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ABSTRACT

Importance sampling is known to be a powerful
method for significantly increasing the efficiency of
estimates of the probability of rare events obtained
from simulation experiments. However the conditions
under which it will be effective require careful
checking if the method is to be reliably employed. We
show that it is easy to get spurious answers which are
apparently accurate when they are in fact quite wrong.
For simple queues, there is a simple criterion which
guarantees the effective implementation of the
method: simply switch the arrival and service rates.
This result can be shown using a theorem due to
Chernoff, however here we show why ‘the method
works by examining sample paths directly, and in
particular derive the variance reduction so obtained.
In practice the variance reduction can be several
orders of magnitude and we give numerical examples
demonstrating this.
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Importance

1 INTRODUCTION

We consider the estimation of the probability of
occurrence of a certain type of rare event. A typical
example is the gambler's ruin problem where starting
with one unit of money, say, we wish to find the
probability that the gambler can build up his/her
winnings to a certain level A without going bankrupt
beforehand. In the terminology of random walks this
is the probability that starting at level 1, the level A
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will be reached before level 0. A continuous version
of essentially the same problem occurs in the single-
server queue if we wish to estimate the probability that
during a server busy period the level in the queue will
reach A, before the busy period ends. Other versions
of the problem occur in sequential statistical tests.

Importance sampling is known to be a powerful
technique for estimating such probabilities. It was
introduced by Siegmund (1976) for handling
sequential statistical tests, see also Ripley (1987) and
Ross (1990), for some simple examples. An
engineering viewpoint for queueing problems is given
by Cottrell et al (1983). Fishman (1993) gives full
discussion including the above busy period problem.
An interesting approach is given by Walrand (1988
a,b) who uses Chernoff's Theorem (Chernoff, 1952) to
estimate probabilities of certain sample paths
occurring. Below we show how a more direct
argument, that does not require Chernoff's Theorem,
can give a sharper insight into how importance
sampling can be effectively carried out. Our approach
enables the variance reduction obtained to be
calculated. We also show how to avoid a certain
pitfall that can occur when the probability estimate
and estimate of its variability are both seriously
biased, so that one may be led into thinking that
accurate estimation is taking place when exactly the
opposite is the case.

In the next section we describe the basic importance
sampling technique and give an elementary prototype
example. In Sections 3 and 4 we analyse the
gambler's ruin problem and the busy period problem,
and show that the optimal method is to essentially
switch the arrival and service rates, thereby simulating
an unstable queue. Our results are illustrated
throughout the paper by numerical examples.
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2 IMPORTANCE SAMPLING OF RARE
EVENTS

2.1 The General Method

The basic method is very simple. We consider
terminating processes only. We make a simulation
and record if the rare event of interest, call it E say,
has occurred or not. Note that the run will follow the
process to termination only if E does not occur. The
run can stop once E occurs. Simulation runs are thus
Bernoulli trials. Let ® denote a typical realization of
the process and define

T(w) =1 if E occurs in ®
= 0 otherwise .1

Let dF(®) denote the probability of occurrence of .
Clearly the probability of occurrence of E, Pr(E) is
given by

Pr(E) = E[T(w)] = | T(w)dF(m) = o, say,

This can be estimated by making N runs and taking
the sample average, T, of the observed T's as the
estimator.

In importance sampling we simulate the process
where the sample space €2 remains the same but where
the probability of occurrence of ® is dF*(w), this
being different from dF(w). We call this the modified
process. Then, provided dF*(w) > 0 whenever
dF(w) > 0, the likelihood ratio

dF(w)
L = — .
(@)= F+ (@) @2
remains bounded and
dF(w)

E*(L(0)T(w))= J T(w)dF*(w)= E(T(®)).

dF*(w)
(2.3)

We can thus estimate o by simulating the modified
process N times and recording:

Yi = L((J)l )T((D]), i=1,...,N. (2.4)

Y, the sample average of the Y's estimates o. The
key trick is to be able to select dF*(w) so that
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L(w) < 1 whenever T(w) = 1. 2.5)
Then

E*[L%(w)T2(0)] < E*[L(0)TX(w)]
= E[T2(w)], (2.6)

where E* denotes expectation with respect to dF*;
combined with (2.3) this shows that

var(?) < var(T‘) 2.7

so that variance reduction is achieved.

2.2 A Prototype Example

We illustrate the method with an elementary example.
Let S be a binomial random variable, Bin(n,p), and
suppose we wish to find

Pr(S>a) = a (2.8)

where a is large. It will be convenient to write a = 0n,
with 0 close to unity. In this example o can be
calculated explicitly of course, but for illustration we
consider its estimation by sampling experiment. We
can generate S as the sum of n Bernoulli (p) random
variables:

S=X+X,+...+X,. 2.9
and from (2.1) define

Tw)=1ifS>a
= 0 otherwise

The average T of N such values estimates .. We
have that

var(T) = a1 — o)/ N. (2.10)

If importance sampling is used, we generate the Xj's
as Bernoulli (p*), rather than Bernoulli (p) variates,
and estimate o by Y, with Y as defined in (2.4). Now
in this case (2.2) can be written as

L(s)=———l,;8(l—p)n_S

p*(1-p*)"" @1

where s is the observed value of S; and the statistic
(2.4) becomes
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Y=LifS>a, Y =0 otherwise. (2.12)

For variance reduction to occur, (2.5) has to be
satisfied. Now, if p* > p , then L(s) as defined in
(2.11) decreases as s increases. Thus

a 1_ n-—-a
L(s)s(%) [ﬁ) =R(p*), for s>a.

(2.13)

The value of p* which minimises the right hand side
is

p*=a/n=860. (2.14)

Variance reduction is thus guaranteed if this
minimized right hand side is less than unity. Under
the right circumstances the variance reduction is big.
For instance suppose p is small and 6 = 1 - 3 is close
to unity so that & is small. Then R(8) << 1 and

B(v?)- T Lol Jpra-or

s2a

< R(e)Z[';)pS(l—p)"'s

s=a

= R(0)a.
(2.15)

We can apply Chernoff's theorem to estimate the order

of magnitude of o. For our example, the theorem
states that

llogPr(S >0n)— -h(0)
n

where

h(8) = sup[at ~logM(t)];
t=20
and

M(t)=(1-p)+pe’.
A little calculation shows that this is equivalent to
a=0[R(8)] asn— oo (2.17)

Combined with (2.15) this shows that

Var(Y) = o[R2 (e)]. 2.17)

Table 1 summarizes the results of 10,000
experiments in each of which p = 0.7, n = 100. Four
values of © were tried, 6 = 0.8, 0.9, .95, and 0.99. It
will be seen from the tabulated values of R(8) that the

variance reduction achieved is much in accordance
with (2.17).

3. RANDOM WALK EXAMPLE

Our next example bridges the gap between simple
cases where alternative methods, including theoretical
analysis, would normally be preferred to importance
sampling and genuine cases for which importance
sampling is the method of choice but where it is not so
obvious how best to implement the method. The
random walk example is simple enough for theoretical
results to be available for comparison purposes, yet
contains the essential difficulties that need to be
overcome in more complicated queueing examples if
importance sampling is to work properly.

Consider a discrete random walk observed at times t

= 0,1,2,... . The only possible positions are X =
0,1,2,3, ... . If, at time t, the walk is in position X = j,
then

p.q r=1l-p-q 3.1

are respectively the transition probabilities that the
walk move to j + 1, j - 1, or remains fixed at j. We
shall only consider the case

p<q. 3.2)
We wish to find the probability

o = pr[Walk reaches level A without first reaching
0, given its position is 1 at time 0].

Thus the straight sampling method comprises
generating paths starting at X = 1 at time t = 0 and
noting if the level A is reached first or if the level O is
reached first. We use the notation of Section 2.1 with
 denoting a typical path, and E denoting the event
that level A is reached first.

If importance sampling is used we replace (3.1) by
the modified transition probabilities

p* q* r*=1-p*-q* (3.3)
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and compensate using (2.4) instead of (2.1). For
simplicity we consider only the case where r = r* so
that

p¥+q*=p+q. (3.4)

Again the key is to ensure that (2.5) is satisfied.

Consider any path o starting from 1 which reaches
level A before it reaches 0. Its associated probability
is

dF(w) = pA-1+b @b (3.5)

for some b, ¢ 2 0. Thus (2.2) becomes

A-1+b b
or () ] oo
p q

(as r = r*). If we write p’ = p/(p+q), q" = g/(p+q),
p* = p*/(p*+q*) q*" = q*/(p*+q*) then

p Y[ pi-p) T
L(w) = [——,) [B——} , some b>0

p* *(1-p*’)
3.7
To satisfy (2.5) we must have
p <p* <(1-p). (3.8)

A possible choice is
p¥ =q¥ =th(ie.p*=q*=(p+qV2), (39

but the most interesting choice is

p* =q"q* =p(ie.p*=q,q* = p) (3.10)
when
A-1
_[p
L(O))—[—J . (3.11)
q
Then

A-1
E*[Lz(o))Tz((o)]S(g) E[TZ(m)].

Now it is known (see Cox and Miller, 1978, for
example) that

o = E[T(w)] = E[T? ()] = p* (q-p)/ (q* —p*).

Thus for A large we find Var(T) = (p/q)A(qp!-1)
whilst Var(Y) = (p/q)AVar(T).
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Table 2 gives the simulation results of 10,000 runs
with p = 0.3, q = 0.5, A = 15, which illustrates the
variance reduction achieved. Note that the run time
for the modified process is longer but this increase is
small compared with the variance reduction achieved.

A warning should be noted. If in our example we
let p* > (1-p), this will decrease L(w) for paths ® in
which dF(w), as given by (3.5), has b small, and in
consequence reduce the contribution of such paths to
Var(Y). This is at the expense of increasing L(w) for
paths where b is large, thus increasing their
contribution to Var(Y). The net effect is to reduce
Var(Y) if p* is suitably chosen. The effectiveness of a
chosen p* will thus require an accurate estimate of
Var(Y). An unbiased estimate of Var(Y) will require
both types of path to be sampled in proportion to their
probability of occurrence. Now increasing p* has the
additional effect of reducing the number of paths
where b is large, and if p* is chosen inordinately
large, then there will be very few such paths. If the
sample size is small we may not sample such paths at
all and their very large contribution to Var(Y) will not
be properly accounted for. This makes Var(Y)
negatively biased and will mislead us into thinking
that the estimate of E(Y) is much more accurate than
it is. This effect is illustrated in Table 2.

4 M/M/1 QUEUE

Our final example is a simple but non-trivial
application of the results of Section 3 to the M/M/]
queue, with arrival rate A and service rate u. Consider
estimation of

o = Pr{queue level reaches A during a busy
period of the server}. 4.1)

We use the methodology of Section 2.1 and simulate a
modified M/M/1 process with A* and p* set
differently from A and . We adjust for this by using
Y of (2.4) to estimate o. Walrand (1988) has
considered this problem using Chernoff's theorem but
we use a simpler, more direct approach.

We utilize the analysis given for the random walk.
A path o where the queue level reaches A before it
reaches O must reach A at some time T. If there are m
departures in this time, then this must be matched by
precisely A+m-1 arrivals in the same time period. If t;
are the interarrival times and s are the service times,
then we have
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A+m-1
i=1
and, because the server is busy over the entire period,

m
ZSj <TL
=1

m+1

Sj .
j=1

Thus Z I'sj and 7 are nearly equal and we have

dF((l)) - xA‘HTI—l e—l‘[ “me_“‘[. (42)

It follows that in the case of importance sampling:

A-1 m
L(w) = (L) (_.7‘“ ) e =Apr—pyt

(4.3)

If we let A*+p* = A+, the analysis reduces to the
random walk case. Variance reduction is obtained if

A¥=p* =%(}»+u) 4.4)

or more interestingly if
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7» A-1
Var(Y) < (—] a-o?.
i

Table 3 gives results analogous to those in Table 2 for
the random walk case and again they corroborate the
analysis given above, showing that the method can be
very effective.

5 CONCLUSIONS

Importance sampling allows the probability of rare
events to be accurately estimated. In certain queueing
situations an attractive method is to simply swap
round the arrival and service rates.  Variance
reduction is not only guaranteed, but the method is
robust, and variance reduction of orders of magnitude
can be achieved.

The approach is capable of some generalization
both in terms of extensions of the methodology itself
and to applications involving more complicated
queueing situations. A possible generalization is to
consider situations where variance reduction is
achieved by considering all pairs of states i, j and
simply swapping over the transition probability of
going from state i to j with that of going from j to i.
For example, suppose the states of the system can be
ordered and denoted as 0,1,2,. . . and that transitions
only occur from i to i+1 with probability A; and from

*=u, u* = A, 4.5) i+1 to i with probability p; . The M/M/1 queue is the
special instance where A{ = A, y; = 4, and the well-
when known repairman problem can be formulated with A;
A =iA, uj = L. Then the method in effect makes the
L(w)=| — (4.6) _ B o
n swap Aj = W, 4 = A for the M/M/1 model. A similar

In this latter case

exchange is possible in the repairman problem by
setting Aj = W, W; = i.. We hope to address these
extensions elsewhere.

Table 1: Estimation of o = Pr(S = 6n) from 10,000 Runs, where S ~ Bin(n,p) with n=100, p=0.7

~

p ) p* True o o SD(&) SD ratio R(0)
0.7 0.8 0.7 1.646 x 102 2.36 x 102 1.52 x 10! 1.00 -
0.7 0.8 0.8 1.646 x 102 1.57 x 102 2.36 x 102 6.44 7.63 x 102
0.7 0.9 0.9 1.556 x 106 1.46 x 106 2.88 x 10°¢ 5.28 x 10% 8.88 x 106
0.7 095 095 3993x1010 370%x1019 7.15%x1010 2.13 x 108 1.96 x 109
0.7 099 099 1419x101* 153x10% 181x104 840x10!2  375x104

Note: the first row contains results for the standard method, when 6 = 0.8. For all other cases of 0, the standard
method gives & = 0 with the S.D. not defined.
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Table 2: Estimation of o« = Pr (Random Walk reaches A before 0; Starting from 1) based on 10,000 Runs,
withp=0.3,q=0.5, A =15. True o = 0.000314.
p* q* a SD(&) SD ratio Time (in secs)
i 3 5 .000500 2.24 x 104 1.00 3215
4 4 .000273 0.131x 104 17.10 3800
T 5 3 .000319 0.039 x 10 57.44 4366
Tt 7 1 .000086 0.032x 104 70.00 4450
+ standard method
T recommended method using p-q swap

Tt pitfall method, p* too large.

Table 3: Estimation of o = Pr (queue level reaches A in a busy period) from 10,000 Busy Periods, in an M/M/1

Queue withA =03, 1=05,A=10

A* Th a SD(a) SD ratio Time (in secs)
T 0.3 0.5 .00350 5.91x 104 1.00 2883
0.4 0.4 .00299 1.73 x 104 342 3633
T1 0.5 0.3 .00243 0.33 x 104 17.91 4200
Tt 0.1 0.1 .00062 0.47 x 104 12.57 4100
T standard method
T recommended method using A-LL swap

1t pitfall method, A* too large.
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