24 59
0.95 3 21 53
0.99 3 20 49

fi(z)f2(y), then

2
B‘ =" B; ~ Binomial(¢, Px(|Ry|s,1,| > 7).

i=1

Suppose one of the requirements for our experiment
is to have

Pr(B' > k) > ¢. (4)

Then our experiment should include at least £,,in (k)
test problems, where £,;,;, (k) is the smallest integer £
that satisfies (4). If k = 1, (4) becomes

1—(1=Pr(|Rnyf, 5| > 7))
1 — ) In(1=Pr(|Rn 4, 1,127))

2 9,

and it follows that

bmin(1) = [

Pr(B'>1)

In(1 - ¢) ]
In(1 - Pr(|Rnp, 1,1 > 7)) |

For example, let n; = 25, n, = 100, N = 1000,
¥ = 0.20, and

{ 1 if [Ryg00js,s,| > 0.20;

0 otherwise.

If we require enough test problems so that
Pr(B* > 1) > 0.85,

then £,in(1) = 98. In other words, we would need
to generate at least 98 test problems of size 1000 to
have a 0.85 chance that, for at least one problem,
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Table 3: Values of £pnin (1) with ¥ = 0.50

N

Y 100 1000 10000
0.01 1 1 1
0.05 1 1 11
0.10 1 3| 3196
0.20 2 36
0.30 3 1539
0.40 5 239595
0.50 11 | 1.38 x 10°
0.60 26
0.70 72
0.80 | 225
0.90 | 794
0.95 | 1568
0.99 | 2764

Rloooulh S —0.20 or R1000|f1f2 Z 0.20. Table 3
shows values of £,,,i, (1) for various combinations of N
and v with ¢ = 0.50. We see that £,,in (1) grows very
quickly as v or N increases. If we require Pr(B* >
2) > 0.85, we would need to generate £nn(2) = 174
problems.

Let Ap be the negative binomial random variable
that represents the number of test problems that
are generated until there are b problems such that
'Rlelf’)' Z v Then

fa, = b(l - PI(IRNUlfz' > 7))
’ Pr(|Rnis, 12| 2 )

o2 b(1 - Pr(|Rnys,1,] > 7))
A (Pr(IRNy1, 121 2 7))2

For our example, g4, = 50.74 and cr?41 = 2624.85.

6 SAMPLING WITH INDUCED CORRE-
LATION

Suppose that we wish to generate N observations of
(X,Y) with gp(z,y). Then

KXY |g, = Agﬂ'/\' By + Aﬁ.inﬂu\')ﬂgm.',. + Afmx::""/\')’|g,1m“;
BXY)g, = ABBXY)Ififs + A (XY )2 gmin +
Afna:r“"(/‘\'Y)zlynu.z’
and

2 _ R 2
TxY|g, = H(XY)?|g, — BXY|g,-

Reilly
Peterson and Reilly (1991) and Reilly (1991) show
that
BXYlgmin = Bx(2n2 +9+3)/6
and

BXY|gme. = #x (4m2 — g+ 3)/6.
It can also be shown that

KXY YIfge = Bx by (201 + 1)(202 +1)/9,

BXYPlgmin = Hx(6m1n3 + 4¢” + 11gny
+9n3 + 15n1n; + 150, + 15¢
+10m; + 5)/90,

and

B(XY)2lgmae = Hx (360103 + 4% — 19¢n,
+9n3 + 45n;n; + 150, — 15¢
+10mn, + 5)/90.

Suppose that n; = 25 and n; = 100. In this case,
Pmaz = 0.99925. Table 4, Table 5, and Table 6 show
weights for mixing, values of uxy s, and ”nglg,,’ and
values of

Pr(|Ryjg, — po| < 1) = 2@ (
U'XY|gp

WXU'Y\/F) _1 (5)

with n = 0.05 for various combinations of pg, 6y, and
N, respectively. In Table 5 we see that there is a di-
rect relationship between po and "',2\’}'| . and there is
an indirect relationship between 6, and a‘fﬂ,l 9 for a
fixed po. We see in (5) and in Table 6 that ”gn’ly,

affects how closely Ry|,, approximates py. The prob-
abilities in Table 6 would be greater if we had used a
larger tolerance on |Ry),, — pol, that is, if 7 > 0.05.
See Table 7 for values of Pr(|Ry|g, — po| < 0.10).

If we require that

Pr(|Rnjg, — pol < 1) > B,

our test problem size N should be at least Ny, where
Nrnin = [ (@7 ((8+1)/2))° ﬂ'—]
e n2okol |
Table 8 shows values of N, for specified require-
ments of the form
Pr(|Rn|g, — po| < 0.05) > 8

for various combinations of pg, 6y, and 3. There is an
indirect relationship between the entries in Table 8
and the corresponding entries in Tables 6 and 7. We
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Table 4: Weights for example mixtures

Table 6: Values of Pr(|Rn|g, — po| < 0.05)

Po 00 Ag Aﬁmz A?m‘n
Pmaz/2 | 0.0002 | 0.5 0.5 0
Pmaz/2 | 0.0001 | 0.25 | 0.625 | 0.125
Pmaz/2 | O 0 | 075 | 0.25

0 0.0004 1 0 0

0 0.0003 | 0.75 | 0.125 | 0.125

0 0.0002 | 0.5 0.25 0.25

0 0.0001 | 0.25 | 0.375 | 0.375

0 0 0 0.5 0.5
Pmin/2 | 0.0002 | 0.5 0 0.5
Pmin/2 | 0.0001 | 0.25 | 0.125 | 0.625
Pmin /2 0 0 0.25 0.75

Table 5: Values of pxy|g,, a'?\'}’lg,

N
Po R 100 | 1000 | 10000
Pmaz/2 | 0.0002 | 0.122 | 0.373 | 0.875
Pmaz/2 | 0.0001 | 0.121 | 0.369 | 0.872
Pmaz /2 0 0.120 | 0.366 | 0.868
0 0.0004 | 0.147 | 0.441 | 0.936
0 0.0003 | 0.145 | 0.436 | 0.932
0 0.0002 | 0.143 | 0.431 | 0.928
0 0.0001 | 0.141 | 0.426 | 0.925
0 0 0.139 | 0.421 | 0.921
Pmin/2 | 0.0002 | 0.190 | 0.554 | 0.984
Pmin/2 | 0.0001 | 0.186 | 0.544 | 0.982
Pmin/2 0 0.182 | 0.534 | 0.979

Table 7: Values of Pr(|Ry|g, — po| < 0.10)

Po 6o Bxvig, | %xvlg,
Praz/2 | 0.0002 760.5 459719.65
pm,u-/2 0.0001 760.5 468330.85
Pmaz/2 0 760.5 476942.05

0 0.0004 656.5 316761.25
0 0.0003 656.5 | 325372.45

0 0.0002 656.5 | 333983.65

0 0.0001 656.5 | 342594.85

0 0 656.5 | 351206.05
Pmin/2 | 0.0002 552.5 186615.65
Pmin/2 | 0.0001 552.5 195226.85
p,,.,-,,/z 0 552.5 203838.05

N
Po 8o 100 | 1000 | 10000
Pmaz/2 | 0.0002 | 0.241 | 0.668 | 0.998
Pmaz/2 | 0.0001 | 0.239 | 0.664 | 0.998
Pmaz/2 | O | 0.237|0.659 | 0.997
0 0.0004 | 0.289 | 0.758 | 1.000
0 0.0003 | 0.285 | 0.751 | 1.000
0 0.0002 | 0.281 | 0.745 | 1.000
0 0.0001 | 0.278 | 0.739 | 1.000
0 0 |0.275|0.733 | 1.000
Pmin/2 | 0.0002 | 0.370 | 0.872 | 1.000
Pmin/2 | 0.0001 | 0.362 | 0.864 | 1.000
Pmin/2 | 0 | 0.355 | 0.855 [ 1.000

361
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Table 8: Values of N,,;, with n = 0.05

B
Po 6 [ 0.50 [ 0.80 [ 0.95

Pmaz/2 | 0.0002 | 1931 | 6971 | 16304
Pmaz/2 | 0.0001 | 1967 | 7102 | 16610
Pnaz /2 0 2004 | 7232 | 16915

0 0.0004 | 1331 | 4804 | 11234
0 0.0003 | 1367 | 4934 | 11540
0 0.0002 | 1403 | 5065 | 11845
0 0.0001 | 1439 | 5195 | 12150
0 0 1476 | 5326 | 12456
Pmin/2 | 0.0002 | 784 | 2830 | 6619
Pmin/2 | 0.0001 | 820 | 2961 | 6924
Prmin/2 0 857 | 3091 | 7230

see that N,,;, increases as py or 3 increases. Npin
would decrease if 7 is increased. For example, the
entries in Table 8 would be reduced by a factor of 4
if 7 = 0.10.
Let
{ 1 if |Ryg, — pol < m
D =

0 otherwise.
If we generate ¢ test problems of size N with the pmf
9 (2, y),

t
D' =" D; ~ Binomial(t, Px(|Rny,, — po| < 1))

=1

If one of the requirements for our experiment is to
have
Pr(D' > k) >, (6)

then we must generate at least t,;,(k) test prob-
lems, where t,i, (k) is the smallest integer ¢ that sat-
isfies (6). When k = 1, (6) becomes

1 — e®IM(=Pr(|Rn|g, —pol<n)) 5 ¢,

and it follows that

tmin(l) = [

In(1-¢) 1 .

In(1 - Pr(|Rn|g, — po| < m))

Suppose that n; = 25, ny = 100, and = 0.05, and
that we require enough test problems so that

Pr(D' > 1) > 0.90.

Table 9 shows values of ¢,in (1) for various combina-
tions of N and g, with ( = 0.90. We see that t,,i,(1)

Reilly

Table 9: Values of ;s (1) with { = 0.90

N
po 8o | 100 | 1000 | 10000
pmaz/2 | 0.0002 | 18 5 2
Pmaz/2 | 0.0001 | 18 5 2
Pmaz/2 | O 19 6 1
0 |o0.0004| 15 4 1
0 |0.0003| 15 5 1
0 |o0.0002| 15 5 1
0 |o0.0001| 16 5 1
0 0 16 5 1
pmin/2 | 0.0002 | 11 3 1
Pmin/2 | 0.0001 | 12 3 1
Pmin/2 | 0 12 4 1

decreases as N increases. (1) is also directly re-
2
lated to Xvlg,
The number of test problems that are generated
until there are d problems such that |Ry|4, —po| < 7is
a negative binomial random variable, Wy, with mean

— d(1 - Pr(|Rn|g, — pol < 1))
‘ Pr(|Rnyg, — pol < 1)

and variance

» _ 4(1—Pr(|Ryjg, — pol < m))
O'Wd = 2
(Pr(|Rn)g, — Pol <))

If n; = 25 and n, = 100, the expected number of
problems generated, using a parametric mixture (2)
with po = pmaz/2 and 6y = 0.0002, to get one prob-
lem with | R10001g, — Po| < 0.05 is only pw, = 1.68.
Also, ofy, = 4.52.

7 DISCUSSION

We have compared two different input models for syn-
thetic optimization problems with two types of coef-
ficients, or for generating samples of a bivariate dis-
crete random variable, with specified marginal distri-
butions. Our findings have profound implications for
computational experiments.

Many empirical evaluations of solution methods are
carried out on large synthetic problems that are gen-
erated under the assumption that all coefficient types
are mutually independent. We have seen that, as
the size of the test problems increases, we expect the
range of sample correlations between the two types
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of coefficients to fall within a narrower interval cen-
tered around 0. Hence, the synthetic problems be-
come more similar, at least in a statistical sense, as
the size of the test problems increases.

With the assumptions that we have made here,
all of the test problems that would be gener-
ated with independent sampling would be generated
with the unique pmf that corresponds to the point
(0, (n1n2)~') in the parametric envelope (Figure 1),
that is, fi(z)f2(y).

Results from computational studies on 0-1 knap-
sack problems (Martello and Toth, 1979; Balas and
Zemel, 1980; Moore, 1989) and weighted set covering
problems (Moore, 1990, Pollock, 1992) suggest that
the performance of branch-and-bound methods and
heuristics can degrade significantly as the correlation
between the parameters in the objective function and
the constraint(s) increases. Computational experi-
ence on large synthetic problems with independently
generated parameters may be indicative of the me-
dian performance of the solution methods only, with
little insight into worst-case behavior. Although it
is common to experiment with large problems, our
analysis here suggests that we might learn more about
solution method performance if we used substantially
smaller test problems when the parameters are gen-
erated independently.

Synthetic problems with induced correlation
among the coefficient types can be generated eas-
ily. We can generate large problems for any specified
point (po,8o) in the parametric envelope that allow
us to get a more complete understanding of the per-
formance of the solution method(s) of interest.
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