Proceedings of the 1993 Winter Simulation Conference
G.W. Evans, M. Mollaghasemi, E.C. Russell, W.E. Biles (eds.)

INDUSTRIAL STRENGTH SIMULATION USING GPSS/H

Douglas S. Smith
Robert C. Crain

Wolverine Software Corporation
4115 Annandale Road
Annandale, Virginia 22003, U.S.A.

ABSTRACT

The GPSS/H language has a strong history of
successful use in both the commercial and the academic
environments. At present, the language continues to
evolve and to grow in use. In the sections that follow, a
general overview of the language and its process-
interaction world view is given. A discussion is
presented on graphical modeling, its advantages, and its
downfalls. GPSS/H's advanced and newly added
features are highlighted. The concept of a special-
purpose simulator is described, along with those
features of GPSS/H which make it ideal for use as a
simulator engine. Wolverine's family of run-time
product offerings, and how they can be used in
conjunction with a special-purpose simulator, are also
summarized.

1 INTRODUCTION

The success of GPSS/H stems from the superiority
of its original design and years of improvements and
enhancements. Even in its original implementation,
GPSS/H opened new horizons in flexibility and ease-of-
use to the simulation and modeling community. While
GPSS/H requires some programming-style effort, it
provides a natural modeling framework that can be
readily used by individuals who do not have extensive
programming experience.

Although a number of new simulation tools have
been introduced over the past decade, many of them are
designed for a limited set of applications. In contrast,
GPSS/H continues to be one of the most general,
flexible, and powerful simulation environments
currently available. It is equally well-suited for use in
academic environments, for modeling simple systems,
and for modeling large, complex systems. GPSS/H is
presently applied worldwide in modeling manu-
facturing, distribution, transportation, hospitals,

165

computers, telecommunications, and many other types
of queueing systems.

2 LANGUAGE OVERVIEW

GPSS/H is a discrete-event simulation language.
Models are conveniently developed in a text-based
environment, and subsequently compiled directly into
memory and executed. Exceptionally fast compilation
and execution encourage rapid prototyping and iterative
model development.

Two primary modeling approaches, or world-views,
are applied in simulation modeling. The event
scheduling approach, which is not used by GPSS/H,
requires the modeler to specify separate event routines
for every unique type of event that occurs in the system.
Models developed using this approach can become quite
cumbersome and unruly to manage. In contrast,
GPSS/H follows the far more intuitive and natural
process-interaction approach.

In the process-interaction world view, the modeler
specifies the sequence of events, separated by lapses in
time, which describes the manner in which “objects”
flow through a system. A GPSS/H model resembles the
structure of a flowchart of the system being modeled.
This intuitive modeling approach contributes greatly to
the ease and speed with which simulation models can be
built

After the model has been built, the process
representation is executed by GPSS/H, and the activities
of “objects” are automatically controlled and monitored.

2.1 GPSS/H Process Representation

An “object” in a GPSS/H model may be a patient, a
telephone call, or any other type of discrete entity. The
representations of these entities in GPSS/H are called
transactions. As the model executes, a single process
routine may contain many transactions flowing through

166 Smith and Crain

the model simultaneously—just as many “objects”
would be moving through the real-world system. In
addition, multiple transactions can execute GPSS/H
model statements at the same instant in time without
any special action required of the modeler. The
execution of a process-interaction simulation model is
thus akin to a multi-threaded program. This greatly
differs from the single-threaded, sequential execution of
most general programming languages.

The focus of many simulation projects is to study
the use of system resources such as people, machines,
conveyors, computers, physical space, and so on. In a
GPSS/H simulation model, transactions (“objects*)
compete for the use of these system resources: as
transactions flow through the process representation,
they automatically queue up when unable to gain
control of a necessary resource. The modcler does not
need to specify the transaction's waiting time or its
queueing behavior. Hence, the passage of time in a
GPSS/H model can be represented implicitly, as in the
case of a part waiting for a machine to be free, as well
as explicitly, as in the case of a part being processed by
a machine.

As is the case in most real-world systems, a
GPSS/H model may consist of multiple processes
operating simultaneously. Furthermore, each process
may in some way affect the other processes in the
system. For example, two parallel manufacturing
processes may converge to a single inspection point
where they are competing for a single resource—the
inspector. GPSS/H provides the capability for multiple
parallel processes to interact with each other
automatically. Transactions may be sent between
processes; they may control or share common resources;
or they may influence the (global) operation of all
processes.

3 Graphical Modeling Considerations

A recent trend in simulation technology is the
movement toward trying to model systems “visually”.
Often, this takes the form of placing icons on the
computer screen to represent system components, and
then specifying the operating characteristics of each
component by moving through a series of menus and
data forms. One inherent advantage of this approach is
that even novices can build simple modcls
quickly—although not necessarily accurately or
intelligently. Building models of complicated systems
requires more than simply placing icons on the scrcen.
A limited programming environment must be provided
to accurately model many non-trivial processes. For
example, a part routing based on a time-dependent math
equation cannot be represented visually. Consequently,

complex (real world) systems defined using the visual
approach often still require the modeler to create
substantial amounts of programming code.

3.1 Developing and Editing Models

Many graphical modeling tools force the user to
make the model definition fit within a rigid, sometimes
inflexible framework. The advantage of such a
framework is that it tends to steer even a beginning
modeler through the model-building process. The
disadvantage is that currently available frameworks are
rarely versatile enough to accurately model complicated
systems.

Additionally, large visual models can become quite
cumbersome to view, edit, and document. Large models
can be comprised of many “screens” of icons, many of
them with associated program code reachable only by
going through multiple levels of menus. Editing—or
even just browsing—these models forces the user to
navigate through a labyrinth of icons, menus, click-
buttons, data fields, and code segments.

3.2 What Defines an Easy-to-Use Simulation Tool?

The ease-of-use associated with a simulation tool
can mean—among other things—easy to learn, easy to
use repetitively, easy to use to build simple models, or
easy to use to build large, complex models. Tools that
claim “easy-to-use” often fall short when modeling
complex, real-world systems.

Visual simulation-modeling springs from attempts
to apply to simulation the recent trends in computer
interface design, and has been touted as a simulation
technology breakthrough. Although a graphical user
interface is well suited for many applications, it is not
always practical for developing simulation
models—especially in circumstances where program-
ming is necessary to define the operations of complex
processes.

There is a point at which a graphical environment
presents the user with more barriers than advantages.
For example, proponents of graphical modcling
techniques frequently claim shorter model development
time, but this is primarily because users of graphical
tools tend to build simpler models. As was discussed in
section 3.1, creating and editing complex models with
graphical tools often requires more time than creating
and editing such models in a text-based environment.

A tool's ease-of-use cannot be evaluated on the
presence or absence of a single characteristic. Whether
a tool is “easy-to-use” is determined by the combination
of general characteristics and specific features that are
frequently used in main-line model development. The

Industrial Strength Simulation Using GPSS/ H 167

selection of simulation software should be based on how
well it is suited to the detail and complexity of the type
of model to be developed.

4 ADVANCED FEATURES OF GPSS/H

Several unique characteristics make Wolverine's
GPSS/H an ideal choice for a general simulation
environment. GPSS/H's key feature is the conceptual
flexibility to model a wide range of different types of
systems: any system that can be described as a process
flow, with objects and resources acting upon each other
in the presence of randomness, can be modeled. This
may include people on a mass transit system, tasks in an
office environment, or data flow within a computer
network.

Programming flexibility is also provided within the
language: complex math formulas, expressions, and
constants can be used virtually anywhere in the model.
To promote model readability, elements and entities
may be specified by names instead of numbers. Basic
simulation output data, such as queueing and service
statistics, are automatically provided without any
additional programming.

GPSS/H also allows flexibility in the selection of
hardware platforms: GPSS/H runs on mainframes,
VAX/VMS computers, Sun SPARCstations, and
Personal Computers. On the PC, GPSS/H Professional
runs as a true 32-bit application under DOS, Windows,
or 0S/2, providing tremendous speed as well as model
size that is limited only by the available memory in the
computer. Running under Windows and OS/2, virtual
memory is also used, which allows model size to exceed
the physical memory installed in the machine.

4.1 GPSS/H File and Screen /O

The file and screen I/O built into GPSS/H provides
a variety of ways to get data into the model and to write
custom output files. GPSS/H can read directly from the
keyboard or from text files, and it can write directly to
the screen or to text files. The GETLIST statement and
the BGETLIST block read integer, character, and
double-precision floating-point data. Data files are free-
format (values on each line are simply separated by
blanks), and special actions may be specified for error
and end-of-file conditions.

Customized output is generated using the PUTPIC
statement and the BPUTPIC block. These use a very
intuitive “picture” type of format specification, which
follows the “what you see is what you get” convention.
Special provisions are also included to allow easily
formatted tabular output. Character strings can also be
manipulated using built-in capabilities.

4.2 Experiment Control

The results produced by a single run of a simulation
model provide only point estimates of random variables.
Experimental design is essential to accurately predict
the behavior of the model outputs. GPSS/H provides the
tools to build a complete experimental framework into
the model.

A complete run control language is available to
construct experiments and control model execution.
Experiments can be automated with DO loops, IF-
THEN-ELSE structures, and other branching
constructs. Statistics collection may be selectively
CLEARed, RESET or INITIALized during execution or
between subsequent runs. Like any other model data, all
of the experimental specifications and parameters can
be read in from an external data file or from the
keyboard.

Another issue important to modelers, particularly
when a model is largely complete and the modeler is
concentrating on validation and running experiments, is
the need to provide multiple independent streams of
random numbers for use in different parts of the model
(or in the same parts for different runs). The indexed
Lehmer random number generator provided in GPSS/H
was designed and implemented specifically to provide
intelligent control of the random number streams used
in the model. Modelers can simply and
straightforwardly control any number of streams and
guarantee that they will be independent (that they will
not be autocorrclated due to overlap). GPSS/H also
automatically detects any accidental overlap, providing
an extra measure of protection to users.

4.3 Debugging

The GPSS/H Interactive Debugger conveniently
provides for rapid model development and verification.
Several simple commands are provided by the debugger
to control a model's execution and examine its status.
Functions are provided to “step” through the model, to
set breakpoints and traps that interrupt model execution,
and to return to a previously saved state of the modecl.
Almost all data values are available to the user,
including local data, global data, transaction attributcs,
entity statistics, and array data values.

Usually the debugger is invoked at the beginning of a
run. However, the uscr can interrupt a long-running
model and use the debugging features to make sure that
everything is running correctly before resuming. In fact,
the debugger has almost no effect on execution speed,
many modelers use the debugger as their everyday run-
time environment for GPSS/H. The debugger also
supports a “windowing” mode on many of the machines

168 Smith and Crain

and operating systems it runs on. The windowing mode
displays source code, model status, and interactive user
input as the model runs.

5 NEW FEATURES OF GPSS/H

GPSS/H is continuously improving and evolving.
Several features have been added to the PC version over
the past year. Among the more significant additions are
the SYSCALL statement and the BSYSCALL block.
The operand specified in these commands is an
operating system command line. When the program
executes a SYSCALL statement or a BSYSCALL block,
GPSS/H shells out to the operating system to perform
the specified command. SYSCALL and BSYSCALL are
especially useful when using existing programs to
perform data analysis during model execution or
between simulation runs. The models can communicate
with the external programs through data files.

The ability to “shell out” to the host operating
system has also been implemented in the GPSS/H
Interactive Debugger. In order to use this feature, one
merely types a “$” followed by the operating system
command at the debugger command line prompt.

In rare circumstances, users need to access external
routines written in FORTRAN or C. This has prompted
Wolverine to add the CALL statement and the BCALL
block to the 32-bit PC version of GPSS/H. This
statement has existed in the mainframe and VAX
versions but there has been growing interest in adding
these capabilities to GPSS/H Professional. These
statements are used most frequently when a user has
code which existed prior to developing the model, or
when extraordinarily complex computations are called
for during model execution.

The INSERT compiler directive has been added to
“include” external text files into GPSS/H model code.
The INSERT directive acts much like the C-based
#include statement. At compilation, the INSERT
command line is effectively replaced by the text in the
file specified on the INSERT dircctive. This directive is
especially useful for developing and inserting libraries
of GPSS/H Macros into a model. It can also be
convenient to have GPSS/H functions reside in extcrnal
files which are generated by other programs.

Several other major enhancements are under active
development as of this writing, and will be discussed in
the tutorial session and covered in the handouts
available at that time. Persons unable to attend the
tutorial session may obtain copies of the handouts by
contacting Wolverine Software Corporation.

6 BUILDING A SIMULATOR USING GPSS/H

Earlier in this paper, the capabilities of visual-based
modeling tools were contrasted with those of languages.
Whether using a visual modeling tool or a language, the
modeler must still build from scratch a model that
represents the physical system of interest. Modeling
complex systems requires intimate knowledge of both
the simulation software and the system under study.
However, not everyone who can benefit from using
simulation has the time or the training necessary to
build simulation models.

As a result, a third type of modeling-tool, the
special-purpose simulator, has emerged as a means to
provide simulation capabilities to users with little or no
simulation modeling experience. Special-purpose
simulators are most commonly developed under
circumstances where: (1) a single model development
effort can benefit multiple users; or (2) modeling
expertise can only be obtained from indirect sources
such as external consultants. In these cases, an
experienced modeler develops the model, freeing the
end-user from learning modeling and simulation-
software skills.

The special-purpose simulator is a custom-built
analysis tool designed by an experienced simulation-
model builder. The heart of the special-purpose
simulator is a data-driven model of a specific system or
set of similar systems. The end user is provided with a
method to easily modify model parameters, define
experiments, run tests, and get results. This can be
accomplished by combining a data-entry front end, a
simulation engine, and an output browser. The
simulation engine runs a parameterized model which
accepts user-specified data at execution time. This
combination of tools brings the power of simulation
analysis into the hands of the non-simulationist.

6.1 Data-Entry Front End

The front end is the means by which the user of the
special-purpose simulator modifies the run parameters
without changing the underlying model. This may take
several forms, the most basic and rarely used of which
involves manually editing a text file. In another
approach, the model itself prompts the user for input
from the keyboard as the model executes. Still other
designs require modifying data by using an external
spreadsheet or database program. No matter which
approach is used, the purpose of the front end is to
conveniently produce a data file which can be read by
the simulation model as it executes.

A more advanced approach integrates a customized
front-end data-entry program, a simulation engine, and

Industrial Strength Simulation Using GPSS/H 169

an output browser under a single outer shell (Figure 1).
Typically created using a general-purpose programming
language or a tool such as Visual Basic, the shell may
be menu-driven. Data-entry “windows” and dialog
boxes guide the user through the process of specifying
parameters, running the model, and viewing the output.
The shell may also provide built-in help facilities and
data “range-checking” (e.g. verifying that all operation
times are non-negative before executing).

6.2 Simulation Model

The most important component of the special-
purpose simulator is the underlying model. Since the
end user is generally prevented from modifying the
model, this component defines the maximum flexibility
offered to the end user. It must be generic enough to
accept a broad range of inputs and it must be
maintained periodically to insure that the model
remains valid.

The simulation model can be produced and its
design frozen when the simulator is initially created, or
model code can be generated “on-the-fly” every time
that the model parameters are modified by the user. In
either case, the user input not only consists of operating-
parameter values, but it can also contain data used to
alter logic embedded deeply within the model. For
example, based on a user-specified value, the model
could select one of three different order-picking
algorithms that have been pre-coded into the model.

Executable .)
Programs Text Files

Simulation Model

(Batch File

Menu-Driven
| Front End

(Eater model parameters
and write data file)

Simulation Engine

(Run parameterized model
and read data file)|

CComTwv

Output Browser

(Format and view results)

Control retumns to "shell" after each component finishes executingj

N\

Figure 1: Components of a Special Purpose Simulator

6.3 Simulation Engine

The simulation engine is usually a simulation
language used to run the model and generate the output
file(s). There are several features to look for when
selecting the simulation engine.

Most importantly, the language used for the engine
must be flexible enough to handle the demands that a
general model places on the software. Flexibility is
crucial in the areas of file input, file output, and control
logic within the model. Execution speed is also a
primary concern. The faster a model executes, the
better—time executing a model is often down-time for
the end user. GPSS/H's built-in speed and flexibility
make it the ideal simulation engine for a special-
purpose simulator.

6.4 Output Browser

The function of the output browser is to display the
data generated by the model to the end-user in an easy,
understandable form. Assuming that the end user has
limited experience in simulation-modeling, the
standard-style output reports provided by the engine
may be difficult to decipher by anyone not intimately
familiar with the underlying model. Custom-formatted
output, which includes summary statistics, should
always be used to present simulator results.

Experiment design may be partially defined by the
model builder, but at least some flexibility should be
given to the end user. Access to random-number
streams, number of replications, and warm-up period
are essential for sound statistical experimentation. If
these options are unavailable, the end user has no way
to compare systems using common random numbers, to
control run-lengths, or to throw out transient data on a
run-by-run basis.

Statistical analysis of the output can be performed
directly by the shell program, or by a specialized
statistical software product. For special-purpose
simulators running under Microsoft Windows,
SIMSTAT, from MC? Analysis Systems, reads and
analyzes standard output data generated by GPSS/H.

Animation is yet another element of the simulation
output. Animating a generalized model can sometimes
present obstacles. Accounting for variations in resource
numbers and capacities, flow and routing-patterns, and
physical layout dimensions makes animating a generic
model more difficult than animating a specific model.
However, a basic animation helps confirm model
validity to the non-simulationist. High quality
animations can be generated by coupling a GPSS/H
model with Proof Animation, a general-purpose
animation tool.

170 Smith and Crain

6.5 Run-Time Versions Provide an Economical
Simulation Engine

A simulator is generally developed for a single
application, but it is frequently intended to be used by
many people. However, each user must have a copy of
the simulation software in order to execute the modecl.
For a simulator used by dozens or even hundreds of
users, the cost of the simulation software may render a
project economically infeasible. Wolverine's new
product, Run-time GPSS/H, offers a solution.

Run-time GPSS/H is identical to Wolverine's 32-bit
GPSS/H Professional for personal computers, except
that it can only run models which have been previously
compiled with the regular Professional version. The
run-time version allows economical distribution of
high-performance GPSS/H-based simulators.

Security is another important feature provided by
the run-time version. Since only pre-compiled models
can be run, the end user cannot view or edit the model
“source” code. The user has access only to the data files
used by the front-end and the output browser; hence,
confidential models can be safely distributed.

A Run-time version of Proof Animation is available
for distributing animated simulation models. The run-
time version of Proof Animation allows the user all of
the viewing capabilities of the full version of Proof. The
end-user can zoom-in, fast-forward, or jump to any
point in time in the animation. However, the end-user
cannot modify the Proof layout file, so this file must be
generated in advance. Ordinarily the model developer
would develop the layout with a full version of Proof
Animation.

SUMMARY

GPSS/H is a tried-and-true simulation tool that
retains its strong user-base even in the presence of so
many “new” simulation technology trends. The process-
interaction world view combines with the advanced
features available in GPSS/H to make it one of the most
powerful and flexible tools available, capable of
handling the largest simulation projects with ease.
Although Wolverine's future development efforts and
product offerings can be expected to include the use of
graphical interface techniques, such techniques will not
be implemented just for the sake of appearance. Careful
consideration must be given to just how this powerful
new technology can be used to bring real advantages to
modelers of diverse and complicated rcal-world systems.
After all, technology for the sake of technology
sometimes produces more costs than benefits.

REFERENCES

Banks, J. 1991. Selecting Simulation Software. In
Proceedings of the 1991 Winter Simulation
Conference, ed. B.L. Nelson, W.D. Kelton, and G.M.
Clark, 15-20. Institute of Electrical and Electronics
Engineers, Phoenix, Arizona.

Banks, J, and J.S. Carson II. 1984. Discrete-Event
System Simulation. Englewood Cliffs, New Jersey:
Prentice Hall, Inc.

Banks, J, J.S. Carson II, and J.N. Sy. 1989. Getting
Started With GPSS/H. Annandale, Virginia:
Wolverine Software Corporation.

Blaisdell, W. 1991. SIMSTAT for Windows 3.0 User's
Manual. Troy, New York: MC?2 Analysis Systems

Brunner, D.T., and R.C. Crain. 1991. GPSS/H in the
1990s. In Proceedings of the 1991 Winter Simulation
Conference, ed. B.L. Nelson, W.D. Kelton, and G.M.
Clark, 81-85. Institute of Electrical and Electronics
Engineers, Phoenix, Arizona.

Crain, R.C., and D.T. Brunner. 1989. In Proceedings of
the 1989 Winter Simulation Conference, ed. E.A.
MacNair, K.J. Musselman, P. Heidelberger, 249-252.
Institute of Electrical and Electronics Engineers,
Washington, D.C.

Henriksen, J.O., and R.C. Crain. 1989. GPSS/H
Reference Manual, Third Edition. Annandale,
Virginia: Wolverine Software Corporation.

Law, AM., and W.D. Kelton. 1982. Simulation
Modeling and Analysis. New York: McGraw-Hill
Book Company.

Schriber, T.J. 1991. An Introduction to Simulation
Using GPSS/H. New York: John Wiley & Sons.

Seppanen, M.S. 1990. Special Purpose Simulator
Development. In Proceedings of the 1990 Winter
Simulation Conference, ed. O. Balci, R.P. Sadowski,
and R.E. Nance, 67-71. Institute of Electrical and
Electronics Engineers, New Orleans, Louisiana.

Smith, D.S., D.T. Brunner, and R.C. Crain. 1992.
Building a Simulator With GPSS/H. In Proceedings
of the 1992 Winter Simulation Conference, ed. J.J.
Swain, D. Goldsman, R.C. Crain, and J.R. Wilson.
357-360. Institute of Electrical and Electronics
Engineers, Arlington, Virginia

Wolverine Software Corporation. 1992. Using Proof
Animation. Annandale, Virginia: Wolverine Software
Corporation.

Industrial Strength Simulation Using GPSS/H

AUTHOR BIOGRAPHIES

DOUGLAS S. SMITH received a B.S. in Industrial
Engineering and Operations Research from Virginia
Tech in 1987, and an M.S. in Manufacturing Systems
from Georgia Institute of Technology in 1988. He joined
Wolverine as an Industrial Engineer in 1992 where his
responsibilities include sales, support, and consulting.
Mr. Smith was formerly employed as a Manufacturing
Engineer with Hewlett Packard and later as a simulation
consultant. He is a senior member of IIE.

ROBERT C. CRAIN joined Wolverine Software
Corporation in 1981. He received a B.S. in Political
Science from Arizona State University in 1971, and an
M.A. in Political Science from The Ohio State
University in 1975. Among his many Wolverine
responsibilities is that of lead software developer for all
PC and workstation implementations of GPSS/H. Mr.
Crain is a Member of IEEE/CS, SIGSIM, and ACM. He
served as Business Chair of the 1986 Winter Simulation
Conference and General Chair of the 1992 Winter
Simulation Conference.

171

Proceedings of the 1993 Winter Simulation Conference
G.W. Evans, M. Mollaghasemi, E.C. Russell, W.E. Biles (eds.)

PROOF ANIMATION:

BETTER ANIMATION FOR YOUR SIMULATION

Nancy J. Earle
James O. Henriksen

Wolverine Software Corporation
4115 Annandale Road
Annandale, Virginia 22003

ABSTRACT

The Proof Animation™ family of animation software is
designed to meet the animation needs for a vast array of
applications. This product family runs on readily
available, inexpensive PC hardware. Some of the overall
features are general purpose architecture, ASCII file-
driven, vector-based geometry with the ability to zoom
in or out while maintaining crisp clear animations,
post-processing for maximum performance, CAD-type
drawing tools for ease of creating animations, and a
unique presentation mode used for displaying the results
of the study. Proof Animation is not tied to one specific
simulation language. Because of its open architecture,
Proof Animation can serve as the animation tool for
models written in a wide variety of simulation and
programming languages. Proof Animation's user
interface is menu-based and easily navigated using either
a mouse or keyboard. Its superior performance assures
smooth, realistic motion whether the animations depict
simple systems or complex systems with many moving
parts.

1 INTRODUCTION

Animation has become an integral part in simulation
projects from beginning to end. There are many aspects
to consider when choosing animation software for a
project:

Is the animation software capable of easily
representing the system? Some software is geared to a
specific application, such as manufacturing or health
care. Application specific animation software is useful if
only one type of system will ever be studied.

Will the animation software work easily with my
simulation software? Since the onset of a project is not
the ideal time to learn new modeling software, it is
important that the animation software work with the
existing simulation package.

172

Can the software handle the size or complexity of
the system? The animation software must have the
capacity to handle a full-scale, industrial project. Size
limitations of animation applications should not be an
issue.

Is the software affordable? A tool to help determine
feasibility of a project should not exceed the project
budget.

During the development of the model/animation,
the user must be concerned with the animation software's
ease of use. How easy is it to draw the animation
layout? Can the layout be import from a CAD drawing?
Does the animation software allow the passing of
information to the simulation model, therefore lessening
the modeling data input? How easy is it to define and
modify the characteristics of moving objects? Can the
animation be easily used to determine whether the model
correctly represents the system?

As the project draws to a close, issues of
portability and effectiveness of presenting results become
increasingly important. An animation can effectively
show the results of a simulation study to a general
audience with varying technical backgrounds, but getting
the animation to the audience is the key issue. Can the
animation easily be taken to meeting room or to a
customer's site, or does it require special hardware that
they may not have? Can a professional looking
presentation be assembled consisting of a collection of
slides and animation clips to summarize the results of
the simulation/animation project? Software should be
chosen that gives a positive response to these types of
questions.

The Proof Animation family of software products
can meet the challenges posed in the above questions. In
the following sections we describe the family of
products, discuss their underlying design philosophy,
describe their organization, give an overview of how they
are used, and describe how features can be applied to
specific applications.

