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ABSTRACT

The construction of good gradient estimators,
known as sensitivity analysis, has recently been the
subject of many studies. Gradient estimators may
be used to optimize the performance of stochastic
processes. In this paper we propose a method for
sensitivity estimation that can be used for the opti-
mization of stochastic discrete event dynamic systems
(DEDS).

Most of the current methods for gradient estima-
tion have limited applicability for complex problems.
The surrogate estimation approach that we propose
uses the system’s dynamics and heuristic relations in
the parameters to construct the desired gradient es-
timators using local sensitivity estimators.

We present an example of routing in an open
data network. Some of the most successful meth-
ods for gradient estimation-such as the IPA method-
cannot be applied directly and other methods are in-
appropriate for real time operation. We show how the
estimation of the gradient of the stationary average
sojourn time with respect to the routing probabili-
ties can be decomposed in terms of local sensitivities.
Each node needs to estimate the derivatives of the
average queue length with respect to its own arrival
rate. The computation is thus distributed and the
estimation of the local sensitivities is a much simpler
problem, suited for IPA. The amount of calculations
required for our approach is proportional to the num-
ber of nodes in the network. Those required for direct
estimation grow with the number of nodes, the num-
ber of outgoing links and the number of destinations.

Our simulations indicate that surrogate estima-
tion is very efficient, even when some of the required
assumptions for IPA estimation are not satisfied.

1 INTRODUCTION

Telecommunication systems can be modeled as
queueing networks, where performance optimization
can be in principle achieved by adaptively choosing
some control variables. Many of the successful tech-

347

Harold J. Kushner

Division of Applied Mathematics
Brown University, Box F.
Providence, R.I. 02912
U.S.A.

niques for adaptive control require good estimators
of the gradients of the sensitivity of the system’s per-
formance with respect to the control variable. In this
paper we deal with the estimation of such gradients,
studying the problem of routing in an open network.

It is common practice to use an approximate
expression of the derivatives that is obtained under
KNleinrock’s independence assumption (see Bertsekas,
Gallager,1987; Tsitsiklis, Bertsekas, 1986, and Cot-
ton, Mason, 1991). Mean flow data is then estimated
and used in the approximation equations, as if the
network were a Jackson network with a product form
solution. As our results show, the method that we use
can be substantially better than the Jackson network
approximation, which yields very poor estimates.

An alternative to the Jackson approximation is
to estimate the desired gradients from the measure-
nients of the process. Several methods have been pro-
posed i order to estimate the sensitivity with respect
to certain control variables for queueing networks (see
L’Ecuyer, 1991 and references therein). Most of the
available theoretical results are concerned with the
sensitivity of the system’s performance with respect
to service or arrival rates as control variables and the
proofs are obtained mostly using regenerative systems
and in many cases analyzing only one server queue.
The implementation of such methods to more com-
plex problems such as routing in a data network is
very difficult and in large networks the decentralized
nature of the controllers may render direct estimation
inappropriate.

In this work we develop a method that can be
used to get sensitivity estimators for a broad class of
parameters. \We call it the surrogate estimation ap-
proach. It combines some features of the mean flow
data approach to implement sensitivity estimators for
simpler subsystems of the network. It is relatively
easy to implement and it actually reduces the opera-
tion count required to estimate the desired gradients,
compared to direct estimation. This method aims
at redefining the problem to calculate sensitivities of
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local quantities with respect to local variables at sev-
eral subsystems of the queueing network. Then this
information, broadcast to the controllers, is used to
get the estimation of the desired gradients. Thus the
computation is distributed. Surrogate estimation was
first used in Ho, Cao, 1985 in the context of routing in
a closed network, where the derivatives with respect
to routing probabilities are calculated indirectly via
the derivatives with respect to service rates.

In section 2 we discuss our model example of op-
timal routing in an open network, where the perfor-
mance measure can be written in a separable form.
The surrogate estimation approach is introduced in
section 3. We show how the derivatives with respect
to the routing parameters can be estimated using lo-
cal derivative estimators with respect to the arrival
rates at each node. We also discuss the advantages
of the surrogate estimation method.

In section 4 we present the implementation of
two infinitesimal perturbation analysis (IPA) estima-
tors to the surrogate estimation approach. Simula-
tion results are included in section 5. This shows
the robustness of surrogate estimation, which works
much better than the estimators obtained under the
assumption that the system is a Jackson network.

2 ROUTING IN AN OPEN NETWORK

Problem Formulation.  We shall describe this
problem in its simplest form in order to focus on the
main ideas of our approach, but most of the sim-
plifying assumptions can be easily extended to more
complex models. There are Ny nodes in the network.
We consider for simplicity that all arriving customers
share the same destination and that there are no loops
in the possible paths from any origin to the destina-
tion. We assume that interarrival times, service times
and routing decisions are mutually independent ran-
dom variables. For each node n,, o = 1,..., Ny, the
arrival processes are Poisson with parameter A,. The
sequence of service times for each server are identi-
cally distributed with mean values denoted by 1/v, <
oo. Let 6 = {fap; a,3 = 1,...,Ng} denote the set
of routing parameters, where 0,5 is the steady state
fraction of the flow from n, which goes to ng. We
focus on randomized routing, where a customer that
completes service at node nq is routed to node ng
with probability 6,5 independently of past routing
choices. Define r, as the limit of the total number of
arrivals to n, per unit time. This is the mean arrival
rate of customers to n,. We assume that the routing
parameters are such that v, > r,.

Under the usual ergodicity assumptions (Sigman,
1990) the condition v, > 74 ensures stability of the

process and we can write:

No
rp=As+ D bapra (1)

a=1

The problem under study is the minimization
of a performance function L(8) by choosing the con-
trol variables #. A sequential optimization procedure
can be used to update the control variable 6 in the
following way. Suppose that over the time interval
[kT,(k + 1)T') the value of the control is fixed at
0(*) and that an estimate Z;(8(*)) of the gradient
Vo L(6(%)) can be obtained. Then a simple stochastic
approximation procedure adjusts the parameter § at
times kT via the gradient search algorithm:

P+ = k) _ Cka(o(k)) (2)

where €, is an appropriate sequence of gains for the
stochastic approximation algorithm. This type of
algorithm is natural for system optimization and is
also usable for network design. See, for example,
L’Ecuyer, Giroux, and Glynn (1990), and Suri, Leung
(1991), where the adjustable parameters are related
to the speed of the link or service time.

Algorithms of the form (2) are widely considered
and their performance relies on the construction of
good estimators of Vg L(6'%)) over the time interval
[kT,(k + 1)T), where the control variable is fixed.
This is the problem that we study.

The Performance Measure. Call N(¢) the num-
ber of customers in the system at time t, a(t) the
total number of arrivals to the system within [0,1],
Ty the sojourn time of the k' customer, and Q,(t)
the queue length at node n, at time ¢, including cus-
tomers in service.

Under the stability assumptions of the network,
the limits N = limr_qo & [y N(t)dt, T = limg oo
= Z,{.‘:, Ty and A = limy_ # exist and coincide
with the stationary mathematical expectation of the
corresponding quantities N(t), Ty, and a(t)/t. De-
note by @, the pathwise average queue length at node

Ng:
T

Qo = lim -1— Qa(t) dt (3)
T—co 0

It follows from Little’s theorem that under gen-
eral service disciplines N = AT. By definition, we
also have that N(t) = 5 Qq(t) for each ¢, therefore:

1
T=320 (4)

Typical optimization goals in queueing networks
include the maximization of stationary throughputs,
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minimization of stationary sojourn time and mini-
mization of rejection probabilities.

The total throughput A is the stationary rate of
customers that enter the network. In an open network
with infinite buffers and no rejections this quantity
is independent of how the routing is decided within
the system, provided that the routing probabilities
ensure stability. Therefore in this problem the only
performance criterion mentioned above that depends
on the routing variables is the stationary average so-
journ time per customer.

Equation (4) decomposes this function as a sep-
arable function in terms of local quantities Q. at
each node. The decomposition approach of Rubin-
stein (1991) considers the sojourn times at the differ-
ent queues to approximate the overall sojourn time

per customer by local functions but the estimates are
biased.

In queueing systems it is well known that the
dynamics can be described with respect to the cus-
tomers or with respect to time (Glynn, Whitt, 1989).
In our approach we have replaced the customer de-
pendent performance criterion by an equivalent time
dependent performance criterion.

3 THE SURROGATE ESTIMATION AD-
PROACH

In order to motivate the main idea of our method
we look at (4). The performance function L(0) = AT
is additive, so that V4 L(0) = 5, V4Q,. If the com-
putation of the gradient of Q, could be performed
locally at each node then the controller would only
need to add the different estimators in order to es-
timate the sensitivity of the performance function.
This localization is done via a change of variables ar-
gument.

A Change of Variables. Suppose for the moment
that the network is Jackson, then the outside arrival
process at node n, is Poisson and the service times
are exponentially distributed. Since the routing is
randomized, in stationary operation the total arrival
process at each node is also Poisson with parameter
To. Qo depends only on the first moment of the ar-
rival distribution,so that:

0Qy _ 0Qy (0"7 > _ 9Q < Iry > (5)
8005~ Ory \00up IAy \ 004

where we have used (1) and the assumption that there
are no loops to get dry /00Xy = L.

The terms 97, /04 represent a “weight factor”
which can be evaluated from the rates A, and the
current values of the routing parameters 0.4. Let us

define the weight factors wlﬂ = 22 and rewrite (5)

06ap
as:
an :w')' 8Q‘y i 0Q'7 (5/)

00, 8 G, T VB BN,

The formulas in (5°) provide an intriguing and
manageable approach to the problem of getting accu-
rate estimates of 9Q,/90,5. We propose using (5°)
even for the non-Jackson case, where a closed formula
for the cost function is usually impossible to obtain.

Notice that only local estimates are needed: each
server computes the sensitivity of its own queue size
with respect to its local input rates, so that the com-
putation of the gradient is distributed. These local
estimates are then weighted appropriately by the fac-
tors w, ;. which are calculated from the measured
mean flow dala to get the estimators of the desired
derivatives in the left hand side of (5).

It is important to note that for the non-Jackson
case the derivative with respect to r; might not be
generally well defined. Nontheless, we will use the
change of variables argument of the surrogate estima-
tion approach as a heuristic argument. The extension
of the argument to the non-Jackson model will be jus-
tified by the quality of our simulation results.

Discussion. If the system were Jackson (see Bert-
sekas, Gallager, 1987, and Walrand, 1988), then a
closed formula for the average steady state queue

lengths is:
rq
Qo = (1/———1—> (6)

In Tsitsiklis, Bertsekas (1986), Cotton, Mason
(1991) and Bertsekas, Gallager (1987) it is assumed
that a formula similar to (6) holds even if the system
is nol of the Jackson type. In fact, standard opti-
mization algorithms seek to minimize a cost criterion
of the form 3~ F(ra/[va —1.]) for some convex func-
tion F(-), subject to the constraints r, < v,. For
the case of non-Jackson networks, the mean queue
length is not usually of the form (6) and these ap-
proximations can yield poor estimates, as seen from
our simulation results.

If we wanted to solve the problem directly with-
out the surrogate estimation approach, then we would
be estimating the derivatives with respect to the rout-
ing probabilities. The construction of good deriva-
tive estimators 1s very difficult. It is well known
that 1PA exhibits extremely good performance when
it can be applied directly, but it cannot be used to
estimate derivatives with respect to routing proba-
bilities (Gong, 1988; Glasserman, 1991 and Ho, Cao,
1985). As far as we know, other proposed methods
don’t stand out for good performance, low variance
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N Perturbation of the scrvice
N completion times in busy period
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Figure 1a: External Arrival Starts Busy Cycle.

and ease of implementation. Direct estimation in the
general setting involves the construction of estimators
of 6Q7/00gﬁ for all o, 3 and v such that there is a
path with destination d from a to 5 using the link
connecting nq to ng. Since the number of routing
parameters is the number of outgoing links from each
node for each destination in the network, the amount
of data processing and memory required may be ex-
tremely large.

Using the change of variables for surrogate esti-
mation, we have reduced the problem to that one of
estimating the derivatives of 0Q~ /07, locally at each
node. These estimates are then communicated to all
controllers upstream, where they are multiplied by
the appropriate weight factor. Since the weight fac-
tors involve only the mean rates and the knowledge of
the other routing parameters, the computational ef-
fort in evaluating the different weight factors at each
server is negligible. Therefore the amount of calcula-
tions for the estimators of dQ,/d02 ; grows with the
number of nodes in the network, rather than with
the product of the number of nodes by the number
of links per destination. This is probably the most
important property of the surrogate estimation ap-
proach for on-line operation.

4 IMPLEMENTATION OF IPA FOR THE
EXAMPLE

We shall describe two IPA algorithms to esti-
mate the local sensitivities using (5"): the first one
estimates a finite horizon approximation of dQ, /d\,.
The second one estimates dQ, /97, and benefits from
the regenerative structure of the local bhusy cyeles to
achieve lower bias and variance than the first one.
Throughout this section we shall fix a server and drop
the subscript « from our notation, since we need only
work with one server at a time.

Infinitesimal perwurbations oTi of
each external arrival.

l R |

) T

T1T T2 ™
Figure1b: Arrival From Network Starts Busy Cycle.

4.1 Sensitivity with respect to the External
Arrival Rate. Since the external arrival sequences
are Poisson, IPA can be applied. Define:

Cr(A+6A) = /Q (A+6X)dt, and

Cr(Ao +6X) = Cr(Xo)
P

We estimate dCT(X)/AN as a finite horizon esti-
mator of (3). It was shown in Vazquez-Abad, Kush-
ner (1990) under general assumptions for the service

time distributions and routing strategies that

8y =

E(eCr(A) — 8—/\ECT(/\)

For the construction of the estimate refer to Fig-
ure 1. Let N, denote the number of external arrivals
to the nominal queue during the m** busy period and
N}, the total number of service completions. Let S
denote the class of busy periods on [0, T) for which
the first arrival is not an external arrival, and S, the
complement class, for which the busy period starts
with an external arrival. Call K'(T') the total number
of busy periods within (0, T].

Let 7,7 denote the time between the first ex-
ternal arrival during the m‘* busy period and the
previous external arrival to the chosen server. For
i > 1, let 1,,; denote the time between arrivals of the
(1= 1)*" and /" external arrivals in the m!® busy pe-
riod. Then we have the following pathwise limit of
&C:

QT = (N, — l+1)T"“
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This is a consistent estimate of d/\ T fo Qi(A) dt
that might be a biased estimate of (3). But the I)las
decreases as T — oo, Vazquez-Abad, Kushner (1990).
However, as T — oc¢, the variance of the cstimator
increases due to the cumulative effects in (7) of the
propagation of the perturbation from one busy pe-
riod to the next. We shall describe in section 5 the
implementation of Q'*)(T) for the network problem
using two sets of parameters T for each node.

4.2 Sensitivity with respect to the Total Ax-
rival Rate. e now estimate the derivative with
respect to the total arrival rate » at the chosen server.
Call 7; the time between the arrival of customer 7 and
i+1 at that node. To apply standard IPA to the whole
interarrival sequence requires the distribution of this
sequence, which is gencrally unknown. We usc the
assumption:

dTi Ti )

== ()

dr r
as if we had an A//G/1 queue. This is, of course, a
heuristic argument and in general (8) is not true. In
a way, using (8) to estimate the local sensitivities to-
gether with (5°) seems to be very similar to the Jack-
son approximation assumptions. As will be shown
from our simulations, the results using pathwise es-
timation of the gradients via (57) and (10) below are
very robust even for non-Jackson models, while the
estimation via mean flow data and (6) can bhe very
poor. We would like to acknowledge an anonyimous
referee who pointed out the heuristic argument for
the application of IPA to this sequence.

When all arrivals are taken into account, the
propagation of the perturbation of the first arrival to
the busy cycle canccls the perturbations of the ser-
vice time completions. Therefore the perturbations
do not propagate from one busy period to another.
An unbiased estimate for the steady state average can
be constructed using a regenerative approach for the
single queue (see also Glynn, L’Ecuyer, Ades, 1991)
as follows:

Im — /Q )dt :dE—fO———(H__

d_7 T—oco T dr Er

1 ' Ffo Q(t) dt (—I——FT)
E'Tclr / Quydt = Er ET dr

(9)

where 7 = va:] 7, is the duration of the first busy
period. Call N the total number of customers within
the first busy period and assume that the first cus-
tomer arrives at time 0, then the epoch of arrival of
customer 7 is 21_1 ;. Call Sj the service requirenient
of customer i. Then the sojourn time of custorner 7 is
Xi= ijl Si— 21—1 r;, fori=1,...,N. Therefore

[l Quydt = SN Ni. Applying the standard IPA

estimates we get:

{
4 ana=tS 5 an
a z—l]—l
N
d 1 T
D DA

As common in IPA,| we exchange the derivatives
and expectations in (9) to get:

v _1ESY Ths

dr | T—e T ) ET

N -
+ lEZizl A
)

Er

The way to implement this algorithm is to esti-
mate the expectations through sample averages, using
I busy periods. Letting the superscript (m) denote
the corresponding quantities for the m'® cycle, the
estimator 1s:

-1 _(m)
_ l /\ z"l_l Z)—l Z;—l "n

(2) i -
Q ( ) I Il 'l\ 17’("')
\ =
1 IN N -(m)
+_1_T\-Zm= i:l‘\z (10)
[ 1 N (m)
IN Zm:l T

-( )
lZm—lZ:—lZ =1 "
N

K
Zm:l rim)

Remark:  We would like to point out that assump-
tion (8) is actually not needed at all for the surro-
gate estimation: it is used only to implement stan-
dard 1PA. In Vidzquez-Abad, Kushner (1990) a dif-
ferent method was used to estimate an ersatz deriva-
tive. This method, now called the finite difference
RPA method, does not require knowledge of the dis-
tribution of the interarrival times. We simulated var-
ious non-Jackson models (including non randomized
routing strategics) and obtained comparable results
in bias and variance for the regenerative IPA that we
have introduced here and the RPA of Vazquez-Abad,
Nushner (1990). The SPA method of Gong (1988),
which in this case coincides with the RPA method of
Brémaad, Vazquez-Abad (1992), could also be used
Lo estimate the local sensitivities with respect to the
total arrival rate. For purposes of illustration of the
surrogate approach and limitations of space we have
chosen to present here only the implementation of
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IPA to the local sensitivities with respect to both the
outside and the total arrival rates.

5 SIMULATION RESULTS

The network topology that we used for our sim-
ulations is depicted in Figure 2, where the {6,5} are
the stationary fractions of flows along the respective
links.

0.7

Figure 2: Network for Simulations

The external interarrival times at node n, are
mutually independent with exponential distribution
and expectation A;!. The service times are mutually
independent and, for each node they are identically
distributed with mean ;1. In table 1 we show the
network parameters. We estimated the sensitivities
of the queue lengths with respect to a single rout-
ing parameter # = 8y, only to illustrate the salient
properties of the estimators. Thus, for the surrogate
method, the weight factors are dr,/d6.

Table 1: Mean Network Statistics
al A Ta Ve Ora /00
ny | 0.200 1 0.200 | 0.800 0.000
2 10.160{0.300]0.400 0.200
3 10.100(0.1600.800 —0.200
4 10.300(0.4200.600 0.080
5 10.150 [ 0.516 | 0.600 —0.052
61 - 10.910]1.600 0.000

Table 3 shows the results of the surrogate esti-
mation for the two IPA algorithms of the previous
section in a Jackson network, where the service times
are exponentially distributed. Table 4 presents the re-
sults for a non-Jacskon network (see Vazquez-Abad,
Kushner, 1990 for the details), where the service time
distributions for different parts of the network are he
either heavy or light tailed. For the system simulated,

nodes no and nz are M/G/1 queues with randomized
service times so the derivatives at these nodes can be
evaluated analytically, but not so for nodes n4 and

Ns.

To get the distributed control algorithm we let
each node n, construct its local estimator during time
periods of the form [iT,, (¢4 1)Ty), with possibly dif-
ferent T, for different nodes. These estimates are
sent to node n; at times (7 + 1)T,. Under a stochas-
tic approximation procedure, § would be updated ac-
cording to (2), where Z; would be constructed using
the information from all other nodes received within
the updating period [kT', (k + 1)T). We assume that
T > T, for all « and that the delays in information
broadcasting are negligible. We emphasize that dur-
ing the interval [T, (k 4+ 1)T') the parameter 9*) is
fixed.

In this study we are concerned primarily with the
assessiment of the quality of the estimators Z; that
would he used in the sequential approximation proce-
dure (2). To do this, we simulated the network with
fixed parameters using a basic interval T = 20,000
units of time. The process was simulated for a total
time N7 with N = 200. From the additive form (4)
of the performance function and the surrogate esti-
mation formula (5') we can write:

Jra
zl_zm Z<00>D(k).

D (k) is composed of the local sensitivity estimators
obtained at times 1Ty € [kT,(k + 1)T) and is given
by (11) or (12) according to the case. For each of the
three estimators described below and each network
model, the simulations produced a sample of the es-
timators {Dy(a), Zg;k = 1,..., N} that we used to
calculate the sample means and variances.

IPA(1) and IPA(2). The estimators IPA(1) and
IPA(2) are based on formula (7). Each node n, uses
Q'"(T,), where Ty, is of the form 7'/m(«) for some in-
teger m(a). Call d;;(a) the estimator ploduced over
the period of time (b — )T + (¢t — )T, <t < (k-
DT+ 1T, for i = 1,...,m{a). The statistic Di(c)
corresponding to the whole interval (kT (k + 1)T') is
the average:

m(a)

Z Tudi(a) (11)

i=1

n(a
Di(a) =

Since the perturbations propagate from one busy
period to the next, larger values of T, reduce the
bias but increase the variance of the the estimators.
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The values chosen for the T, are shown in table 2.
IPA(2) uses intervals that are twice as large as those
of IPA(1). The results of tables 3 and 4 show that the
reduction in bias is barely noticeable in comparison
with the growth in variance. Due to the averaging
over the subintervals, the sample variances of IPA(1)
and IPA(2) are actually smaller than those that would
be obtained with m(a) = 1.

Table 2: Simulation Parameters

Method

Description

T'_; T3 T4 TS
IPA(1) 400 | 1000 { 1000 500
IPA(2) | 800 | 2000 | 2000 | 1000

-

Remark: The formula (7) was calculated suppos-
ing that the server was idle at t = T". If the terminal
time is in the middle of a busy period, we simply
truncate the sums in d;;(«) as follows. We use only
those terms in the first sum corresponding to arrival
moments prior to time (k — 1)T + i7,. For the last
busy period in this interval, we replace N[ by the
total number of service completions in that busy pe-
riod up to the terminal time. Analogously, if some
customers in the queue at time AT + (7 — 1)7T,, are ex-
ternal arrivals, then we include the associated terms
in the sum.

IPA(R). The regenerative estimator (10) is also
modified by truncating the numerator of the formula.
Let K;;(T,) denote the number of busy periods that
have finished within the local estimation interval ((k—
WT+iT,, (k—1)T+(i+1)T,). Then by (10) dir(«) is
Q*[Kix(Tw)]- If a busy period starts but does not fin-
ish within this interval, it is considered to be part of
the following estimation period. Since perturbations
do not propagate from one busy period to another in
(10), the parameters Ty, are irrelevant in the average

(11) and:

K(k,T) —v(m)
Zm =m(k) Zt 1 Z

Dk(a) = - K
k,7T) (m)
r Zm—m(k) T (12)
K(kT) olm)
_ _zm =m(k) Zl 1‘2:.7=1‘b
Tor T

where m(k) is the first busy period that finishes with-
n [kT, (k + 1)T) and N (k,T) is the number of local
busy cycles that have finished within this time inter-
val, so that Z["(k‘T) 70m) ~ T. Although we did not

m=m(k)

make this clear in the notation, m(k) and K (k,T) de-
pend on «. We call IPA(R) the corresponding estima-
tor. Tables 3 and 4 show the difference between the
estimators 1PA(1) and IPA(2), and the much better
estimator I[PA(R). We simulated other service distri-
butions and routing strategies and obtained consis-
tently very good estimators with IPA(R).

Remark: In practice, the end effects caused by the
truncations are generally of little importance. Typi-
cally, a sequence of estimates is taken over a sequence
of successive time intervals, say, [kT, kT+T), and one
can start the k" estimation at the start of the first
busy period of the chosen server after time k7.

Tables 3 and 4 give the sample means and vari-
ances (in parenthesis) of the estimators Dy(«a) for
each of the three estimators. The results for the sur-
rogate estimator Z; (o) of the derivatives with respect
to (0 are shown for the IPA(R) only and appear under
the column labeled S-IPA. The surrogate estimators
using IPA(1) or IPA(2) were very poor in comparison
to the estimators using S-IPA and were not tabulated.

The difference between the Jackson and the non-
Jackson systems is clear from the tables. Estimation
of v, and r, can be done very accurately using the
sample means. [f we used the mean flow approach
with the approximation (6) for the non-Jackson net-
work, we would estimate 0Q, /08 with the quantities
under column 7 of table 3. This approximation un-
derestimates the derivatives with respect to 6.

Table 3: Jackson Network

a| Qa | &= |1PA(1) [IPA(2) | IPA(R) | &%= | S-IPA

IT o 96

3.0040.001 329 35.8 43.7 8.00 8.74

(96.9) | (474.8)| (70.4) (2.81)
3fo2s] 195 158 | 224 | 195 |-039[-0391
(36.1) | (148.2) [ (0.0019) (0.00)

4123311851 17.6 18.4 18.4 1.48 1.47

(205.3) [ (824.2) | (3.62) (0.023)
5(6.14(85.03| 60,0 | 682 | 823 |-—4.42]-4.282
(535.7) | (3140) | (353.9) (0.957)

For the non-Jackson model we do not have closed
expressions for the queue lengths at nodes n4 and
ns. We estimated the finite differences through seven
long-run simulations of length NT each. The first
simulation was performed at the parameter values of
table | to evaluate Q.. The others were performed
changing one parameter value at a time, for § £ (A)6,
Mg £ (A)Ay and A5 £ (A)A5. We used A = 0.05 and
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calculated the sample queue lengths. The values ap-
pearing in italics in table 4 below are the finite differ-
ence estimates. The other values in the columns for
Qo and 9Q, /X, and those for dQ, /00 are exact.

Table 4: Non-Jackson Network

a| Qa | 52= |IPA(I) [TPA(2) [ IPA(R) 99a S 1PA

2| 44634 | 483 | 553 0.1 | 126 | 141
(114.4) | (599.3) | (185.44) (7.41)
3{o21] 175 179 | 205 | 160 |-035]-0.32
(41.1) | (162.1) | (0.00) (0.00)
4| 3.44|20.18] 287 | 293 | 296 | 257 | 236
(337) | (1484) | (16.4) (0.11)
5|5.0566.04] 504 | 536 | 631 | —2.9| —3.2
(510) | (2895) [ (177) (0.18)

In order to estimate the derivatives of the queue
lengths with respect to other routing parameters, we
could use the same IPA estimators with the corre-
sponding weight factors. Since the basic informa-
tion is anyway broadcasted between the nodes, and
since most of the computational effort is spent. in the
derivative estimation, the savings of the surrogate ap-
proach are more dramatic as the size of the network,
the possible destinations and the number of outgoing
links increase.

6 CONCLUDING REMARKS

Knowledge of the gradient with respect to a con-
trol variable can be used in sequential optimization
procedures for on-line performance optimization as
well as network design. However, in most applica-
tions where the system can be modeled as a queue-
ing network, there is no closed expression for the
performance measure. Therefore good estimators of
the gradients are extremely important. The adaptive
control of highly decentralized systems requires single
path estimation methods: otherwise the system itself
would be operating at different values of the control
parameters in order to estimate the desired gradients.
When more than one parameter is being updated un-
der a decentralized operation, the combined cffects
result in extremely large variances.

A common approach to solve this problem is
to approximate the solution via an independence as-
sumption and use mean flow data in the correspond-
ing expressions. This approach, known as the Jack-
son network approximation, may yield very poor es-
timates of the required gradients, as shown in our
stmulations.

We have discussed a method for the estimation
of such gradients that we believe to be applicable for
a broad class of problems. The surrogate estimation
approach uses the system’s dynamics and heuristic re-
lations among the system’s parameters to distribute
the computation. Local estimators are then imple-
mented for single queues, a problem which is much
casier to solve. The amount of data processing and
meniory required by direct estimation may be ex-
tremely large. The savings in computation time due
to surrogate estimation are actually more dramatic
as the complexity of the problem increases. This is
because the same local estimates are used to calculate
the surrogate estimator of the sensitivity with respect
to all the routing parameters.

The local estimation can in principle be achieved
using any of the available methods for sensitivity esti-
mation, many of which work very well in the context
of local estimation. We have presented in particu-
lar the implementation of TPA for the local sensitiv-
itics. Although a mean flow argument is used in the
construction of the surrogate estimators, our simula-
tion results indicate that our method is very promis-
ing and robust under more general networks than the
Jackson.

Future rescarch goals involve the extension of the
ideas of surrogate estimation to other classes of prob-
lemis, including problems where the performance mea-
sure is not separable, the control variable is integer-
valued and the network has customer classes with dif-
ferent service priorities.
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