Proceedings of the 1993 Winter Simulation Conference
G.W. Evans, M. Mollaghasemi, E.C. Russell, W.E. Biles (eds.)

EXTEND: A LIBRARY-BASED, HIERARCHICAL, MULTI-DOMAIN MODELING SYSTEM

Bob Diamond

Imagine That, Inc.
6830 Via Del Oro, Suite 230
San Jose, CA 95119 USA

ABSTRACT

Extend™ is a graphical, interactive, general purpose
simulation program for both discrete event and continuous
modeling. Extend incorporates the capabilities of both a
data-driven simulator and a simulation language. Because it
is both object-oriented and extensible, Extend offers a
powerful yet easy-to-use simulation environment for
modeling in any field or discipline.

This paper presents an overview of Extend and discusses its
use for both continuous and discrete event modeling.

1 INTRODUCTION

Simulation software has traditionally been both expensive
and difficult to learn. This has resulted in limited
distribution and even more limited usage. As simulation
consultant Andrew Siprelle of Siprelle Associates notes:
“In my experience with other industrial engineers, I have
found that very few actually use simulation. Those who do,
use it rarely. Of the industrial engineers I knew at Alcoa,
who are all graduates of Georgia Tech, University of
Tennessee, Virginia Tech or Purdue, only 1 or 2 actually
had the fortitude to write one or two models. I can think of
perhaps 5 or 6 different occasions upon which an engineer
had to run a model. These models were predominantly
written in SLAM or SIMAN, and all were developed,
without an exception I can think of, by consultants.”

Historically, simulation programs fall into two distinct
classes: languages and data-driven simulators. Simulation
packages such as SIMAN and SLAM tend to be general
purpose as to what they can simulate, but are specialized
languages. Simulators such as ProModel and Witness
allow users to build models using graphical elements
which are pre-determined by the package (Law 1992).
Simulation languages, while providing flexibility, have
consistently proven to be a barrier to usage due to the high
level of learning and implementation effort required
(Thomasma 1988). On the other hand, simulators, while
easier to use than a language, are typically domain-
restricted, most often in the field of manufacturing (Fegan
1991). Those that are not domain-restricted are usually
specific to discrete event or continuous modeling and are

240

therefore not suited for cross-functional use. This
limitation of simulators also restricts the acceptance of
simulation, since within any company each department
using simulation would have to learn to use a completely
different package.

Recent attempts to overcome these limitations have
resulted in hybrid products which combine the graphical
element interface of the simulator with a simulation
language (Pegden 1992). However, often the hybrid product
is the result of enhancements which have been added to an
existing architecture not originally designed to support
them. In other cases, the existing architecture might not be
robust enough for today’s requirements. For example, the
result might be a graphical interface on top of a language,
but not fully integrated with it so the user has to program
in the language and then build a separate interface. Or the
graphical interface might be integrated with the language,
but the language is limited in scope such that there is no
ability to add primitives or higher level elements without
going to an outside compiler.

This paper presents the Extend simulation application for
personal computers, developed by Imagine That, Inc.
Extend was created to provide a complete simulation
environment, combining the ease-of-use of a simulator, the
power of a built-in C-like language, and a library-based
authoring environment for extensibility unrestricted by
domain.

2 BACKGROUND

The author’s own experiences and frustrations developing
and maintaining simulation models written in FORTRAN
for NASA’s Project Apollo provided roots for the
development and evolution of a modular simulation system
that would integrate a graphical interface with a library of
object-oriented elements (blocks) and a full-featured
underlying language.

Extend version 1 (1988) was based on the concept of a
general purpose simulation engine for both continuous and
discrete event modeling. It featured an integrated graphical
interface of object-oriented blocks and a built-in authoring
environment for user-extensibility. This provided a medium

Extend: A Library-Based, Hierarchical, Multi-Domain Modeling System 241

in which users could easily build models in any discipline
as well as create their own libraries of blocks which did not
have any fixed domain limitations. This has led to an ever
enlarging base of libraries in a wide variety of fields
(electronic engineering, paper production, biology, control
systems engineering, manufacturing and industrial

operations, chemistry, business process reengineering, and
so forth).

Extend version 2 (1992) supports advanced modeling
features such as unlimited hierarchy, real-time animation,
interactive controls and data, sensitivity analysis,
notebooks for model control and documentation, real time
plotting, inter-block messaging, and full connectivity with
other programs and the outside environment through
import/export, file and serial 1/0, and driver functions. To
accommodate non-C programming, Extend also supports
commands for calling external code resources written in
other languages.

Extend’s modularity provides re-usability as well as the
ability to focus on any domain. The integrated graphical
environment means that a modeler can use the model both
to do the work and to communicate the results. The
internal language means the user does not have to choose
between the limitation of the primitives and blocks that
come with the package and the aggravation of working
with an outside compiler.

3 EXTEND’S MODELING FRAMEWORK

The key to Extend is its library-based iconic-block
modeling concept. Extend allows the user to create models
from building blocks stored in libraries. Extend blocks
graphically represent their real-world counterparts and also
serve as the main method of entering and reporting model
parameters.

Blocks can be as simple as a single function or as complex
as many thousands of lines of code. Blocks contain the
behavior and user interface necessary to enter data,
automatically connect with the rest of the model, and
process data during a simulation run. As discussed in
section 7, blocks have an icon, a dialog, script, and
connectors. Icons can be customized to represent exactly
what is being modeled, for example an element, a person,
Or a process.

The Extend package includes several libraries of blocks for
general purpose continuous and discrete event modeling.
There are also libraries of blocks for domain-specific
modeling, such as for manufacturing and engineering.

Because Extend blocks are written using the same built-in
C compiler and dialog editor that Imagine That! uses to
develop its pre-built libraries, the user can modify a pre-
existing block and add detailed functionality to it. For

example, the user can add matrix fluid dynamics
calculations to an activity or have a block call an external
modem to send and receive data. Users can also create new
blocks with custom icons, dialogs, and scripted behavior
without having to go outside the Extend program.

3.1 Overview of the Model Structure

Extend models consist of a worksheet with blocks
connected together showing the flow of items or values.
Inputs and outputs are handled by the blocks on the
worksheet.

3.1.1 Message Sending Architecture Runs the
Simulation

Extend’s simulation engine uses an object-oriented
methodology to send messages to blocks. These messages
initialize the blocks, then run the simulation. Some of the
messages are:

» CHECKDATA - allows the block to check data
validity. Warns the user if data is not valid.

» STEPSIZE - allows the block to arbitrate a stepsize
between different blocks in continuous simulations.

» INITSIM - allows the block to initialize any variables
or arrays that are necessary for the simulation.

e SIMULATE - sent to all the blocks periodically
during a continuous simulation to recalculate their
results. Used to process events during a discrete event
simulation.

« ENDSIM - sent to all blocks at the end of a
simulation to dispose of unwanted data.

There are other messages which are sent when a user has
clicked on a button or typed in some new data. There are
also user defined messages which allow custom behavior
for each block, or for the model as a whole when a
particular block is present in the model. For example,
Discrete Event blocks pass messages back and forth with
interconnected blocks to show their status, item
availability, and capacity.

3.1.2 Method of Simulation Changed by Blocks

This architecture allows the blocks to choose the method of
simulation. For example, if blocks from the Discrete Event
library are present, the model uses a discrete event based
architecture (event queue) when it is run. Mixed mode
(discrete and continuous) simulation occurs when
continuous blocks from the Generic library are used with
discrete event blocks in the model. If no discrete event
blocks are present, the model works in continuous (time
advance) mode.

242 Diamond

The user can even define new libraries which change the
way simulations run by having blocks send messages to
other blocks, either through connections or globally using
an index. This also means that the independent variable
does not have to be time, but can be any desired variable.

3.2 Discrete Event Models

In Extend’s discrete event models, items change state only
as events occur (see section 3.2.1). It is the information
about model items (for example, their quantity and
condition) which represents the state of the model at any
time. Simulated time advances from one event to the next
and the amount of time between events is usually not
periodic.

Extend’s Discrete Event and Manufacturing libraries
contain general purpose discrete event blocks such as
statistical distribution generators, queues, delays, routing,
and batching, as well as domain-specific blocks such as
machines and conveyors.

3.2.1 Items and Events

An item is whatever is being processed in the model. Items
can be parts, people, data, or any other real-world entity.
An event is anything that occurs in a model, such as a
machine becoming available or a switch being turned on.

3.2.2 Attributes and Priorities

Auributes, priorities, and numeric values are used to make
items unique so they can be sorted, routed, and tracked
throughout the model. Attributes are characteristics of an
item, such as its quality, age, or size. Attributes can have
any name and can have real or integer values. Items can
also have a numeric value greater than one so that they are
effectively cloned. Items can be assigned many attributes, a
value, and a priority. These properties can then be used for
any model purpose, such as to determine cost, define
activity durations, or specify downtimes.

3.2.3 Batching and Unbatching

Batching, or combining of many unique items into one
new item for processing, is fully supported. For example,
to specify that a software package requires 5 disks and 2
manuals and 1 installation sheet, the user only needs to
enter the numbers 5, 2, and 1 in the Batch block.
Uniqueness of item attributes and priorities is maintained
even if an item is subsequently unbatched into its original
components. By selecting a checkbox, strategic resource
items (such as a scarce part or a manager) will not be called
upon until the other resources have arrived.

3.2.4 Pull or Push System

By default, discrete event blocks are set up as a “Pull”
system. For example, a queue holds items until an activity
(server) is free to pull items from the queue. Blocks also
contain a set of controls to override this and set up a push
system, if desired.

3.2.5 Values in Discrete Event Models

Most information about the items in a model is calculated
automatically by the blocks. For example, queue blocks
present the average wait, maximum queue length, and other
values related to the items which have passed through that
queue. Additional information, such as the total of all the
items which have passed through all the queues, can be
calculated explicitly, using blocks which add, subtract, etc.

3.3 Continuous Models

In continuous models (also called process or flow models),
values change based directly on changes in time (or based
on some other independent variable such as temperature).
These values represent the state of the model at any
particular time. As the model runs, simulated time
advances from one time step to the next. The time between
steps is usually periodic and model values usually change
at each step.

After the initialization messages and during the main part
of the simulation run, blocks are sent SIMULATE
messages (see 3.1.1) by the engine. This message is used
by each block 1o recalculate its output values based on its
input values.

Extend’s Generic and Engineering libraries contain general
purpose continuous blocks such as decisions,
accumulators, and transfer functions, as well as domain-
specific blocks such as a low pass filter or phase-locked
loop.

3.3.1 Adjusting Stepsize (dt)

Stepsize in continuous modeling can be determined
explicitly or by algorithm. Users can specify a stepsize or
delta time for the simulation by entering the number in a
dialog. Stepsize can also be automatically calculated and
arbitrated between different blocks using the STEPSIZE
message in a block’s code. This eliminates human error
when determining stepsize in models where delta time is
critical factor.

3.3.2 Passing Arrays or Matrices

Blocks can pass values, arrays of values, or arrays of arrays
(structures) from block to block or globally in the model.

Extend: A Library-Based, Hierarchical, Multi-Domain Modeling System 243

3.4 Mixed Mode Models

Extend supports mixed mode simulation since the discrete
event architecture does not care if the time variable is
changed by continuous blocks. Events occur at discrete
times, but extra events caused by continuous blocks are
ignored by discrete event blocks. Continuous blocks are
not affected by discrete events, as they treat them as part of
the time-advancing simulation process.

4 BUILDING AN EXTEND MODEL

The most important technique to remember when building
a model is to start small, test the model against known or
hypothetical data, refine the model, validate it, refine it
again, and so forth. Extend provides numerous tools for
testing and debugging models, from readout and timer
blocks that can be inserted at any point in the model, to the
ability to step through a simulation while the model
displays all messages.

The steps in building an Extend model are:

» Launch Extend (opens a model worksheet)

+ Open libraries of blocks

» Select blocks from a library

» Move the blocks to the desired position

» Connect the block’s connectors with the mouse
+ Add data to the block’s dialog, if required

- Determine what data you want to see graphed and
connect to one or more plotter blocks

+ Specify model timing in the Simulation Setup dialog
* Run the simulation

4.1 Opening a Library and Selecting a Block

Using the mouse, drag a block and place it on the model
worksheet.

" & File Edit Library Model Text Define Run Window

N T T T TTTTTTITTTT [e e

[EC= piscrete Event Lib =HEpntitled-1
V25227 1058k 7/19/93 | 33 PM

@ Activity, Delay (Attributes
Mon, Jul 19,1993 1:30 PM
o, Activity, Multiple

Mon, Jul 19, 1993 130 PM

ﬁ Activity, Service
= Mon, Jul 19,1993 1.30PM

Batch
=\ Mon, Jul 19,1993 1:30PM

Change Attribute
Mon, Jul 19,1993 1:31 PM

i Combine
Mon, Jul 19, 1993 1:31 PM

[SEE RS o E
Fig. 1 - Placing an Activity Block on the Model

The “Activity Delay” block on the model worksheet above
causes inputs to be delayed for the specified time, which
may be constant or random. It also gives information such
as number of items entering and leaving, utilization, etc.

Extend has extensive libraries of blocks for quick model
building. Users can also build their own custom blocks and
save them in libraries for reuse in other models.

4.2 Connecting the Blocks

Connecting blocks tells the model the path the data will
take. To connect blocks, use the mouse to drag a
connection line from the output of one block to the input
of another.

Waiting on
Line

v L :ll‘l:

People
Arriving

Bank

Yisit
Teller

Fig. 2 - Connecting the Activity Block to the Exit Block

Extend blocks have pre-defined input and output ports,
which are the small connector boxes on the perimeter of
the blocks. Pre-defined outputs mean Extend automaticaily
handles the flow of data, speeding up model building. The
model above shows a connection being made from the
output connector of the Activity block (which represents a
bank teller in this model) to the input connector of an Exit
block. Extend does not allow the user to connect
incompatible connectors.

4.3 Entering and Changing Data

There are many ways to get data into an Extend model.
Extend supports copy/paste and importing and exporting of
text files either at the beginning of the simulation or while
the simulation runs. However, the primary and most
intuitive place for entering model parameters is directly in
the dialog of the blocks.

To access a block’s dialog to enter data, double-click on the
block. For example, the Generator block (the block at the
left in the model in Figure 2) requires the user to enter the
desired arrival time distribution. Its dialog is seen in Figure
3.

244 Diamond

EIE=——————= 2] Generslor e——==—§|

Generates items according to a distribution ‘r‘*mv‘ ity
on the left or the General distribution.

\ R —

O a to b, uniform integer @ General @ Discrete

Q a to b, uniform real Q Stepped

Q Binomial Q Interpolated

O Constont General values = (Plot Table
O¢trlang Row | Time Probability J{]

Q Exponential 0.5,

QO HyperEuponential ; ;

QO LogNormal s

QO Normal 2501 T

QO Poisson . n

Q Weibul I

(1) Unused- ! Value of item (U) =

(2) Unused= 1 Cl

Nitems for N = Iﬂ_ [ONo item at time zero
Comments

|Special arrival time distribution for customers. J ol
(Felp)[GT EE

Fig. 3 - Specifying Custom Arrival Distribution of People

In this case, a table of arrival times and their associated
probabilities is entered as a General distribution. Users can
also select a distribution by clicking on a button and
entering the associated arguments, such as the mean or the
standard deviation.

Block dialogs can have radio buttons, parameters,
checkboxes, data tables, slide controls, meters, and
switches. Dialogs can also change appearance depending on
what button the user clicks. Extend includes a built-in
dialog editor, so users who build blocks can build custom
dialogs.

4.4 Connecting Plotters

Plotter blocks, which can be placed anywhere in the model,
provide real-time graphs as well as tabular data.

Bank Line Model "irckecF0F—a0Fr——o

=]
L i

Line Length Plotter
Teller
Utilization

Teller .g
Utilization

Fig. 4 - Adding Plotter to Plot Results over Time
By connecting a block’s output connector to a plotter, a
user can specify what gets plotted. For example, in the
model above, information about the length of the queue and
the utilization of the teller is plotted. Instead of connecting
by drawing a connection line, Extend’s named connection
feature is used. Named connections act as variables on the

model worksheet, eliminating the need to draw connection
lines from block to block for every connection.

4.5 Setting Simulation Times and Running the
Model

Models run for the length of time entered in the Simulation
Setup dialog. Multiple runs for sensitivity analysis or
Monte Carlo simulations may also be specified by
choosing a random seed for repeatable distributions. The
plot of the Bank Line model in Figure 4 shows the queue
length and utilization of the teller as the simulation runs:

EJ=—=———=—=—== [19] Plotter, Discrete Event =——— o]

Length

1} 120 240 360 480
Time 3
e Y2 Teller Ut —

Fig. 5 - Running the Model and Seeing Results

Users can interactively change model parameters during the
run to see any effects on intermediate results. They can also
set up automatic sensitivity analyses of a model parameter,
varying the value based on a range of values, a distribution,
or an ad hoc entry read from a file. Menu commands can be
used to turn animation and reporting features on and off as
the simulation runs, depending on the user’s requirements.

5 CAUSTIC MIXING - A CONTINUOUS
MODEL

Extend’s continuous modeling capabilities are illustrated by
a Caustic Mixing model. This models a tank used for
mixing water and sodium hydroxide. The tank level is
supposed to be maintained at 50% in spite of a changing
outflow. In addition, the tank has to regulate how much
water and how much sodium hydroxide (at SG 1.50) is
being drawn in so that the specific gravity of the solution
is maintained at about SG 1.12.

Extend: A Library-Based, Hierarchical, Multi-Domain Modeling System 245

EI=—————-—-—= water Level

Fig. 6 - Water Tank with PID Controller

The model above represents the water tank maintaining its
50% level with changing outflow. The water level sensor
output is processed using a PID controller with a fixed set
point. This amplifies the error signal (level-setpoint),
feeding it back to the water intake valve, thereby
controlling its on/off state.

=0

i

Add Caustic Miner E=—————=—=——10

At the top of this model is a series of blocks representing
the behavior of the sodium hydroxide input system. An
Equation block is used to monitor how much water and
sodium hydroxide (caustic solution) is going into the tank,
calculating the current density of the mixture. The output
of this calculation is then delayed and "low pass" filtered by
the Lag block. The PID controller represents the actual
caustic valve going into the tank, and adjusts the amount
of sodium hydroxide to maintain the desired specific
gravity. Both PID controllers have to be set to compensate
for the feedback loop characteristics, keeping the system
stable and responsive to changing output flows.

EJ=— [29] Level, Density vs Time

it
Tank Level Level, Density vs Time Density
St T T T T T 115

50
49
48
47

0 50
Time
- Tank Level Y2 Density e
l e,
1 !
Tim Tank Lev... Densit

[1] 48.4

0.1 48.4

02 48 4

(EwE
Fig. 8 - Plotting the Results of Transient

The output of the model shows the level of the mixture in
the tank and its density. Because this is a continuous
model, the time steps are equally spaced.

[EO=——— caustic Mising, Hierarchical _E_EQ

Fig. 9 - Making the Model Hierarchical

Figure 9 shows how hierarchical blocks can be used to
condense the model shown in Figure 7. A menu command
is used to select a group of blocks to make them one
hierarchical block. Hierarchical blocks facilitate
presentation and user navigation within the model.

6 PACKING LINE - A DISCRETE EVENT
MODEL

The discrete event Packing Line model (Fig. 10) represents
the packaging, movement, and transportation of consumer
products in response to orders from the central warehouse.

