Proceedings of the 1993 Winter Simulation Conference
G.W. Evans, M. Mollaghasemi, E.C. Russell, W.E. Biles (eds.)

AN INTERACTIVE GRAPHICAL MODELING TOOL FOR
PERFORMANCE AND PROCESS SIMULATION

Dennis S. Mok

Bellcore
Piscataway, NJ 08854

ABSTRACT

This paper describes an interactive visual modeling and
simulation environment, Q+TM (Q+ is a trademark of
AT&T Bell Laboratories) and its COMPASS modeling
interface, for performance analysis and simulation of
distributed computer systems. In the first section, the
authors give an expository description of the Q+
simulation tool. After that Q+'s modeling capability is
demonstrated through the use of a distributed order
processing system modeling example. The authors
complete the paper by presenting the current advances
on developing the COMPASS interface to simplify
distributed systems modeling by system planners and
designers.

1 INTRODUCTION

With the recent advances in personal computer,
workstation and high speed network capabilities, the
basic architecture for a computer system is Nnow
typically consisted of a high performance host system
working in concert with client-server type systems.
These complex distributed systems consist of multiple
high power workstations acting as servers and
connected via local area networks (LANS) to groups of
graphical personal computers or terminals. To assure
that these complex distributed computer systems are
optimally configured, and the business operations
supported by the systems are properly designed, we
need to analyze (through modeling and simulating) the
performance of the distributed systems to help make
critical configuration and design decisions. One of the
means is by visual simulation as described in this paper.

285

Cynthia A. Funka-Lea

AT&T Bell Laboratories
Holmdel, NJ 07733

Visual modeling tools can help system builders assure
the performance of these complex software systems.
Visual models let them represent and study the
system’s operational behavior. The idea of interactive
modeling and simulation is that a designer input a
model just as he/she would describe it to a colleague:
by drawing a picture. Then the system’s behavior can
be observed via the animated movement of operational
entities within the model and the gradual evolution of
statistics. In this paper, the design and functionalities of
Q+ is described and its modeling capability
demonstrated using a distributed systems modeling
example. At the end of this paper, current advances on
developing a modeling interface (COMPASS) for
convenient modeling of distributed computer systems
are described.

2 INTERACTIVE VISUAL MODELING
SIMULATION IN Q+

AND

Q+ 13 a descendent of the Performance Analysis
Workstation (PAW), also developed at AT&T Bell
Laboratories by Melamed and Morris (1985). PAW
differed from other visual modeling tools in several
important respects. It let you completely specify a
complex model using graphical operations, execute it
immediately without any compilation delay, and
observe model animation in the same window in which
you built it without any additional effort. You could
stop the model in mid-run, change it structurally and
parametrically, and then continue the simulation run
without delay.

Q-+, among other things, supports two basic principles:
interactive model building and exploratory analysis of

286

model behavior. Detailed descriptions of Q+ can be
found in the Q+ User’s Guide and Reference Manual
and in an article by Funka-Lea, Kontogiorgos, Morris
and Rubin (1991). Q+ has both Monte Carlo
simulation capabilities and interfaces to analytic tools.
The user interface is driven by popup menus. Q+ has
an object oriented design where icons on the screen
represent concrete objects (nodes, transactions,
statistics, and so on). Q+ has six basic components:
graphics editor, text editor, Monte Carlo simulator, the
language interpreter, subnetworks, and the utility set.
These components are described in the following
sections.

2.1 The Graphics Editor

A new model is most easily created using the graphics
editor. Using the mouse, you draw the individual
network nodes, then connect them to specify the
topology (Figure 1). Node drawing is simple, because
all icons are preprogrammed and you simply change
their position, size and orientation with the mouse. Q+
generates a distinct label for each node, and every node
can have a source and a sink. Experimental versions of
Q+ allow you to define your own icons for nodes and
other objects. To reserve screen space for statistical
displays, you sweep out rectangular windows. Q+
allows you to bind a statistic to a window, to clear a
window of a Q+ statistics are in three formats:
summaries, time-series and histograms. The views of
statistics that you select for graphical display are
updated every time the screen is refreshed, or when
they change, whichever comes first.

2.2 The Text Editor

You can use the Q+ text editor to parameterize a
model, define its statistics, and enter expressions. You
enter text data in captioned fields of appropriate forms.
The editor checks every lexical token thoroughly for
syntactic and semantic errors and consistency
violations. For example, it checks node and transaction
labels for uniqueness, routing for discrepancies with
the drawn topology, and discrete distributions for
violation of the limit of 1 in the sum of probabilities.
The editor flags an error at the first erroneous character,
sounding a double beep and rejecting the character, or
using an appropriate default for that entry.

Mok and Funka-Lea

2.3 The Monte Carlo Simulator

Q+ supports run modes and options to Suit the
requirements of various stages in the modeling process.
Simulation activities are largely controlled from a
simulation control panel, where you can set the
snapshot window to any nonnegative value. To
examine the simulation event by event, you set the
snapshot window to zero. Then screen animation
displays the shuttling of transactions among nodes,
their creation and destruction, and more complicated
behavior such as splitting, joining and yanking.

You can step through events or run the animation
continuously. When you set the snapshot window to a
positive value, the screen is refreshed every snapshot
interval to give a time-lapse account of model behavior
at the specified time granularity. To launch production
runs in batch mode, you select the appropriate option
and specify an output file. You can interrupt and restart
at any time to track the progress of a batch simulation.

In a more complicated situation, the user may wish to
run replications, step through a model’s parameters for
a sensitivity analysis, or compare multiple models. To
facilitate these kinds of activities, Q+ provides a C
language library called the C Programming Interface or
CPI (formerly called HPE) that allows a model’s
parameters or structure to be accessed or changed from
a C program.

2.4 The Language Interpreter

Although Q+ is a visual modeling tool, it does allow
transactions to have textual (data and program)
attributes. You can enter most of the static attributes of
a transaction, node or model as expressions, and those
expressions can access and affect other model entities.
These expressions are evaluated by an interpreter
called Exp. For example, because performance models
are quantitative, it might make sense for a transaction
to carry a variable x, which could represent size,
history, or system state, and for the network to alter its
treatment of this transaction on the basis of the
variable. Or this attribute might instead belong to the
node and even be a function that the node executes to
determine how to route or serve the transaction. The
overall effect is a natural complement to the graphical
paradigm that can easily express complex operations or
protocols.

An Interactive Graphical Modeling Tool for Performance and Process Simulation

Queueing Nodes

prss— 1 brietworks

provide a graphical hierarchy to facilitate

nformation hiding and model reuse.

109

200

300

480

_1 119 2‘9 319 410 510 610 2

Q+ V1.0 (Copyright AT&T) ﬁle:isix.qo dir:/(s/26/mf2591 S/mok/bmw g+ /bin

610 916

IBFE IIFB .\2F9 lBFG 14PB ISF@

model the service
centers and other
resources within
the network.

»090
«068
-030

1300

<Mmr=ODDmONT

15880

Q+

The AT&T
Performance
Analysis
vorkstation

version 1.0
(05-15-92)

Copyright AT&T

linterrupti
tinerys

from @ to 16.

HISTOGRAM(3@ by ©.588) of NODE SOJOURN TIME at cpu

680 due to all

HODE SOJOURN TIME

SIMULATION CLOCK READINGS:
current interval

16.000000

SIMULATION MARK TIMES:
reset end

5000.000000 | (30000.000000

DISPLAY UPDATE INTERVALS:
realtime snapshot

0] [(1000.000000

SIMULATION RUN STATUS:

PREVIOUS ACTION FEEDBACK:
simulator is running
CURRENT MODE:

continuous mode simulation
EXPECTED ACTION:

1) hit ESC or F1 to exit

A

\“7.

Statistics Window
present simulation data

in the form of histogram,
time-series and summaries.

Simulation Control Panel

Reporter Corner

Figure 1. The Q+ Simulation Display

287

288

2.5 The Modeling Subnetworks

Many users build large models containing repetitive
components, and others like to build their models in a
hierarchical fashion, using a top/down or bottom/up
approach. The subnetwork capability lets you build
and structure models hierarchically. Thus, any model
can possess submodels to any degree of nesting. This
abstraction facilitates model construction by the well-
accepted structured-programming principle of
information hiding. It also supports such basic
operations as of replicating model components,
altering the graphical representation of model parts,
and reading in models from libraries. Because Q+
structures models both modularly and hierarchically,
this encourages sharing and reuse of modeling efforts.

Q+ subnetworks let you move and rescale
subnetworks, and also cut and paste together Q+
models. You can align time and disambiguate names
when models are pasted together. You can also
manipulate much larger models easily by an enhanced
viewing mechanism. The theoretical node limit
imposed by graphics exceeds one million, however,
memaory constraints usually impose a smaller limit.

2.6 The Q+ Utilities

Q+ provides an array of utilities, mostly for file
manipulation, translation and simulation. You can save
Q+ models from or read them to the graphics screen.
You can display a textual listing of an entire Q+ model
Or save a screen image in a file and print it as a hard
copy. Q+ has interfaces to two analytical packages:
Panacea (developed by Ramakrishnan and Mitra
(1982)), which includes an asymptotic expansion
method to solve large steady state queueing networks
and QNA (developed by Whitt (1983)), which
generates an approximate analytical solution for steady
state queueing networks based on the first two
moments of each modeling distribution.

2.7 The Q+ World View

Q+’s most primitive world view, that of a queueing
network, is an extension of BCMP by Baskett, Chandy,
Muntz and Palacios (1975) and Kelly Networks by
Kelly (1979). The Q+ simulator is a discrete-event
simulation system operating in a world that consists
mainly of two fundamental entities: nodes
(components of a computer system, geographical sites
in a network, and so on) and transactions (jobs,

Mok and Funka-Lea

customers, and so on) which circulate among nodes.

A node has associated with it a queue whose positions
can hold transactions. A queue’s capacity can be
positive and finite, or infinite. Nodes have incoming
and outgoing paths, so that a queueing network
functions like a directed graph. A special kind of node,
called an environment node represents sources and
sinks. While nodes are static entities usually anchored
to network locations, transactions are dynamic entities
that circulate and move from node to node. Each
transaction has two fundamental attributes associated
with it: class tag and family membership. A transaction
class tag is a dynamic attribute that is assigned to the
transaction whenever it enters a regular node.
Typically, class tags are used to denote the state of a
transaction during the course of its life in the network.
You can specify node and class-dependent priority for
transactions. A transaction’s class at a given node
determines (possibly via an expression) the external
arrivals (from a source), service delays and routing
decisions for that transaction. A transaction may
change class on routing to another node.

Family membership is a static attribute. The family
concept helps when a transaction spawns a batch and
the batch members must be eventually joined to
recover the original transaction (for example, messages
which are split into interleaving packets that must be
reassembled at their destination). Family membership
can propagate and expand by further splitting of
transactions. In Q+, there are no special types of
transactions. For example, if you want a transaction to
represent a token, you simply set its service time to
infinity with probability one. Specialized modeling
constructs are embodied in the various types of nodes
supported by Q+. These are first-come-first-served,
last-come-last-served, infinite server (usually
representing pure delay), several preemptive-resume
disciplines, split nodes (where a transaction may be
divided into multiple copies), join nodes (where
transactions are merged into a single one) and yank
nodes (allowing transactions to pull other transactions
from various nodes and reroute them to other nodes,
possibly in batches). You can specify split, join, and
yank operations by class and family.

An Interactive Graphical Modeling Tool for Performance and Process Simulation

3 AN ORDER PROCESSING
MODELING EXAMPLE

SYSTEM

In this example, we describe an order processing
system application modelled in Q+. This application
typifies a generic tele-marketing system where the
products for sale could be anything from clothing to
computers. The model in Figure 2 shows a marketing
representative interacting with customers on the phone
to take orders. After the order form has been filled
electronically, the order is sent via a Local Area
Network (LAN) to an order manager who’s
responsibilities are:

1. Printing a hard copy and filing of the order.

2. Accessing a computerized inventory database system
to check on availability of components needed to
assemble the order.

3. Assigning the manual work force to process the order
if needed.

After these steps are completed, the order is
electronically sent to the billing department’s database
system so the customer is promptly and correctly billed.

Both Figures 2 and 3 are Q+ models representing the
above scenarios. Figure 2 shows the process view of the
model. It is easily constructed by selecting appropriate
icons that represent each step in the process. Each icon
in fact is a queueing network model with its contents
hidden. The details can be displayed, as shown in
Figure 3, so actual performance characteristics, i.e.,
backlog of orders at a given step, utilization of
resources, processing delays etc. can be observed
during simulation. Note that the simulation can be
executed with the contents of the subnetworks
displayed or hidden.

In Figure 3, a service order, represented by the
transaction SO flows through the queueing network
from the Marketing queue to the ISSUE_ORDER node
which splits the same SO transaction to the
PRINT_ORDER node, the INVENTORY node and the
WORK_FORCE node. After all three above queues
have completed processing its respective SO
transaction, a signal is sent to the BILLING node
(which joins the SO signals from the above three nodes
into a single SO transaction at the BILLING node) to
start processing the bill for that order. The statistical
window shows the histogram for total order processing

time, that is, elapsed time . since a marketing
representative starts taking order to the time when a bill
is ready to be sent to the customer (as tabulated by the
BILLING node every time a SO transaction departs
from the network).

4 The COMPASS MODELING INTERFACE

Historically, Q+'s user base mainly consisted of system
and performance analysts. These users are very
comfortable parametrizing simulation models using
queueing theory terminology. However, one of the most
powerful aspects of Q+ is that is general enough to
model a wide range of applications, such as computer,
communication, manufacturing, and process
improvement systems, among others. As Q+’s user base
has expanded to include increasing numbers of very
targeted users with very specific modeling needs, we
have realized that these users do not necessarily think of
their systems in queueing theory terms. Instead of
parameterizing simulation models in terms of nodes,
classes, and transactions, they would much rather use
terms that directly relate to their modeling scenario. For
example, the process engineer designing the order
processing system shown in Figure 2 would rather
parameterize the model in terms of operator thinking
time, customer interaction time, and so on, rather than
edit all the parameters in each Q+ node directly.

The Complete Object Modeling interface for
Performance Analysis SystemS (COMPASS) is
designed for such purposes. We have developed
interfaces that directly build Q+ models from
application specific data. These interfaces are
graphically equivalent, but differ in their input
parameters and the output Q+ model. For example, the
order processing system described previously, orders
are routed over a Local Area Network (LAN) after a
marketing representative keys them in. To determine
the number of marketing representatives (clients) that
the LAN and the order manager (server) can support, it
will probably be necessary for a modeler to characterize
the clients, the LAN and the Server in some detail. In
Figure 4, we see the COMPASS windows for
parameterizing a Client Group akd the LAN. Here the
user has entered a network speed of 10 MB/second, a
packet size of 512 bytes, and background traffic at 100
packets/second. Also, the user has selected LAN
utilization for observation. COMPASS will read the
user inputs, then import the appropriate Q+ model (in
this case, the Token Ring Network model), and
parametrize the model correctly, e.g. a ratio of network

289

290 Mok and Funka-Lea

= G- V1.0 (Copyright AT&Y) 1 -1
] 198 2ge 3qe e sqe eqe 210

e Marketing
Representative SN

— ! ‘\ (/¢ Printer

Order A =

Manager = .

-

prey Inventory System
Y Work Force

Administration v
System Al

—~

)

Billing
System

b
»
5
e

J
j

200

SIMULATION RUN STATUS:

o WETZEMN [contin] (%0 1| pueyrous acvion Fecosad
SLop contin PREVIOUS ACTION FEEDBACK:
The AT&T SIMULATION CLOCK READINGS: menu item selected
Px;;g;giagce current interval CURRENT MODE:
workstation select a panel item

EXPECTED ACTION:

SIMULATION MARK TIMES:
Version 1.0 reset end 1) depress button 3
(04-01-93) 2) place cursor in item
[c 1 [10000.000000 3) release button 3

4ght AT&T DISPLAY UPDATE INTERVALS:
copyright realtine snapshot
] [o

| } 0

Figue 2. A Q+ Order Processing Model

_ Q- V1.0 (Copyright AT&T) -1
1 1. R'Q)1. Q’. B’l l" 71.

'—.

i ”@’ NS

200

HIG TUGKANIIY by LoWbet wf MLTHCAN

from ¢ te 130veE.000 B TNVENTORY

" 1 1
G

WORK_FORCF

<
&
3
4
T

50|

iarvice Order Prozzzoan
SIMULATION RUN STATUS:
Q+ Reporter Corner

The ATAT PREVIOUS ACTION FEEDBACK:
performance SIMULATION CLOCK READINGS:| menu exited
Analysis current _ interval CURRENT MODE:
Workstation 130000.00000 select from SIMULATOR menu
N EXPECTED ACTION:
version 1.0 ile::é't‘ATION MARK e";‘IMES‘ 1) place cursor
(04-01-93) 2) depress button 3
0] [130000.00000 3) select item with cursor
Copyright ATaT DISPLAY UPDATE INTERVALS: 4) release button 3
] real tine snapshot
o] [1000.000000 1

Figure 3. Simulation Display of the Order Processing Model

An Interactive Graphical Modeling Tool for Performance and Process Simulation 291

Q- V1.0 (Copynght ATAT)

SIMULATION RUN STATUS:
Reporter Corner

[_stoo | _—cont'ln _—stc

SIMULATION CLOCK READINCS:

current interval
130000.00000 B534.K96639

Q+
The AT&T

| B
Analysis \
! workstation
version 1.0 \ SIMULATION MARK TIMES:
[(os-01-93> XY) [(330000.60000
A 4) release butten
C 1gh ATET DUSPLAY UPDATE INTERVALS: .
epyrisnt r‘la'l time snapshot R
(=) 1000 060000 1
Y T -
A
\\ \\

\

—

-

———.
e,
———
)) J
——
————————
——.

aaxan:

Figure 4. The Q+ COMPASS Windows for the Order Processing Client Server Model

292

speed to packet size will determine the correct service
time for the Message Transmission Queue of the Token
Ring Network model and this will all be done
transparently for the user.

Similarly, in Figure 4, we see a COMPASS window for
parametrizing a Client Group. Here we are adding two
marketing representatives to the client group named
Scanners, with certain common update and retrieval
parameters for the members of the group. The input to
these parameters will be used to automatically generate
a Q+ subnetwork model of a client group for use in
performance analysis of order processing time.

COMPASS provides a wide range of default
subnetwork models for LANs, X terminals, servers,
host systems and networks. Once the user has selected
the subnetworks and has completed parameterizing
them, COMPASS builds the complete Q+ model from
libraries of pre-existing models, in this case from the
Computer Operations model library. COMPASS will
also select appropriate Q+ statistics, run the model, then
display the statistic results. Of course, since a Q+ model
is built, the user can run the model on the Q+ screen
instead. The benefit is that the user can run it
interactively with animation, stopping the model and
changing it at any time.

COMPASS is built using object oriented design
principles and C++. This is a very natural paradigm
since Q+ itself has a strong notion of objects, such as
nodes, classes, transactions, etc. Anytime a new
application arises, all that needs to be resolved is the
mapping between the application objects and the
corresponding Q+ objects. It is our goal to make this an
automatic procedure so that end-users can create their
own application interface.

While Q+ alone is quite powerful and flexible, using the
COMPASS modeling interface will drastically simplify
modeling building and interpretation.

5 CONCLUSION

In this paper, the authors have illustrated the use of Q+
to analyze the performance of a complex order
processing system. The Q+ modeling software has
proven to be a useful design tool for the design of
computerized business operations systems. This paper
has described the key design elements of Q+ and has

Mok and Funka-Lea

demonstrated the power of its design approach.The last
section on the COMPASS modeling interface described
on-going work to enhance the use of Q+ for convenient
modeling of computer operations systems.

REFERENCES

Baskett, F., K.M. Chandy, R.R. Muntz, and EG.
Palacios, “Open, Closed and Mixed Networks of
Queues with Different Classes of Customers”, ACM,
Vol. 22, pp. 248-260, 1975.

Funka-Lea C. A., T.D. Kontogiorgos, R.J.T. Morris,
L.D. Rubin, “Interactive Visual Modeling for
Performance Analysis”, IEEE Software, September,
1991.

Kelly F. P, Reversibility and Stochastic Networks,
John Wiley, NY, 1979.

Melamed B. and R. J. T. Morris, “Visual Simulation:
The Performance Analysis Workstation”, IEEE
Computer, Vol. 18, No. 8, Aug. 1985, 87-94.

Ramakrishnan K. J. and D. Mitra, “An Overview of
PANACEA: A Software Package for Analyzing
Markovian Queueing Networks”, Bell System
Technical Journal, Vol. 61, No. 10, pp. 2849-2815,
1982.

Whitt W., “The Queueing Network Analyzer”, Bell
System Technical Journal, Vol. 62, No. 9, pp. 2779-
2815, 1983.

Q+ Version 1.0: User’s Guide and Reference Manual
(Volume 1), and Programmer’s Guide and Reference
Manual (Volume 2), Ed. by R. J. T. Morris. Available
from C. L. Janczewski, AT&T Bell Laboratories,
Room HO 3M328, Holmdel, NJ 07733, Tel. (908) 949-
0678.

An Interactive Graphical Modeling Tool for Performance and Process Simulation

NOTICE OF DISCLAIMER

Q+ and the COMPASS tool are products of AT&T.
Bellcore does not provide comparative analysis or
evaluation of products or vendors. Any mention of
products or vendors in this document is done where
necessary for the sake of scientific accuracy and
precision, or for background information to a point of
technology analysis, or to provide an example of a
technology for illustrative purposes, and should not be
construed as either positive or negative commentary on
that product or that vendor. Neither the inclusion of a
product or a vendor in this document, nor the omission
of a product or a vendor, should be interpreted as
indicating a position or opinion of that product or
vendor on the part of the authors or of Bellcore.

Liability to anyone arising out of use or reliance upon
any information set forth herein is expressly
disclaimed, and no representations or warranties,
expressed or implied, are made with respect to the
accuracy or utility of any information set forth herein.

AUTHOR BIOGRAPHIES

Dennis S. Mok is a Member of Technical Staff at Bell
Communications Research (Bellcore), Performance
Management Department. He received his M. Eng. and
Ph. D. in Industrial Engineering from Iowa State
University. He was on the Computer Science faculty at
Western Illinois University. His research interests are
computer systems performance analysis, business
processes and operations modeling and simulation, and
complex process re-engineering. Dennis is a member of
the editorial board of the International Journal in
Computer Simulation.

Cynthia A. Funka-Lea is a Member of the Technical
Staff at AT&T Bell Laboratories, Performance Analysis
Department. Her research interests include simulation,
object-oriented systems, and computer networks.
Cynthia received a BS in computer science, BS in
mathematics, and an MS in computer science from Penn
State University. She is a member of the IEEE
Computer Society and the ACM.

293

