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ABSTRACT

The contents of this paper reflect a portion of the
conference tutorial on the application of response
surface methodology to simulation. In this paper
we will present an outline of the methodology and
give a simple example of its application to a two
variable optimization problem. In the tutorial itself
we will discuss the methodology in greater detail and
discuss an additional application to a six varable
optimization problem. The examples are taken from
the simulation of a semiconductor manufacturing
line.

1 INTRODUCTION

This is a discussion of the application of the statis-
tical methodology of response surface exploration to
simulation. Specifically, it is a discussion of the
methodology summarized in the book “Empirical
Model Building and Response Surfaces” by Box and
Draper (1987).

We assume that the simulation model has K con-
tinuous parameters 6y, ..., fx and that we are inter-
ested in a performance characteristic, C(6, ..., 0x),
of the model, which is the expected value of an out-
put random variable, ¥(6,, ..., 0x). In the examples
we will consider, C is a cost function derived from
the expected cycle time in a model of a semiconduc-
tor manufacturing line. The cycle time is the time
from beginning of manufacture to completion. We
are interested in “exploring” the surface C(6,, ..., Ox).
Y(8, ..., 0x) will be the sample mean of the cost
function over a simulation run.

The methodology we will describe involves the
“classical” application of experimental design based
on standard least squares theory. We assume that
C(6,, ..., Ox) is smooth enough so that it can be ap-
proximated by either a first or second degree
polynomial over the sequence of regions of exper-
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imental activity. The methodology is sequential in
nature with each successive experiment building on
the results and insights of earlier experiments. Thus,
it is ideally suited to simulation because of the rela-
tive ease with which data can be obtained in the
simulation context.

In section 2 we will discuss the fitting of first order
polynomials. In section 3 we will discuss the fitting
of second order polynomials (quadratics). In section
4 we will combine the results of sections 2 and 3 and
discuss the optimization problem; i.e., the location
of maxima or minima. We will give a simple exam-
ple illustrating the technique on a semiconductor
manufacturing model with two variables. The talk
will go into much greater detail than the paper in all
aspects of the methodology. Further, in the talk, in
addition to the two variable example, we will give a
six variable example.

2 FIRST ORDER MODELS

In fitting a first order model we assume that, in the
region over which we conduct the experiment,
C(6,, ..., 0k) can be approximated by a function of
the form

K
COy, - ) =a+ ). a0,
k=1

()

i.e. by a first order polynomial. To explore this hy-
pothesis the methodology uses 2 level fractional fac-
tonal designs with center points. In these designs a
rectangular region of the (6, ..., 8x) space is defined
by specifying two levels for each of the parameters,
ie. by specifying 6, <0, k=1,..,K. These sets
of levels would be such that, in the context of the
application, it would make sense to explore a first
order model over the region so defined. In the ap-
plication of 2-level fractional factorial designs the
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(6, ..., 0g) coordinate system is replaced with the
coordinates (x, ... , xx) where

O — (01 + 042)I2
Oz — Or1)/2

@

Xp =

The x; coordinates take on the value — 1 for the
lower level, 6, and + 1 for the upper level, 6,,.
Equation 1 then becomes

K
Clxy, .., xg) =p+ Z oy Xy 3
k=1

C(6,, ... , ) can be obtained by substituting (2) into
(3). The designs assume that the output random
variable Y(x),..,xx) has expectation C(xi, ..., xk)
plus independent, identically distributed, Gaussian
noise. In the simulation environment the assump-
tions of independence and normality do not usually
present a problem but the assumption that the noise
has a variance independent of (xi, ..., xg) is some-
times troublesome. For further discussion of this
issue, see Welch (1990).

Two level fractional factorial designs possess a
number of desirable features. First they provide a
hierarchy of designs for fitting a hierarchy of more
and more complicated two level models. The model
of equation (3) is the simplest. This model assumes
that each factor has an additive effect which is inde-
pendent of the level settings of the other factors. If
this model is true the methodology of two level
fractional factorial designs provides resolution 3 de-
signs which enable you efficiently obtain unbiased
estimates of the parameters u and «, ... , ag.

The next most complicated model assumes that

Clxyy o ) = Y ap g+ Y Byxix. (4

i<j

It is again additive. It assumes that the effect of
changing the level of a parameter depends on the
values of the other parameters but only in a pair wise
fashion and in an additive way. If this more com-
plicated model is true the methodology provides re-
solution 4 designs which generate unbiased estimates
of the a, independent of the values of the f§; and re-
solution 5 designs which provide unbiased estimates
of all the a,x and ;. The full quadratic model which
we will consider in the next section is

C(x,-, ,xK) =u+ Z L Xgy + Z ﬂyxixj. (5)

i<

We are interested in the first order model because
it may constitute a sufficiently accurate model over
the region of immediate investigation. Further in the
case of all three models the coefficients ay, ..., a, de-
fine the path of steepest descent (ascent) which we
shall see is critical to the optimization problem we
will consider in the examples. In our examples, we
will be selecting a minimum cost system. Hence,
we will be interested in the path of steepest descent.
If we let L = (3 a#)"/? then a vector of unit length in
this direction has coordinates — ay/L, ..., — ag/L.

In applying this methodology to these optimiza-
tion problems we proceed as we will now outline.
An initial experimental region is selected. A first
order model is fit, checked to see if it is a reasonable
fit and checked to make sure that a minimum does
not fall within the region. An outline of the process
for accomplishing this will be given below. If it is
decided that the first order model is valid, the path
of steepest descent is followed to an estimated mini-
mum of the cost function along this path. This
procedure is then repeated for a region about this
minimum point. If it is determined that it is likely
that a minimum exists within the region then, as will
be outlined in the next section, the design is aug-
mented and a second order model is fit. This model
is analyzed to determine whether or not a minimum
exists and so on.

To begin the process an initial design region is
chosen by selecting the levels 6,y <8, k=1,.., K.
Ideally, a resolution 5 design is run with center
points. Center points are replications at the center
of the region, i.e. at the point x, = =xg=0.
Then the standard techniques of 2 level fractional
factorial model analysis are applied. These include
confidence intervals on the coefficients, probability
plots, residual plots, etc. The center points provide
a curvature check. In particular

€ = average response over 2-level factorial
runs - average response over center points

provides an estimate of 3" fx. If there is a minimum
the By are all positive and hence the magnitude of ¢
should be compared to the magnitude of the esti-
mated coefficients. If ¢ is large with respect to the
ax, a full quadratic model should be fit.

In this process confidence intervals can be placed
on the direction of steepest descent as well as on the
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coefficients and the curvature. If any of these esti-
mates are not deemed accurate enough, additional
replications and/or center points can be added to the
design and the analysis repeated.

There are two elements in the design of exper-
iments which are important in other applications but
would usually not be relevant in simulation applica-
tions: blocking and randomization. They are de-
signed to control the effects of variations in
experimental conditions by either effectively includ-
ing these variations in the model or by randomizing
the order of the sequence of experimental trials.
Such variations would not. appear to occur in the
more pure world of simulation.

3 SECOND ORDER MODELS

Second order models cannot be fit with 2 level de-
signs plus center points. Hence if, as the sequence
of experiments is proceeding, the f; are not small
with respect to the «, and/or the estimate of curva-
ture is high, a second order model will have to be fit.
In fitting a second order model there is a class of
central composite designs which is appealing for two
reasons. First, they can be obtained by augmenting
resolution S, fractional factorial designs. Hence, they
fit well into the sequential development of an inves-
tigation. Second, they can be constructed so as to
be rotatable; a concept we will discuss next.

To standardize the variance of our estimate of the
theoretical surface we generate a function

Vixy, . xg) = (njo?)Variance(C(x,, ..., x).

called the variance function. Here n is the total
number of runs and o is the standard deviation of the
outcome of each run. The information function is
defined as

I(x), ..., xp)=V" 1(xl, ey XE)-

Now a design is rotatable if V' and hence [ are a
function of x, ... , xx only through

2,1/2
p=(xi+ - +xp)!

That is, if ¥ and hence [ are only a function of the
distance from the origin in x space. Rotatability is
a desirable feature since a priori there is usually no
reason to favor any particular direction. [(x,, ..., Xk)

will, in general, go to zero as the distance of the point
X, ... , Xx moves away from the origin.

Central composite designs are obtained from re-
solution 5, fractional factorial designs by the addition
of star points and perhaps more center points. Star
points are points where one of the x; takes on the
values + « while the remaining x; are all 0. For ex-
ample the pair of star points for the first variable
would be («,0,..,0) and (—«,0,..,0). Thus, for
a design of K variables there would be 2K star points.
When augmenting the 2 level design, the 2K star
points can be replicated any number of times and
additional center points added. Using the notation
of Box and Draper the « that generates a rotatable
design is given by

1/4
2Py,
=(_<__>_> ©

where k is the number of factors, a 2¥- fractional
factorial design of resolution 5 is being augmented,
r. is the number of replications of the fractional fac-
torial design and #; is the number of replications of
the 2K star points. The above function for « is
equation (14.3.14) of Box and Draper. The infor-
mation function of the design is given as a function
of p by equations (14.3.13) and (14.3.15) of Box and
Draper. The information function is a function of
2k=#¢, r,, r; and the total number of center points.

Once the central composite design has been gen-
erated, the runs are made and the results are ana-
lyzed. The coefficients are generated, confidence
intervals produced, and the model checked using
standard least squares methodology. The fitted sec-
ond order model will have a stationary point. The
experimenter will be interested in the characteristics
of this stationary point and its location relative to the
region of the design. There are two canonical forms
of the model which are useful for interpreting the
stationary point and the behavior of the fitted surface
in the region of the design. In the type A canonical
form the axes are rotated so as to remove the cross
product terms. Thus we have new vanables
1, - » yx and a fitted function of the form

Core sy = G+ ) api+ ) bt

This is useful for interpreting the behavior of the re-
sponse surface when the stationary point is some
distance from the experimental region. For a dis-
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cussion of this case see Chapters 10 and 11 of Box
and Draper. In the type B canonical form, the origin
of the coordinate system is translated to stationary
point and hence, we have coordinates z, ..., z¢ and

A
C(Zl, vy ZK) = % + Zbﬁ Ziz.

This is useful for interpreting the behavior of the re-
sponse surface when the stationary point is within
the experimental region. In both canonical forms
the signs of the b; determine the type of stationary
point. If it is a minimum, which is what we will be
looking for in our examples, the b; must all be posi-
tive.

4 A SIMPLE OPTIMIZATION EXAMPLE IN
TWO DIMENSIONS

4.1 The Model

We will consider the model of semiconductor man-
ufacturing line logistics which was discussed in
Hood, Amamoto and Vandenberge (1989) and
Hood and Welch (1992). In this model, the line is
subject to interruptions for tool set up, preventative
maintenance and repair of failures. These interrupt
processes are modeled as the highest priority sources
of work for the tool groups. The interruptions (ar-
rivals) and interrupt durations (service times) have
ii.d. exponential distributions. Hence, there are just
two parameters for each interrupt process: the mean
time between interrupts and the mean interrupt du-
ration. In this simple example, we will consider only
the setup interrupt process which was the process
having the strongest effect on model behavior.
Hence, we will be considering two model parameters

1l

6,
0,

mean time between setup interrupts
mean duration of setup interrupts.

1l

In the talk we will, in addition, consider a six pa-
rameter example involving all three processes. The
response variable, C is a function of R, the steady
state mean cycle time: the mean elapsed time from
entry into the manufacturing line until completion.
In the application of the model there is a base
case, a reference case which has model parameters
judged to best approximate a planned line. We will
be interested in optimizing over a region representing
possible improvements on this base case. The refer-
ence mean values (corresponding to the base case)
for 6, and 6, are taken to be unity. An increase in

0, or a decrease in 0, will reduce the mean cycle time
which is beneficial. The range of 6,, 8; we will con-
sider is 1<6,<2 and .5<6,<1. The function
R(6,,0,) was estimated in extensive simulation and
the estimated function is plotted in figure 1.

Figure 1. Steady State Mean Cycle Time

Now to illustrate the application of the method-
ology, we need a cost function which has a minimum
value. We generated such a function by assuming
the cost to be given by

C(6,,0,) = R(B;, 0,) + 200(8; — 1)> + 1200(1 — 6,)°

This cost function is plotted in figure 2. This func-
tion was developed to provide an example for the
methodology. We wanted a function which pos-
sessed a minimum in a region of feasible values for
the parameters. Its form is reasonable, with
R(8,, 0,) representing the inventory cost of the work
in progress and the other two terms representing the
costs associated with realizing improvements in 6,
and 02.

Hence each time we make a simulation run we
generate a random variable Y(6,, 6,) given by

Y(6,,0,) = C(6,,0,) +

where € is an error random variable. We are inter-
ested making a series of simulation runs as the ele-
ments of a sequence of experimental designs to
estimate the location of the minimum point of
C(6,,0,). That is, we are interested in pursuing the
methodology described in Sections 2 and 3.
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Figure 2. Cost Function

In creating this example, we did not actually run
the simulation model, but rather simulated its run-
ning. Since we knew the function C(8,, 6,), we could
simulate the random variables Y(8,, 8,) by adding the
noise random variable. In the earlier set of simu-
lation runs that estimated R(6,, 8,), it was determined
that for a run of reasonable length the noise random
variables were normally distributed with a standard
deviation of 20. In the talk we will give an example
with six variables where the simulation model was
run to produce each data point. This two variable
problem is designed to illustrate the essential features
of the methodology in an environment where the
important features of its operation can be easily vis-
ualized.

4.2 The Experiment

In the work to be described next, we used an exper-
imental extension of the IBM package “A Graphical
Statistical System (AGSS)”. (See Lane and Welch
(1987).) This package contains software for two
level fractional factorial experiments with center
points. For the purposes of this study we worked
with an experimental internal IBM version which
also includes central composite designs.

We started the process of finding the minimum of
C(8,, 6,) in a region in the immediate vicinity of the
base case. We ran a 2 level experiment (with center
points) with the levels of 6, being 1 and 1.2 and the
levels of @, being .9 and 1. We ran a full factorial
design replicated 5 times with 5 center points. The
resulting coefficient confidence interval table is

shown in table 1. Notice that the main effects are
large with respect to the interaction effect and that
the main effects are statistically significant whereas
the interaction effect is not. Further, notice that the
curvature is small and statistically insignificant.
Hence, a first order fit is reasonable and we proceed
to calculate and explore the path of steepest descent.

However, at this point it is important to empha-
size the relationship of these kinds of results to the
ease of data acquisition and the consequent potential
flexibility in simulation experimentation. We con-
ducted a single expertment with five replications and
then viewed the results. If they had been less con-
vincing, we could have added more replications and
viewed the results of the extended experiment con-
tinuing this process until we became convinced either
to move along the estimated path of steepest descent
or to fit a second order model. As alternatives, we
could have viewed the results after each replication
or implemented a decision procedure in a higher
level program which automatically took more data,
made the requisite decisions and searched for a min-
mmum. Further such an automatic procedure could
keep track of all its steps so its “reasoning” could be
reviewed post facto by the experimenter. For further
discussion of the potential of such higher level sys-
tems, see MacNair and Welch (1991).

We return now to our search for the minimum of
C(0,, 0,;). From the estimated coefficients of table 1
we have that the estimate of the vector of unit length
in the direction of steepest descent is given by

(.6894, - 7244) = (77.207, - 81.118)/L

where L =(77.207* + 81.118%)5.  This direction,
however, is relative to the coordinate system x;, x;
of the first design, not the coordinate system 6, 8,.
Hence, we have to make the appropriate transfor-
mation to generate a sequence of points along the
direction of steepest descent starting from the center
of the imitial design, the point (0,,8,) = (1.1, .95).
We explored C(6,, 8;) along this path to estimate the
point at which it assumes a minimum. This esti-
mated minimum point will be the center of the sec-
ond design.

In estimating this minimum point we estimated
C(0,, 8,) at a sequence of eight equally spaced points
each separated by a unit distance in (x), x;) coordi-
nates. At each point we made 16 replications (i.e.
16 simulated runs). The estimates of C(6,, 8,) along
with 95% confidence intervals are shown in figure
3. Notice there is a shallow minimum at the fifth
point. We selected the location of this fifth point as
the center for the second design. It is located at the
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Table 1. Coefficient Estimates, First Experiment

TABLE OF COEFFICIENTS

25 OBSERVATIONS R-SQUARED = 0.91562 STANDARD ERROR = 17.055
5 VARIABLES ADJ R-SQUARED = 0.89874

0.95 CONFIDENCE LIMITS
EFFECT ESTIMATE STD ERR T STAT SIG LEVEL LOWER UPPER
*MEAN 1226.9 3.8136 321.71 5.5511E-17 1218.9 1234.8
A -77.207 7.6271 -10.123 2.5759E-9 -93.119 -61.296
B 81.118 7.6271 10.635 1.1117E-9 65.206 97.03
AB -8.7258 7.6271 -1.14417 2.6611E-1 -24.637 7.185
CURVATURE -2.9879 8.5274 -0.3503 7.2971E-1 -20.778 14.802

MEAN calculation does not include center points

point (8, 8;) = (1.4434, .76825). Again this specific
process could be done sequentially in a number of
ways and could be automated.

With this point as center and with the same spac-
ing we repeated the initial experiment. That is we
ran a 2 factor, full factorial experiment with the 8,
levels at 1.3434 and 1.5434 and the 0, levels at .71825
and .81825. Again, we replicated the design 5 times
and added 5 center points, exactly as in the initial
experiment. The only change was in the location of
the center point.

The resulting table of coefficient estimates is
shown in table 2. Here, notice the two way inter-
action term is of the same rough magnitude as the
main effects. All are relatively small as is the curva-
ture estimate indicating the possible presence of a
shallow minimum.

1180

1080
T

A

e

4
STEP NUMBER

Figure 3. Estimate of Cost Function Along Path of
Steepest Descent

*

TABLE OF COEFFICIENTS

25 OBSERVATIONS R-SQUARED = 0.09346 STANDARD ERROR = 17.364
5 VARIABLES ADJ R-SQUARED = *0.08785
0.95 CONFIDENCE LIMITS
EFFECT ESTIMATE STD ERR T STAT SIG LEVEL LOWER UPPER
*MEAN 1054.6 3.8827 271.62 8.3267E-17 1046.5 1062.7
A -4.122 7.7655 -0.53081 6.0140E-1 -20.322 12.078
B 4.1987 7.7655 0.54069 5.9469E-1 -12.002 20.399
AB -8.463 7.7655 -1.0898 2.8875E-1 -24.663 7.737
CURVATURE -4.7562 8.6821 -0.54782 5.8988E-1 -22.869 13.356

MEAN calculation does not include center points

Table 2. Coefficient Estimates, Second Experiment
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Hence this second experiment was augmented to
create a rotatable central composite design capable
of estimating the full second order model. The star
portion was replicated 5 times so, from equation 6,
a = 2% =1.414. In figure 4 we show the information
function with 5 additional center points added. No-
tice the decrease in information near the center of the
design. To remedy this we added 20 center points.
The resulting information function is plotted in fig-
ure 5. This is the information function for the ex-
periment performed.

Figure 4. Information Function for Central Com-
posite Design with 5 Additional Center Points

Figure 5. Information Function for Central Com-
posite Design with 20 Additional Center Points

The analysis of this central composite design in-
dicated a minimum within the experimental region.

The table giving this information is shown in table
3. Notice from the signs of the squared terms in the
A and B canonical forms that the stationary point is
a minimum. The location of the stationary point is
given in terms of the x,, x;, coordinates relative to the
new center. The estimated location of the minimum
in 6,, 0, coordinates is 1.4457, .7415. The estimated
minimum value is 1046.1. In Figure 6 we have
plotted the contour function of the fitted quadratic
over the experimental region. The best way to view
the behavior of the fit in this case is in terms of the
type B canonical form. The contours of constant
cost are ellipses centered at the minimum point.

Figure 6. Contour Plot of Fitted Quadratic Over the
Final Experimental Region

6 SUMMARY

This has been a brief discussion on the application
of the response surface exploration methodology of
Box and Draper (1987) to simulation. This method-
ology has a number of features which fit well into the
framework of simulation experimentation. It is se-
quential so it matches well the ready availability of
data in the simulation context. It is sequential both
in the model fitting and estimation at each exper-
imental stage and in the generation of a sequence of
experimental stages. It produces confidence intervals
on the estimates of interest and powerful diagnostics
for the model fitting. It provides a solid theoretical
and intuitive base in classical regression theory for
the expenimental process so that people applying it
should know at all times where they are and what
they are about.
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The STATIONARY POINT (MINIMUM)

Distance to design center
0.536

THE A CANONICAL FORM:

C
.786 X1 - .618 X2

Y
Y .618 X1 + .786 X2

.
2

THE B CANONICAL FORM:

RESPONSE SURFACE ANALYSIS
is INSIDE the design region.

FACTOR CODED UNITS
X1 0.0223
X2 -0.536

Fitted value
1.05E3

1.05E3 - 5.07 Y1 + 2.38 Y2 + 7.27 Y1*2 + 2.92 Y2%2

C = 1.05E3 + 7.27 Z1*2 + 2.92 Z2%*2
Z1 = .786 X1 - .618 X2 - .348
22 = .618 X1 + .786 X2 + .408

Table 3. Response Surface Analysis: Third Experiment

.95 confidence limits
1.04E3 1.05E3
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