Proceedings of the 1993 Winter Simulation Conference
G.W. Evans, M. Mollaghasemi, E.C. Russell, W.E. Biles (eds.)

SLX, THE SUCCESSOR TO GPSS/H

James O. Henriksen
Wolverine Software Corporation
4115 Annandale Road
Annandale, VA 22003-2500

ABSTRACT

This paper describes SLX, Wolverine Software's "next
generation” successor to GPSS/H. SLX retains
fundamental concepts of GPSS/H, such as its
Transaction-flow world-view, Facilities, Queues, and
Storages. However, SLX replaces some GPSS/H
features entirely, and it replaces collections of disparate
GPSS/H features with simpler, more general features.

SLX is much more than a new implementation of
GPSS/H. SLX is a layered modeling system in which
GPSS/H comprises but one of the layers. SLX provides
a foundation under GPSS/H and powerful extensibility
mechanisms which facilitate the development of higher
level, application-specific modeling tools.

The sections which follow provide an overview of
SLX, and describe the goals of the development of SLX,
the architecture of SLX, the SLX environment, concepts
retained from GPSS/H, features modeled after other
languages, and the extensibility mechanisms of SLX.
The relationship of SLX to other modeling tools is
discussed in Section 8, entitled "Can Do, Can't Do,
Must Do, Should Do, Shouldn't Do."

Since SLX is still under development as of this
writing, this paper emphasizes design philosophies and
principles, rather than concrete, syntactically accurate
examples. The presentation of this paper will include a
"live" demonstration.

1 OVERVIEW

SLX is a layered modeling system; its layers are shown
in Figure 1.

Level 4: Packages for the Non-Simulationist
Level 3: Application-Specific Packages
Level 2: Next-Generation GPSS/H

Level 1: Simulation / Statistical Primitives
Level 0: Kemel (Largely Modeled after C)

Figure 1: The Layers Comprising SLX

Level 0, the SLX kemnel, is a language loosely modeled
after the C language, and a run-time support library.

263

The kernel language is compiled directly into machine
instructions for the Intel 386/486/Pentium chip family.
The kernel provides support for a number of primitives
required for simulation. For example, simulation "wait
until” and statistics collection features rely on kernel
support for detecting when changes are made to a
monitored variable.

Level 1 consists of data structures, subroutines,
operators, and macros, all written in SLX. These
features provide simulation support for higher levels of
SLX. An SLX user can augment level 1 by adding
similar capabilities of his or her own design.

Level 2 is the "new" GPSS/H. It retains many of
the basic concepts of GPSS/H, but implements them in
a more general way. The computational portions of
GPSS/H (Savevalues, Matrix Savevalues,
Ampervariables, etc.) have been supplanted by level 0
and level 1 SLX capabilities.

Level 3 is the level at which application-specific
packages will be developed, e.g., manufacturing, health
care, telecommunications. Wolverine Software will
develop some of these packages, but we anticipate that
others will be developed by third parties.

Level 4 is the level at which very high level
packages will be developed for use by non-
simulationists. These packages will feature graphically-
based, highly interactive front ends.

SLX was designed to capture the strengths of
GPSS/H. The basic concepts retained from GPSS/H are
discussed in Section 4, below. While SLX captures the
strengths of GPSS/H, its layered approach and
extensibility mechanisms provide it with a stronger
foundation and greater adaptability to end-user
applications. Users are encouraged to use the highest
layers of SLX, since they are the most powerful.
However, when a given layer does not contain a required
feature, users have recourse to lower-level mechanisms.
For example, if a user wishes to add a new statement to
the GPSS/H-level of SLX, (s)he has access to the same
mechanisms we used to implement the built-in
statements. This is a hallmark of SLX's open
architecture.

Perhaps the greatest strength of SLX lies in its
novel extensibility mechanisms for getting from layer to
layer. (Just having layers is no good if it's too difficult

264 Henriksen

to get from layer to layer.) While some of these
mechanisms are borrowed from the object-oriented
paradigm (OOP), many are new developments.
Extensibility mechanisms are discussed in further detail
in Section 7, below.

2 GOALS IN THE DEVELOPMENT OF SLX

The most important goal in the development of SLX
was to retain the strengths of GPSS/H. Our
motivations for doing so were threefold. First, we really
believed in the strengths of GPSS/H. GPSS/H has been
in use for over fifteen years, its longevity attributable to
ease-of-use, ease-of-learning, power, flexibility, and
superior performance. Second, we wanted to provide an
evolutionary, rather than revolutionary, growth path for
existing users of GPSS/H. Finally, we had over thirty
man-years' experience implementing GPSS/H in a group
of senior developers, and even more experience in dealing
with users of GPSS/H. Retaining the strengths of
GPSS/H allowed us to capitalize on our strengths as
language developers.

A second goal in the development of SLX was to
remove outdated GPSS/H features and, wherever
possible, to replace collections of disparate features with
simpler, more general features. For example, in
GPSS/H, there are at least eight different forms of the
assignment statement: ASSIGN, SAVEVALUE,
MSAVEVALUE, LOGIC, LET, BLET, INDEX, and
INITIAL. Each of these statements has its own syntax
and semantics. In some cases, the syntax and semantics
are peculiar and non-obvious. SLX replaces these
statements with assignment statements and variable
initialization whose syntax is modeled after the C
language.

A third goal in the development of SLX was to
generalize the implementation of basic GPSS/H
concepts. For example, GPSS/H provides a static pool
of single-server entities called Facilities. The size of
this pool can be changed by a modeler, and individual
members of the pool can be referenced either numerically
(Facility number 1...N) or by means of symbolic names
which have user- or compiler-assigned numeric values.
In SLX, it is possible to have arrays of Facilities,
dynamically created Facilities, pointers to Facilities, sets
of Facilities, and objects which contain Facilities.
While the basic concepts of what a Facility is and how it
operates remain unchanged, Facilities can be used in
much more general ways.

A fourth goal in the development of SLX was to
eliminate, wherever possible, pitfalls encountered by
users of GPSS/H. The most important pitfall we
eliminated was the use of numeric references to GPSS/H
entities. For example, suppose that a model of a
computer system used Facilities 1...10 to model disks
and Facilities 11-30 to model communications ports. If
the GPSS/H model erroneously attempted to access disk
number 11, which doesn't exist in the system being

modeled, no run-time error would occur, because Facility
number 11 does exist. To make matters worse, the
actions intended for a disk would be performed on a
communications port, since that's what Facility number
11 represents. In SLX there is no fixed pool of
Facilities. Therefore, an individual Facility cannot be
identified using only a number. SLX does, however,
provide for arrays of Facilities, as described above, so
arrays named "disk[1...10]" and "port[1...20]" could be
used. An attempt to access disk[11] would result in a
run-time error (array subscript out-of-bounds). Thus in
this SLX example, a modeling/programming error maps
directly into an automatically diagnosed programming
error.

A fifth goal in the development of SLX was to
build a platform that would be ideally suited for
developing high-level, application-specific packages for
use by non-simulationists. In recent years, we have had
considerable commercial success providing GPSS/H and
its companion animation product, Proof Animation, as
unseen "engines" which are used to implement high-
level packages. (See Smith and Crain (1993) and Earle
and Henriksen (1993).) SLX contains a number of
extensibility mechanisms, described below, which allow
a package developer to adapt SLX to his or her
applications. We wanted SLX to be a highly malleable
tool.

A sixth goal in the development of SLX was to
keep the size of SLX itself down to a minimum. Over
the years, we had extended GPSS/H to a point where it
contained over 140 types of statements. This was
simply too big. Our experience with GPSS/H provided
a powerful motivation to carefully evaluate the utility
and generality of each feature under consideration for
inclusion in SLX. Some featurcs were rejected on the
basis that, although they could be implemented, they
could not be easily explained or learned. Ill-conceived
features benefit neither the users nor the developers of a
software package: users become frustrated when they
can't understand complex features, and vendors become
frustrated when they are overwhelmed by endless "tech
support” calls .

3 THE SLX ENVIRONMENT

SLX operates in a highly interactive, window-based
environment. The initial version of SLX employs the
user interface that was developed for Proof Animation.
We selected the Proof interface for three reasons: (1) its
use provides compatibility across the products offered by
our company; (2) it provides a stable environment which
we control, and (3) as of this writing, the world of 32-bit
graphical user interfaces lies in turmoil. The SLX
environment features a fully integrated editor, compiler,
and run-time supervisor/debugger. The suite of
integrated tools greatly facilitates model development.
For example, test compilations of models can be
performed from within the editor. On "typical"

SLX, The Successor to GPSS/H 265

machines, "typical" models can be compiled at rates
exceeding 1,000 statements per second. Compilation
errors are highlighted in the source text, and tools are
provided for quickly examining any errors that have been
identified. The SLX debugger improves on the GPSS/H
debugger by providing "watch windows" (for monitoring
variables through the course of model execution) and
other advanced capabilities.

4 CONCEPTS RETAINED FROM GPSS/H

The most important concepts retained from GPSS/H are
its transaction-flow world-view and its basic entity
classes (Schriber (1991); Banks, Carson, and Sy (1989);
Henriksen and Crain (1989)). While a discussion of the
transaction-flow world-view is beyond the scope of this
paper, we will briefly state that this world-view has
proven to be extremely flexible and powerful, and easily
learned. Furthermore, departure from the world-view of
GPSS/H would seriously diminish the viability of SLX
as an evolutionary growth path for users of GPSS/H.

A second important concept retained from GPSS/H
is 1ts total run-time error checking and complete
reproducibility of run-to-run results. Although this
concept is often taken for granted, its benefits are well
worth the extreme difficulties it presents to the language
implementor. In a simulation, events take place in
complex (usually random) circumstances. Thus it is
critical that run-time errors, such as referencing beyond
the end of an array, be unfailingly trapped. Furthermore,
it is important that all variables be initialized to a
known state. In a complex simulation, one expects to
have unanticipated events. (That's a major reason for
simulating; it's better to have such events occur in a
model than in a real system.) Determining the cause of
an unexpected event can be quite difficult. Allowing
undetected programming errors to muddy the waters is
totally unacceptable.

The insistence on total run-time error checking
imposed great implementation difficulties for some SLX
features. For example, SLX includes pointer variables,
which were modeled after (in restricted form) those of the
C language. In C, no automatic checks are made on the
validity of pointer variables. Two of the most frequent
errors made in C programs are (1) using pointers which
have been assigned a NULL (zero) value, and (2) using
pointers which towhich no values have been assigned.
Such errors can lead to results which are unpredictable, if
not disastrous. While the absence of error checking
allows C programs to run very efficiently, it represents a
rich source of pitfalls. Undetected invalid pointer
references are totally unacceptable in a simulation.
Hence, SLX's pointers are completely validated.

A third major concept retained from GPSS/H, and
improved upon by SLX, is highly interactive debugging
and execution. Many GPSS/H debugging capabilities
have been retained, e.g., the ability to step through
source code one or more lines at a time, the ability to set

breakpoints, and the ability to interactively and
selectively display critical model data. Integrating the
SLX editor, compiler, and run-time supervisor have
enabled us to improve upon the debugging capabilities
of GPSS/H.

5 CONCEPTS MODELED AFTER OTHER
LANGUAGES

A great deal of the syntax of SLX is modeled after the C
language. For example, the assignment, if, else, for,
while, do, switch, continue, and break statements of
SLX are modeled directly after C, with a only a handful
of restrictions imposed. Similarly, the syntax for
variable names, array references, pointer variables and
references, and object (struct) definitions is modeled after
C. We had three reasons for choosing C as a model: (1)
we felt it was better to base SLX on an existing
language, rather than developing a totally new language
no one knew; (2) we wanted to use a language with a
high power-to-size ratio (a hallmark of C) ; and (3) we
had a great deal of experience using C, and we
appreciated both its strengths and its weaknesses.

While C was a good model for syntax, some of the
semantics of C were deemed inappropriate for
simulation. C was designed to provide systems
programmers easy access o low-level, hardware-based
constructs. For example, in C, pointer variables can
point to atomic data elements, such as integers and
characters, located virtually anywhere in machine
memory. In SLX, the requirement for total run-time
validation of pointers led us to disallow the use of
pointers to access arbitrary atomic data types. In SLX,
pointers can only point to objects, and, as discussed in
Section 4, each such reference is validated.

Some features of C were deemed inferior to those of
GPSS/H. For example, in C, character strings are
treated as arrays of characters (as is the case in many
languages), while GPSS/H contains string data types and
true string operations, such as string assignment,
concatenation, comparison, and substring extraction.
Therefore, SLX excludes C-style character variables and
includes an cxtended version of the GPSS/H string
capabilitics.

SLX includes "scts” and a number of set operations
similar to those of Simscript (Russell (1983)). The
implementation of sets in SLX differs from that of
Simscript in one extremely important respect. In
Simscript, the user has direct access to all the data
defined by the compiler to implement any given set.
Thus, users can directly manipulate the underlying data
structures which implement a set. It is therefore entirely
possible, through user error, to destroy the integrity of a
set. In Simscript, the simulation event list is
implemented as a set. Destroying the integrity of the
event list can wreak absolute havoc. In SLX, basic set
operations are implemented in the SLX kernel (level
zero), so it is impossible for a user to damage a set.

266 Henriksen

Let us illustrate the utility of several of the concepts
modeled after other languages. In GPSS/H, dynamic
objects which flow through a system are modeled using
Transactions. For example, in a model of a highway
system, Transactions could be used to represent cars,
trucks, buses, and other vehicles. In GPSS/H, all user-
defined properties of Transactions are numeric values,
called Parameters. All Transactions in a model have the
same general format and differ only in their numbers and
kinds of Parameters. (1-byte, 2-byte, and 4-byte integer,
and 8-byte floating point Parameters are provided.)
While this format is quite flexible, it does not allow for
non-numeric properties. In SLX, a user must define
each Transaction type as an SLX object. In SLX,
objects can have a wide range of properties, including
among others, character string values, which are very
useful for naming entities. The additional step of having
to define each Transaction type in SLX forces a
discipline on the user. In GPSS/H, this extra step is not
required; i.e., Transactions and Parameters can simply be
used without being explicitly defined. While this may
be easier in the short term, our experience has such
undisciplined use to be a rich source of pitfalls.

In many models, it is useful for Transactions to be
able to examine the properties of other Transactions.
For example, in a model of a highway system, it might
be necessary for a Transaction representing a car to be
able to access information about other, nearby cars. In
GPSS/H, Transactions can be placed in Groups or User
Chains, and several statements which manipulate Groups
and User Chains afford a Transaction limited access to
other Transactions. The only access a Transaction has to
other Transactions is through these statements, and the
use of these statements to accomplish such access
imposes some difficulties on a modeler. In SLX,
Transactions are objects, and objects can be accessed by
means of pointer variables. If a Transaction has access
to a pointer variable which points to another
Transaction, the first Transaction, by definition, has
access to all of the properties of the second (other than
those which are "private.")

If we were to extend GPSS/H to improve the ability
of a Transaction to access another Transaction's
Parameters, we would have to add new statements or
SNAs (GPSS/H built-in functions) to the language.
This would add to the size and complexity of a language
which is already quite large, and the new features would
be unique to GPSS/H. The SLX approach uses more
general concepts, and these concepts are available in
other programming languages. Thus the value of prior
experience with other languages is likelier to be much
greater with SLX than with GPSS/H.

6 WHY NOT OOP?
Although there are many languages which claim to be

object-oriented, the most popular by far is C++. In the
discussion which follows, we will use C++ as a

representative of these languages. Our comments are
confined to programming technology and do not
neccessarily fully apply to the larger subject of object-
oriented design (OOD) methodology. (We have many
more reservations about OOP than OOD.)

Although some of the ideas in SLX were modeled
after Object-Oriented Programming (OOP), SLX is not
by any stretch of the imagination truly "object-oriented."
One might ask why we didn't use more of the OOP
technology. The answer lies in our perceptions of the
GPSS/H user community. In most applications,
GPSS/H is used by persons whose major professional
focus is neither programming nor computer science. In
addition, most applications are undertaken by very small
groups of people. Most often, simulation projects are
carried out by single individuals (the so-called "Lone
Ranger" paradigm). In some cases, these individuals are
doing their first simulation, so ease-of-learning is
extremely important. Consideration of these factors led
us to reject the OOP approach (as embodied by
languages such as C++) for the following reasons:

Languages such as C++ are extremely complex and
arcane. We felt that the benefits to be gained from OOP
were outweighed by an unacceptable increase in
complexity and concomitant decrease in ease-of-learning.
The greatest advocates of OOP, computer scientists and
very large organizations, have little in common with our
users.

Languages such as C++ provide direct access to
primitives such as pointers, for which no straightforward
support is available for run-time validation. One could
argue that simulation primitives should be encapsulated
in C++ classes which do provide appropriate protections;
however, if users have access to lower-level primitives,
sooner or later they will exploit this access and place the
integrity of the simulation run-time environment at risk.

One of the motivations behind OOP is to provide a
better way to tackle very large projects. Given that the
typical simulation project is done by a single individual,
a big-project mentality may represent overkill. Despite
its immense popularity, the OOP approach remains to
be demonstrated as the great panacea of the 1990s.

Our final reason for not developing an extremely
OOP-like language was that reinventing the wheel of
OOP made no sense. Any attempt on our part to do so
would have to compete with the products of well-
established, large purveyors of OOP technology.

7 EXTENSIBILITY MECHANISMS

Extensibility mechanisms provide the means by which
higher level SLX capabilities are constructed from lower
level capabilities. The objective for using extensibility
mechanisms is to achieve more abstract representations
of data and operations on data. For example, in a model
of a telecommunications system, it might be very
convenient to have SEND and RECEIVE verbs. These
verbs would make it easier to describe message flow ata

SLX, The Successor to GPSS/H 267

high level. The implementation details which define the
SEND and RECEIVE verbs would be written at a lower
level and (ideally) hidden from their high-level use. (The
principle of information-hiding is a key component of
OOP. We agree with the appropriate use of this
principle. The difference between OOP disciples and us
is that we don't make a big deal out of it.)

Virtually all programming languages contain
procedural abstraction — the ability to define many
layers of procedures. (In some languages, procedures are
called subroutines or functions.) Procedures are inferior
to other abstraction mechanisms in several ways. First,
the readability of procedure calls is often inferior to that
of in-line operators. For example "a = b + ¢" is more
readable than "a = add(b, ¢)" and much more readable than
“"assign(a, add(b, c))". Second, in most languages,
procedures have an invariant sequence of arguments,
making it difficult to apply certain operations to
arbitrary collections of arguments. For example, in C,
the min function takes the minimum value of two
integers. Thus, "min(i, j)" is the minimum of i and j.
If one wants to take the minimum if three variables, i, j,
and k, one must write "min(i, min(j, k))". In ANSI-
standard C, it is possible to write procedures with a
variable number of arguments (the "varargs” feature.) In
our experience, procedures with a variable number of
arguments have proven to be a rich source of pitfalls.

SLX contains a number of mechanisms for
procedural abstraction. A user can define new operators
which use an infix notation. For example, a SWAP
operator could be defined to swap the values of two
variables. "x SWAP y;" could replace the familiar
"temp = x; X = y; y = temp;” 3-statement sequence. A
user can also define prefix operators or even statement
operators. For example, a new statement called SWAP
could be defined, so that "SWAP x,y;" would be
possible. Finally, SLX operators can be defined to
operate on lists of arguments. These operators look very
much like in-line function calls or C source macros, but
offer a number of convenient extensions. For example a
list operator can be defined to operate on a list with an
unspecified number of items. Thus "min(i, j, k)" is
possible in SLX. The definition of the "min" operator
would contain a compile-time loop, in which the
arguments of the min function would be examined in
succession. Allowing a variable number of operands in
list operators makes up, at least in part, for disallowing
a variable number of arguments for procedures. The key
difference between the two approaches is that the error-
checking resources of the SLX compiler allow compile-
time validation of variable-length argument lists, and the
absence of variable-length procedure argument lists
greatly stabilizes procedure calling mechanisms.

The second form of extensibility offered by SLX is
data abstraction. In SLX, the user can define new data
types (in terms of old ones) and new data structures. The
data abstraction features of SLX are much closer to C
than to C++. In OOP, the distinction between

procedural abstraction and data abstraction is
intentionally blurred. The idea is that the user of a
feature needn't know how a feature is implemented; what
is needed is a clear description of the interface for using
the feature. The interface specification is a "contract”
between the user and the developer of the feature. In
SLX, in part because the developer and the user are often
the same individual, a traditional (pre-OOP) distinction
is made between data and procedural abstraction. This
decision on our part has many consequences. As one
small example, consider the notation used for invoking a
parameterless procedure. In SLX, an empty parameter
list must be used, e.g. "myproc()". OOP advocates
would argue against the required use of parentheses; they
would believe that whether "myproc" is a stored variable
or a computational procedure is immaterial to its user.
SLX favors a WYSIWYG (what you see is what you
get) approach.

8 CAN DO, CAN'T DO, MUST DO,
SHOULD DO, SHOULDN'T DO

The value of any software tool is measured by what one
can and can't do with it, what one must do to use it, and
what one should or should not do with it. Evaluation of
these measures is highly subjective. Consider, for
example, comparing the utility of a language like
GPSS/H to the utility of a high-level, application-
specific software package. (Smith and Crain (1993)
provide some interesting perspectives on this issue.) If a
given application can be handled in its entirety by an
application-specific package, and the application-specific
package is available at a reasonable cost, the application-
specific package is almost certainly the tool of choice.
However, one must consider very carefully the
possibility of encountering the "90 percent syndrome."
The 90 percent syndrome occurs when a software
package allows you to accomplish fairly rapidly 90% of
what you have set out to do, but when you reach the
90% point, you become aware of limitations which
severely impair your ability to accomplish the remaining
10% of your project. If you use a general-purpose
package, accomplishing the first 90% of a may take
longer than using an application-specific package,
assuming the availability of such a package. However,
if the general-purpose tool enables you to accomplish
100% of the task at hand, and the application-specific
package does not, the general-purpose package is
superior. The "overhead" of failure is infinite.

The layered architecture of SLX casts the "can do -
can't do" question in a somewhat different light. With
SLX, the operative rule is to use the highest levels as
much as possible. For example, if an SLX-based,
application specific package exists for the problem you
are dealing with, you should by all means use the
package. However, if you find that the package has
some shortcomings when you reach the 90% point of
project completion, you have recourse to lower levels of

268 Henriksen

SLX. Ulumately, you have access all the way down to
the SLX kernel. At each level, SLX provides error
detection which guarantees the integrity of fundamental
data structures.

There are other simulation software systems which
offer a layered architecture. For example, in some
languages, a user can write C or Fortran subroutines to
augment the capabilities of the language. Unfortunately,
the use of C or Fortran entails plunging into a world
plagued by an overabundance of complexity and a lack of
protections against damaging fundamental data
structures. The SLX kernel provides a totally secure,
powerful, low-level implementation language. With rare
exception, there is no need to go below the level of the
SLX kemel. Furthermore, the extensibility mechanisms
of SLX facilitate moving from layer to layer.

A language can pass the "can do" test but fail the
"must do" test. The "must do" test identifies capabilities
not provided by the language, which a user must
program for himself or herself. Simula/67 (Birtwistle,
Dahl, Myhrhaug, and Nygaard (1973)) provides a classic
example. Simula was (and is) one of the great
simulation languages, and it holds the distinction of
being the grandfather of all OOP languages.
Unfortunately, Simula has achieved limited success in
the United States. This is due in part to the fact that
Simula is an Algol-based language, and Algol has
achieved limited success in the U.S. However, another
significant reason for its limited success is attributable
to the "must do" criterion. Proponents of Simula
emphasize all the things one can do with the language.
Detractors point out all the things one must do in order
to use the language. For example, the original language
provided no capabilities for automatically generating
simulation reports. Reports had to be built by the end
user, "from scratch," albeit in Simula. By comparison,
even the earliest versions of GPSS had automatically-
generated reports. In SLX, we have tried to provide a
reasonable collection of modeling tools, so that what
you can do with SLX is unlikely to be overshadowed by
what you must do.

Finally, one must consider the "should do -
shouldn't do” comparison. Although SLX has a very
powerful, general-purpose kemel, clearly it is heavily
influenced by the fact that its purpose is to be used for
building discrete event simulation models. SLX is very
good for applications which fall within its scope. The
scope of applicability of SLX is considerably broader
than that of GPSS/H.

9 SUMMARY

SLX is a new, layered system for building discrete event
simulation models. Its middle layers are heavily
influenced by GPSS/H, and its lower layers are heavily
influenced by the C language. The most important
features of SLX are its extensibility mechanisms, which
facilitate the construction of higher layers from

components contained in lower layers. Users of SLX are
encouraged to use the highest layers suitable to their
application. However, if they reach a point where an
upper layer lacks a needed capability, they have recourse,
through use of components contained in lower layers.
The foundation of SLX is a C-like, powerful kernel
language which enforces strict compile-time and run-
time validation

REFERENCES

Banks, J., Carson, J. S. II, and Sy, J. N., 1989. Getting
Started with GPSS/H. Annandale, Virginia:
Wolverine Software Corporation

Birtwistle, G., Dahl, O., Myrhaug, B., and Nygaard, K.,
1973. Simula Begin. New York: Petrocelli/
Charter

Henriksen, J. O., and Crain, R. C., 1989. GPSS/H
Reference Manual. Third Edition. Annandale,
Virginia: Wolverine Software Corporation

Henriksen, J.O. and N.J. Earle. 1993. Proof
Animation: Better Animation for Your
Simulation. In Proceedings of the 1993 Winter
Simulation Conference, eds. Evans, G.,
Mollaghasimi, M. Russell, E., and Biles, W.
Institute of Electrical and Electronics Engineers,
Piscataway, New Jersey.

Russell, E. C., 1983. Building Simulation Models with
Simscript I1.5. Los Angeles: CACI, Inc.-Federal.

Schriber, T. J., 1991. An Introduction to Simulation
Using GPSS/H. New York: John Wiley & Sons.

Smith, D. S. and Crain, R. C., 1993. Industrial Strength
Simulation Using GPSS/H. In Proceedings of
the 1993 Winter Simulation Conference, eds.
Evans, G., Mollaghasimi, M. Russell, E., and
Biles, W. Institute of Electrical and Electronics
Engineers, Piscataway, New Jersey.

AUTHOR BIOGRAPHY

James O. Henriksen is the president of Wolverine
Software Corporation, located in Annandale, Virginia (a
suburb of Washington, D.C.) He is a frequent
contributor to the literature on simulation and has
presented many papers at the Winter Simulation
Conference. He served as the Business Chair of the
1981 Winter Simulation Conference and as the General
Chair of the 1986 Winter Simulation Conference, and he
has served on the Board of Directors of the conference as
the ACM representative. He was a keynote speaker at
the 1992 twenty-fifth anniversary Winter Simulation
Conference.

