Proceedings of the 1993 Winter Simulation Conference
G.W. Evans, M. Mollaghasemi, E.C. Russell, W.E. Biles (eds.)

OBJECT-ORIENTED SIMULATION USING MODEL BUILDER

Olugbenga O. Mejabi

Industrial and Manufacturing Engineering
Wayne State University
Detroit, Michigan 48202, US.A.

ABSTRACT

Model Builder™ is a modular, hierarchical,
and object oriented modeling and simulation
environment for complex systems. Model Builder
combines visual interactive simulation with multi-
abstraction modeling, extensible semantics, and direct
object manipulation, for providing intuitive modeling
capabilities.

1 INTRODUCTION

Model Builder takes full advantage of object
orientation to provide a simulation environment that is
easy to use without sacrificing any modeling power in
the process. Based on the Model Builder simulation
architecture, Model Builder uses a hierarchical
structure coupled with a "black-box" approach to
manage the complexity in large or intricate systems.
Modules can be created out of any set of objects and
then be stored for later use. Such modules are easily
stored on the palette. The palette operates on a drag-
and-drop principle. Modules from the palette can be
incorporated back into models simply by dragging the
desired module from the palette and then dropping it
into a model.

Inheritance provides the means for adding new
semantics to Model Builder. Inheritance is a central
principle of object orientation and permits new data
structures and semantics (or model component
behavior) to be extended in a graceful and incremental
fashion. In this way, Model Builder is open-ended and
is suitable for use in a wide variety of modeling
domains.

Ease-of-use is facilitated by direct
manipulation of objects. All objects in a model can be
modified directly through the user interface by using
the mouse. Models can be built completely, from the

303

ground up, without any need for programming.

Object activities provide a means for even
more flexibility. Through the user interface, without
generating any code and, therefore, without any need
for compiling, the behavior of objects in Model Builder
can be enhanced or modified by defining activities
which they carry out at specified points in the
simulation.

Model Builder exists within the innovative
NeXTStep™ operating system and it therefore takes
full advantage of all of the graphics and sound
capabilities available on the platform. Addition of
graphics and sound to models is an integral part of
building models and is not relegated to a secondary
step performed after the fact.

2 MODEL BUILDER ARCHITECTURE

Object-oriented, as well as, modular,
hierarchical modeling architectures have become an
important direction for research in the search for
improved methods of building simulation models. Some
research, as well as commercial systems, have been
developed. These include DEVS-Scheme [Zeigler
1987], [Ulgen and Thomasma 1986}, and RESQME
[Gordon et al, 1986]. These systems have shown
considerable promise in terms of the ability to help
deal with complexity and for provision of ease-of-use.

The Model Builder architecture defines three
basic types of objects for use in building models.
SimObjects and ModObjects share a common origin
and are used to represent real-world objects within a
model. A model of a factory, for example, would
represent all the cells, machines, and workers within
the factory as SimObjects or ModObjects. The main
difference between SimObjects and ModObjects is that

304 Mejabi

ModObjects can contain, within them, other
SimObjects and ModObjects while, in that respect,
SimObjects are atomic -- they cannot contain lower
level model objects. ModObjects therefore serve as the
basis of the hierarchical structure available in Model
Builder.

Each SimObject or ModObject can have any
number of Ports and Attributes. Ports capture the
dynamics associated with a SimObject or modObject.
A SimObject or ModObject typically has several Ports
of different types. Each Port defines a particular facet
of the overall behavior of the object being modeled.
Ports can be placed at the input to a SimObject or
ModObject -- these are called InPorts; they can be
placed at the outlet of a SimObject or ModObject --
these are OutPorts; or they can be placed within a
SimObject or ModObject -- these are Actions.

Attributes, on the other hand, represent the
state information associated with a particular
SimObject or ModObject. A SimObject or ModObject
typically has several Attributes of different types. Each
Attribute defines a particular aspect of the overall state
of the object being modeled. Figure 1 below shows a
hierarchical model complete with SimObjects,
ModObjects, Ports, and Attributes.

When a model executes, a series of messages
are passed back and forth between the Ports and
Attributes in the model. Such messages are only
possible between Ports and Attributes that have been
connected together. The way in which Ports and
Attributes in a model are connected also defines the
uniqueness of that particular model. The architecture
defines rules which govern which Ports and Attributes
can be connected. Every connection has a source and
a destination. Four types of relationships are possible
between source Ports or Attributes and destination
Ports or Attributes. The source and destination can
either be on the same SimObject or ModObject,
[SAME], or they can both be on peer SimObjects or
ModObjects, [PEER], or the source can be on a
SimObject or ModObject which is contained within the
ModObject that the destination is on, [CONTA’D], or
the source can be on a ModObject which contains the
SimObject or ModObject that the destination is on,
[CONTA’R]. To maintain the modularity of the
architecture, certain connections are permitted and
others are disallowed. Below is a summary of those
connections that are allowed.

i
Sigin

fede> b

SimObject1

ModObject2

ModObject1

Figure 1: A Model Illustrating Components of the

Model Builder Architecture
Source Destination Relationship
InPort InPort [SAME, CONTA’D]
InPort Action [SAME]
InPort OutPort [SAME]
InPort Attribute [SAME]
Action InPort [SAME, CONTA’D]
Action Action [SAME]
Action OutPort [SAME]
Action Attribute [SAME]
OutPort InPort [PEER, SAME]
OutPort Action [SAME]
OutPort OutPort [SAME, CONTA'R]
OutPort Attribute [SAME]

Attribute InPort [SAME, CONTA’D]

Attribute Action [SAME]
Attribute OutPort [SAME]
Attribute Attribute [SAME, CONTA’D,

CONTA'R]

Object-Oriented Simulation Using Model Builder 305

3 MODEL DEVELOPMENT

Building models is a straightforward process.
Pre-configured modules can be dragged in from the
palette and inserted into a model. This facilitates the
incorporation of small or large building blocks into
models without the need for much expenditure of
effort. Such modules can then be edited, if needed.
Editing can include altering values of state variables,
changing connections between Ports and Attributes, or
wholesale deletion or modification in the module itself.
This is the main means by which end users build
models in Model Builder.

If the palette does not contain any modules
that are appropriate to the particular model being built,
then, the model can be built directly from individual
SimObjects, ModObjects, Ports, and Attributes. These
are available to be dragged in from the Class Browser.
SimObjects and ModObjects can be placed inside
ModObjects already in the model. In this way a
hierarchical structure can be incorporated into the
model. Each Port and Attribute available on the
Browser corresponds to some unique form of model
dynamic or object state. After being configured with
Ports and Attributes, connections can be established to
facilitate messages to be sent back and forth between
them. This method of building models, though easy to
use, is not intended for end users. Rather, developers
can utilize this to create new modules appropriate for
a particular domain. These modules can then be
distributed to the end users.

If needed, additional logic can be added to the
model by specifying activities for one or more of the
Ports or Attributes in a model. Activities are composed
of one or more steps. Activities are analogous to
subroutines in regular programming languages and
steps are analogous to individual lines of code.
Activities, however, are more akin to the output from
CASE tools than to program source code in that they
are neither interpreted nor compiled, rather, they are
created and executed directly at run-time. The activity
editor in Model Builder is an easy-to-use tool which
permits the creation, testing, and editing of activities.
An activity step, essentially corresponds to a message,
called an operation, to be sent to a target object as the
step executes. Operations can optionally accept one or
more operands as arguments, and the editor can be
used to create new variables, for this purpose, in an ad-
hoc fashion at any time. All operations return a value
which can then be assigned to any variable of the
appropriate type. Examples of operations that are
provided include those for generating random variates,

for performing addition, multiplication, division,
branching, and looping, among others. In this way the
activities provide full features for incorporating new
logic into Ports or Attributes.

4 MODULE STORAGE AND REUSE

Once portions of a model have been
completed, modules can be stored on the palette for
later use. The process to accomplish this is
straightforward. Any ModObject or SimObject can be
selected and designated as the module to be saved onto
the palette. If a ModObject is selected, and it has other
ModObjects or SimObjects contained within it, then,
the whole hierarchy becomes part of the module. All
that remains is to provide a name and an icon for the
module. On completion, the module becomes available
for use in future model building.

If the aim is to create modules for distribution
to end users, then instead of placing such modules on
the palette, they can also be stored into a file which
can then be copied and distributed as needed.

5 ADDING NEW SEMANTICS

Model Builder is capable of being extended to
an unlimited degree. By using this feature, new
semantics can be easily added for different domains. By
inheritance, new Ports and Attributes can be designed
and created. New Ports can add new types of logic,
dynamics, and behavior. New Attributes can add new
notions of object state. The extensibility feature makes
it possible to model arbitrary types of systems without
being stuck with certain, barely appropriate, semantics,
as is often the case with closed-ended simulation
languages.

A new class is defined simply by specifying a
superclass from among the classes already created and
then adding instance variables and methods. The
methods contain all the code which defines the manner
in which the new class behaves. After being compiled
and tested, the new class can be added into Model
Builder by loading it onto the browser. Once this has
been accomplished the new class can be used like any
other class available in the system. It can, itself, also
serve as the superclass for a new class to be created at
a later time. The executable image created exists in a
file which can also be copied and distributed to other
users for use in building models.

306 Mejabi

Figure 2: Model Builder's Class Browser

Figure 2 above shows the Class Browser with several
subclasses of Port.

6 GRAPHICS AND SOUND

Animation, graphics, and sound, are an
important part of Visual Interactive Simulation. Model
Builder incorporates features for using all three.
Images are objects which can be manipulated directly
through the user interface or through logic built into
Ports and Attributes. In this way they can be made to
change color, move across the screen, or to alter other
aspects of the image as the simulation executes. Sound
is also stored in objects and can be played by
messaging a sound object to play itself. New sounds are
created simply by recording any sound and storing it in
a file.

7 CONCLUSION

Model Builder introduces several new concepts
into the discipline of simulation model development. It
provides all the traditional benefits of Visual Interactive
Simulation, and thereby promotes easy model
development. In addition, by utilizing the hierarchical

model structure, very complex models can be built.
Using inheritance, Model Builder is open-ended and
allows new semantics to be added in a completely
natural and graceful manner. To take full advantage of
this feature, class and module libraries designed for
specific domains can be created for modeling in each
domain of interest. Some possible domains include
transportation systems, service systems, manufacturing
systems, and data communication networks.

REFERENCES

Burns, J. R, and Morgeson, J. D., 1988. "An Object-
oriented world-view for intelligent, discrete, next-
event simulation." Management Science 34, pp. 1425-
1440

Goldberg, A. and Robson, D., 1983. SMALLTALK-80:
The language and its implementation. Addison-
Wesley, Reading, Mass.

Gordon, R. F., MacNair, E. A., Welch, P. D., Gordon,
K. J,, and Kurose, J. F., 1986. "Examples of Using
the RESearch Queueing Package Modeling

Object-Oriented Simulation Using Model Builder

Environment (RESQME)." Proceedings of the 1986
Winter Simulation Conference. The Society for
Computer Simulation, San Diego, Calif.

Macintosh, J. B., Hawkins, R. W., and Sheppard, C.J.,
1984. "Simulation on microcomputers -- the
development of a visual interactive modelling
philosophy." Proceedings of the 1984 Winter
Simulation Conference. The Society for Computer
Simulation, San Diego, Calif.

Mejabi, O. O., 1991. "The Model Builder Architecture."
Technical Report, Wayne State University, Detroit.

Ulgen, O. M,, and Thomasma, T., 1986. "Simulation
Modeling in an Object Oriented Environment using
Smalltalk-80." Proceedings of the 1986 Winter
Simulation Conference. The Society for Computer
Simulation, San Diego, Calif.

Zeigler, B. P., 1984. Multifaceted Modelling and Discrete
Event Simulation. Academic Press, London.

Zeigler, B. P., 1987. "Hierarchical, Modular, Discrete
Event Modelling in an Object-oriented
Environment." Simulation 49 No 5 pp. 219-230

AUTHOR BIOGRAPHY

OLUGBENGA 0. MEJABI is an Assistant Professor in
Industrial and Manufacturing Engineering at Wayne
State University. He earned his Ph.D. in Industrial
Engineering from Lehigh University and his M.Sc. in
Manufacturing Technology from University of
Manchester Institute of Science and Technology in
England. His research includes development of tools
and methodologies for systems simulation, analysis of
general system flexibility, and development of
methodologies for effective technology transfer.

Model Builder is a trademark of Simplex Systems Inc.

NeXTStep is a trademark of NeXT Inc.

307

