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ABSTRACT

In this paper we discuss fast simulation techniques
for estimating the steady-state mean time between
failures (MTBF) in non-Markovian models of highly
dependable systems. The key is to use a ratio rep-
resentation of the MTBF, in which the denominator
is closely related to the probability of a rare event
and is therefore amenable to estimation using impor-
tance sampling. A simulation methodology based on
splitting and batch means, used for steady-state esti-
mation in non-regenerative systems, can then be em-
ployed. Experiments using this methodology yield
good results.

1 INTRODUCTION

This paper is concerned with efficient simulation tech-
niques for estimating the mean time between fail-
ures (MTBF) in availability models of highly depend-
able computing systems. The class of models consid-
ered are basically those that can be described by the
System AVailability Estimator (SAVE) package (see
Goyal and Lavenberg (1987)), except that the failure
and repair times can be generally distributed whereas
they are restricted to be exponentially distributed in
SAVE. In this class of models, system failure events
occur rarely, so it is natural to try to improve the
efficiency of the simulation by using importance sam-
pling (see, e.g., Hammersley and Handscomb (1964)
or Glynn and Iglehart (1989)). Since recent surveys
(with numerous references) on the application of im-
portance sampling to availability and reliability mod-
els are given in Nicola, Shahabuddin and Heidelberger
(1993) and Heidelberger (1993), we will mention only
a few of the most relevant references. (The latter
paper also surveys the use of importance sampling
for rare event simulation in queueing models.) Lewis
and Bohm (1984) initiated work on fast simulation of
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Markovian availability and reliability models. They
introduced an importance sampling technique called
failure biasing in which component failure events are
accelerated with respect to component repair events
so as to make system failures occur more frequently.
Additional papers on failure biasing for Markovian
models include Shahabuddin (1990 and 1991) and
Goyal et al. (1992). In particular, Shahabuddin (1990
and 1991) proved that a form of failure biasing, called
balanced failure biasing, is provably efficient (in the
sense that the resulting estimates have bounded rel-
ative error) as the component failure rates approach
zero. Efficient simulation techniques for estimating
steady-state quantities in Markovian models rely on
the regenerative method.

For non-Markovian models, an importance sam-
pling approach based on rescheduling failure events
is given in Nicola et al. (1991). Several prov-
ably efficient importance sampling heuristics (i.e.,
with bounded relative error) based on uniformiza-
tion for estimating the system failure time distribu-
tion are given in Nicola, Heidelberger and Shahabud-
din (1992), Heidelberger, Nicola and Shahabuddin
(1992) and Heidelberger, Shahabuddin and Nicola
(1993). Extensions of these techniques for estimat-
ing the steady-state unavailability in non-Markovian
models are described in Nicola, Shahabuddin, Hei-
delberger and Glynn (1993). Although the regenera-
tive method is not easily applicable in non-Markovian
models, a ratio formula for steady-state measures,
similar to the familiar ratio formula used in the re-
generative method, can be exploited to devise efficient
importance sampling schemes.

This paper describes how to adapt these impor-
tance sampling heuristics for estimating the MTBF.
At first glance, importance sampling would not ap-
pear to be effective for estimating the MTBF; the
MTBEF is typically quite large whereas failure biasing
produces unusually short failure times. However, a
ratio formula for the MTBF also holds. Since one of
the terms in the ratio is closely related to a rare event
probability, failure biasing can be effectively applied.
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This approach is similar to that used for estimating
the mean time to first system failure in Markovian
models, in which a ratio formula is also exploited for
effective importance sampling.

The rest of the paper is organized as follows. The
type of dependability models we are considering and
the ratio formula for the MTBF are described in Sec-
tion 2. A description of the importance sampling
methodology is described in Section 3, and empiri-
cal results are given in Section 4.

2 DEPENDABILITY MODELS AND THE
RATIO FORMULA FOR THE MTBF

We start with a brief description of the class of de-
pendability models under consideration. There are r
types of components, with n; components of type i.
Components are subject to failure and repair, thus
affecting the availability of the system as a whole.
Each component type is assigned a repairman class.
There are a fixed number of repairmen in each re-
pairman class. One or more types of components
may be assigned to the same repairman class and
the repairman fixes the component types according to
some preemptive resume or non-preemptive priority
rule on the component types; within a priority class
First-Come-First-Served (FCFS) is used. A failure of
a component may cause the simultaneous failure of
other components with certain probabilities; this is
called failure propagation. The techniques described
in this paper can also be used for systems with opera-
tional/repair dependencies (the operation/repair of a
component depends on some other components being
up), spares for a component type, etc. However, for
ease of presentation we will not consider these fea-
tures in this paper. Let X(t) = (Xi(t),..., X,(t))
where X;(t) is the number of components of type ¢
that are up. Whether the system is considered up or
down at time t depends only on X (t).

To put things in a Generalized Semi-Markov Pro-
cess (GSMP) framework, let Z(t) denote the vector
of ages of the ongoing component failure and repair
processes at time ¢ and let Q(t) denote the prior-
ity order of components waiting for each repairman
class. Define the state of the system at time ¢ to be
S(t) = (X(t),Z(t),Q(t)). Then {S(¢t) :t > 0} is a
Markov process, or more precisely, a GSMP.

The quantity of interest in this paper is the MTBF,
the definition of which we will now make more precise.
Let N(t) be the r.v. (random variable) denoting the
number of system failures in the interval (0,t). Then
under suitable regularity conditions that ensure er-
godicity, there exists a constant x such that
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with probability one. The quantity p is defined to be
the MTBF.

Let A be the set of states of {S(t) : ¢ > 0} when
all components are up and one component has just
finished repair. Define an A—cycle to be the process
between two successive instants when {S(t) : ¢t > 0}
enters the set A. Let w be the steady-state distri-
bution of S(¢) conditioned on S(t) entering the set
A. Let N be the (random) number of system fail-
ures during an A—cycle and let 7 be the (random)
duration of an A—cycle. Finally, let N4(t) be the
number of A—cycles completed during time ¢. Then
(assuming the limits exist)
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where the first subscript 7 in the expectation denotes
the steady-state distribution of S(¢) at the beginning
of an A—cycle and ¢ is the probability dynamics gov-
erning the sample path of {S(¢) : ¢ > 0}, from which
7 and N are obtained.

The standard procedure to estimate p would be to
first run enough A—cycles so that the process is ap-
proximately in steady-state, i.e., to ensure that the
distribution of S(¢) is close to m at the beginning of
the successive A—cycles. Then samples of 7 and N
are collected from each successive A—cycle. An es-
timator of Er 4(7) may be obtained as the sample
mean of the 7’s and an estimator of Er 4(/N) may be
obtained as the sample mean of the N’s. Thus the
ratio of the two sample means gives a natural estima-
tor for pu and the method of batch means (that takes
into account the dependency between the A—cycles)
can be used to obtain confidence intervals. However,
although estimation of Er 4(7) is easy, most samples
of N are zero (as system failures are rare), and thus
it is hard to estimate E 4(N). We describe an im-
portance sampling based procedure to efficiently es-
timate E, 4(N), and thus to efficiently estimate p.

3 SIMULATION METHODOLOGY

Let ¢’ be another probability dynamics (to be used
as a change of measure for importance sampling) on
the sample path of {S(¢) : ¢ > 0}. Then, using im-
portance sampling, Ex ¢(N) = Er 4(NL) where L is
the likelihood ratio; roughly speaking, for any sam-
ple path w, L is the ratio of the original probability
of the sample path, ¢(dw), to the new probability of
the sample path, ¢’(dw). The ¢’ that we use is analo-
gous to failure biasing that is used in Markovian sys-
tems. Typically, in systems with highly dependable
components, each A—cycle consists of a component
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failure event (that may cause the instantaneous fail-
ure of other components due to failure propagation)
followed by component repair events (of the failed
components). This is because the repair processes
of the failed components take place at a much faster
rate than the failure processes of the remaining op-
erational components. In most cases the number of
components that fail in a single failure event are not
enough to cause system failure. The basic idea be-
hind failure biasing is to accelerate the component
failure processes with respect to the component re-
pair processes, so that enough components fail in an
A-cycle to cause system failure. In certain systems,
the rates of different component failure processes may
also differ by orders of magnitude; these are termed
“unbalanced” systems. In a version of failure biasing
called balanced failure biasing (Shahabuddin(1990),
Goyal et al. (1992)), in addition to failure biasing,
all component failure processes are made to occur at
approximately the same rate.

There have been different implementations of the
failure biasing and the balanced failure biasing idea,
in the context of non-Markovian systems. The one
used in this paper is based on the uniformization
approach, and was introduced in Nicola, Heidel-
berger and Shahabuddin (1992) and Heidelberger,
Shahabuddin and Nicola (1993). In Nicola, Sha-
habuddin, Heidelberger and Glynn (1993), this ap-
proach was used for the estimation of steady-state
unavailability.

The simulation methodology that we use is based
on a “splitting” approach. As before, we run enough
A—cycles with the original measure ¢, so that S(t)
has a distribution close to m whenever it enters the set
A. At this point we run two parallel cycles; one with
the original probability dynamics ¢ and the other
with the importance sampling probability dynamics
¢’. Note that both cycles start from the same state,
that has (approximately) the steady-state distribu-
tion m. The cycle using ¢', called a “biased A—cycle,”
is used to obtain a sample of N and L, say N; and
L;. The cycle using ¢, called an “original A—cycle,”
is used to obtain a sample of 7, say 71. It is also
used to obtain a starting point (having approximately
the steady-state distribution 7) for the next pair of
original and biased A—cycles. By repeating this pro-
cedure n times, we obtain (71, N1, L1), (72, N2, L),

.+, (Tny Npy Ly). Assuming the process actually is
started in steady-state, then Y ., 7;/n is an unbi-
ased estimate of En 4(7) and > ;_; N;L;/n is an un-
biased estimate of Er 4(NL) = Ex 4(N). The ratio
of the first estimator to the second one yields an esti-
mate of . As the successive cycles are dependent, the
method of batch means can be used to obtain confi-
dence intervals. We will briefly review the procedure
in the context of ratio estimation.

Divide the n samples into b batches, with k = n/b

samples in each batch (assume that n is chosen such
that n/b is an integer). Form the samples é;, 6 ...

by and v1, 2 ..., 7» as given below:
1 &
6j = ; ' Z Ti (4)
i=(j-1)k+1
1 &
%= > N (5)
i=(j—1)k+1

Note that g = E;zl 5j/2§=1 7; is the same esti-
mator as would be obtained without batching. For
a sufficiently large batch size k, {(6;,7;),j > 1} can
be considered to constitute an uncorrelated sequence.
In that case, for sufficiently large b, Vb(fi — p) is
approximately normally distributed with mean zero
and variance o where (analogous to the regenerative
method),

o2 = Vars(8;) — 2uCovy,4:(85,7;) + #*Varg (v;)
E%(v;)

(6)
(The subscript 7, indicating the steady-state distribu-
tion, is implicitly understood but has been dropped
from Equation 6.) The normal approximation and
Equation 6 can then be used to construct confidence
intervals.

In applications, more simulation effort is typically
required to obtain accurate estimates of E, 4[N], so
m > 1 biased A—cycles can be generated for each
original A—cycle. Let N;; and L;; be the samples ob-
tained from the I-th biased A—cycle (I = 1,...,m)
corresponding to the i-th original A—cycle (after
reaching steady-state), i.e., N;;, L;; and 7; have the
same starting state. Then a new sample for the j-th
batch v; can be defined to be

jk m
v = % Z ZNilLil- )

i=(j-1)k+11=1

The other equations relating to this procedure remain
unchanged.

4 EXPERIMENTAL RESULTS

In this section we describe the results of experi-
ments using the importance sampling methodology
described in Section 3 to estimate the MTBF. The
example models chosen are the same as those de-
scribed in Nicola, Heidelberger, Shahabuddin and
Glynn (1993) where they were used for estimating
the steady-state unavailability.

After the initialization effects had dissipated, each
model was run for 64,000 original A—cycles. For each
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original A—cycle, m = 4 biased A—cycles were simu-
lated with importance sampling using the same start-
ing state as the corresponding original A—cycle. The
method of batch means with 1,000 batches was used
to estimate the variance (64 original and 256 biased
A—cycles per batch). The tables list point estimates
for the MTBF and the relative half-width (in percent)
of 99% confidence intervals.

The first example is a machine repairman model
with two types of components and three components
of Type I and two components of Type II. The sys-
tem is considered operational if there is at least one
component of each type operational. There is a sin-
gle repairman who repairs components according to
a preemptive-resume service discipline (with compo-
nents of Type II having the highest priority). The re-
pair time distribution is deterministic (1.0 hour) for
Type I components and it is uniformly distributed be-
tween 0 and 1.0 hour for Type II components. Two
kinds of failure distributions are considered: an Er-
lang and a Hyperexponential. These distributions
have means 1/e¢, where € is a “rarity” parameter
and ¢ = 1, or ¢ = 1.5. (Allowing ¢ = 1.5 allows
us to model unbalanced systems.) The Erlang distri-
bution, denoted by E;(e°), has two stages with rate
2¢° in each stage. This distribution has a coeflicient of
variation (CV) equal to 0.707. The Hyperexponential
distribution, denoted by H,(e), is equal (in distribu-
tion) to an exponential with rate 0.3342¢ with prob-
ability 0.2727 and it is equal to an exponential with
rate 4.0le with probability 0.7373. The CV of this
distribution is 2.0. This model can either be with
or without failure propagation. In the model with
failure propagation, a failure of a Type II component
causes two Type I components to fail with probability
0.25.

The second example is a model of a fault-tolerant
computing system. There are two sets of processors
with two processors per set, six disk clusters with
four disks per cluster, and two sets of disk controllers
with two controllers per set. The system is con-
sidered available if there is at least one operational
processor in each processor set, one operational con-
troller in each controller set, and three operational
disks in each disk cluster. There is a single repairman
who repairs components according to a FCFS disci-
pline. All repair times are exponentially distributed
with mean one. Component failure time distributions
could be either Erlang with two stages (CV=0.707),
Weibull with a shape parameter equal to 1.25 (IFR
with CV=0.805), Exponential, or Hyperexponential
as described above (CV=2.0). Within a given exper-
iment, all components had the same type of failure
distribution, e.g. Weibull, but with possibly different
means. Two sets of mean failure times were consid-
ered. In Set I, processors and controllers had a MTBF
of 200,000 hours while disks had a MTBF of 600,000

hours. In Set II, the components were less reliable
by a factor of ten, i.e., in Set I, processors and con-
trollers had a MTBF of 20,000 hours while disks had
a MTBF of 60,000 hours. Again, the model could
be either with or without failure propagation. In the
model with failure propagation, a failing processor
causes a processor in the other set to fail with prob-
ability 0.1.

For Markovian systems, failure biasing makes the
probability that the next event is a failure equal to p
for some fixed p whenever repairs are ongoing. (With-
out importance sampling this probability is usually
very small.) Typically, a value of p = 0.5 yields good
results. A uniformization-based importance sampling
approach as described in Nicola, Shahabuddin, Hei-
delberger and Glynn (1993) was used for the biased
A—cycles. In this approach, repair times are sam-
pled from their given distributions and uniformization
(with importance sampling) is used to sample failure
times. Roughly speaking, at the n-th event, a Poisson
process with rate (3, is sampled; events in this Poisson
process are accepted as failure events with probability
py, and rejected with probability (1 — p,). Rejected
events are called pseudo-events and have no effect on
the “non-clock” part of the system state X(¢) and
Q(t). Similar to failure biasing, for non-Markovian
systems we want to to make the probability that the
next event is a failure event approximately equal to
0.5 when repairs are ongoing. Let r, denote the ex-
pected repair time of the component in repair on the
n-th event. Thus making the product G, x p, = 7
has the desired effect. Guided by the results of pre-
vious experimentation, we fixed 3, = 5 x r, and
adjusted p, accordingly. If the event was a failure
event, balancing was used to select the failing com-
ponent, i.e., the failing component type was selected
uniformly. In order to keep the estimates stable, if
the actual time to the next repair event was much
higher than the mean repair time (say, greater than
five times as large), importance sampling of failures
was turned off. Importance sampling was also turned
off for the remainder of the cycle whenever the sys-
tem failed. Uniformization was also used to sample
failure times when no repairs were ongoing. In this
case, the total probability of accepting an event was
unchanged from the real system, however, balancing
was used to select which component to fail given that
the event is a failure event. (For the Weibull dis-
tribution, which has an unbounded failure rate, uni-
formization is, strictly speaking, not applicable. In
this case the failure rate was truncated in order to
sample using uniformization.)

Results for the machine repairmen models are given
in Tables 1 and 2 for the cases without and with fail-
ure propagation, respectively. All relative errors are
less than +£10%. For ¢ = 0.01, the variance reduc-
tion over standard simulation was typically less than
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a factor of ten, but for e = 0.0001, no system failure
events were observed in a standard simulation of the
same number of cycles. Similar results, listed in Ta-
bles 3 and 4, were obtained for the computing system
example. Note that, for fixed component mean failure
times, the MTBF is little affected by the failure time
distribution, especially in the models without failure
propagation. These models are, in some sense, close
to product form queueing networks that do exhibit
such insensitivity to the form of the distribution (at
infinite server stations).

In our experiments, we have found this approach
to importance sampling to be effective for estimating
the MTBF and system unavailability in highly de-
pendable systems. However, a proof that it possesses

the bounded relative error property has not been es-
tablished.
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APPENDIX A: TABLES

Glynn et al.

Type E5(e) E>(e) H(¢€) H;(¢)
I

Type | Ez(e) Ez(e'?) Ez(e) BEa(e'?)
II

€= 3.01 x10% | 3.85 x10% | 2.25 x10% | 3.47 x10

102 +2.1% +2.3% +2.5% +3.1%

e= | 2.98 x107 | 4.41 x10° | 2.32 x107 | 4.21 x10°

10°% | +2.2% + 3.3% + 2.7% + 3.9%

Table 2: Estimates of the MTBF in the machine re-
pairman model (with failure propagation).

Set E, Weibull Expo- H,
nential
I 2.52 x10° | 2.51 x10° | 2.53 x10% | 2.56 x10°
+ 4.6% + 4.9% + 4.8% + 6.2%
II | 2.54 x107 | 2.57 x107 | 2.48 x107 | 2.53 x10
+ 5.0% + 4.3% + 4.0% + 7.5%

Table 3: Estimates of the MTBF in the computing
system example (without failure propagation).

Set E, Weibull Expo- H,
nential
I 2.35 x10° | 2.35 x10° | 2.23 x10° | 2.11 x10°
+ 5.5% + 4.7% + 7.7% + 9.2%
II | 2.23 x107 | 2.33 x107 | 2.26 x107 | 2.00 x107
+ 8.6% +5.2% + 5.3% + 10.2%

Table 4: Estimates of the MTBF in the computing
system example (with failure propagation).

Type E,(e) E>(€) Hz(e) Ha(e) |
I
Type E,(e) INGED) Ey(e€) Ey(el®)
I
e= | 9.83 x10% | 2.54 x10° | 9.66 x10 2.44 x10°
102 + 4.5% + 3.2% + 4.7% + 5.8%
€= 9.95 x107 | 2.48 x10'! | 1.01 x10% | 2.45 x101
10—* + 4.7% + 3.3% +5.1% + 6.3%

Table 1: Estimates of the MTBF in the machine re-

pairman model (without failure propagation).



