Proceedings of the 1993 Winter Simulation Conference
G.W. Evans, M. Mollaghasemi, E.C. Russell, W.E. Biles (eds.)

PARALLEL AND DISTRIBUTED DISCRETE EVENT SIMULATION:
ALGORITHMS AND APPLICATIONS

Richard M. Fujimoto

College of Computing
Georgia Institute of Technology
Atlanta, Georgia 30332-0280, U.S.A.

ABSTRACT

This tutorial reviews issues concerning the execution
of discrete event simulation programs on multiproces-
sor and distributed computing platforms. The syn-
chronization problem that has driven much of the re-
search in this field is reviewed. Space-parallel and
time-parallel approaches to concurrent execution are
described. Experiences in applying these techniques
to specific applications are examined. Finally, issues
that must be considered to develop efficient concur-
rent simulation programs are discussed.

1 INTRODUCTION

Concurrent discrete event simulation (or simply con-
current simulation) refers to the execution of a dis-
crete event simulation program on a machine con-
taining multiple CPUs. This includes execution
on closely coupled multiprocessor machines (parallel
stmulation) as well as geographically distributed com-
puters (distributed simulation). The field has been
studied over the last 15 years.

Concurrent simulation is of practical importance
because many simulations require excessive amounts
of CPU time. For example, simulations of only mod-
est sized telecommunication networks may require
weeks on a modern workstation [Roberts, 1992]. Par-
allel and distributed computers are becoming the
most powerful machines that can be assembled, mak-
ing exploitation of this technology very attractive.
Some simulations require geographically distributed
resources, e.g., humans, or databases that are costly
and/or difficult to move. These factors have fueled
the growing interest in concurrent simulation tech-
niques.

What is a concurrent simulator? A discrete event
simulation computes a sample path through the set
of possible system states for a period of simulated
time. A concurrent simulator attempts to construct

106

this sample path by utilizing many processors. Two
approaches have been employed to accomplish this
task. The space-parallel approach partitions the sys-
tem being modeled into a collection of subsystems,
and assigns a logical process (LP) to simulate each
one. Different LPs may execute concurrently on dif-
ferent processors, and communicate exclusively by ex-
changing timestamped events or messages. Each LP
is essentially a sequential, event-driven simulator that
computes the portion of the sample path pertaining
to the subsystem it models. Sending an event to a
logical process is equivalent to scheduling that event
in the receiving processor’s list of pending events. A
key question, referred to as the synchronization prob-
lem, is ensuring that the events are processed in a
correct order.

An alternative called the time-parallel approach
partitions the simulated time axis into intervals
(1, T3), (T2, T3], ..., [Ti,Tit1], - .. and assigns each
to a separate processor. For instance, processor %
might compute the sample path for [T}, T;41]. The fi-
nal state in the sample path for [T;_1, 7;] must match
the initial state in the sample path for [T}, Ti41).
Thus, this approach relies on being able to perform
the simulation corresponding to the ith interval with-
out first completing the simulations of the preceding
(1 —1,7—2,...1) intervals. This is typically accom-
plished by a parallel computation that rapidly com-
putes the states in question (e.g., using parallel pre-
fix [Greenberg et al., 1991)) or relaxation [Lin and
Lazowska, 1991].

Time-parallel simulations offer the potential for
massive parallelism because executions usually span
long periods of simulated time. However, they are
currently not as robust as space-parallel approaches
because they rely on specific properties of the sys-
tem being modeled, e.g., specification of the system’s
behavior as recurrence equations and/or a relatively
simple state descriptor. This approach is currently
limited to a handful of applications, e.g., queue-

Parallel and Distributed Discrete Event Simulation 107

ing and petri networks, cache memories, and sta-
tistical multiplexors in telecommunication networks.
Space-parallel simulations offer greater robustness
and wider applicability, but concurrency is limited
to the number of logical processes. Sometimes both
time and space parallelism can be used [Gaujal et al.,
1993].

Surveys of concurrent simulation techniques have
appeared [Misra, 1986, Richter and Walrand, 1989,
Fujimoto, 1990a). Recently, Fujimoto and Nicol [Fu-
Jimoto and Nicol, 1992] surveyed developments con-
cerning synchronization, performance analysis, time
parallelism, hardware support, load balancing, and
memory management. Here, a major emphasis is on
applications and considerations that modelers must
make to achieve good performance.

2 SYNCHRONIZATION ALGORITHMS

The synchronization problem in space-parallel simu-
lations has spawned an enormous amount of research.
Here, synchronization is concerned with ensuring that
events are processed in an order that yields the same
results as the sequential execution, where events are
processed in timestamp order. To achieve this, the
concurrent execution must process dependent events
in timestamp order. Because all interactions between
LPs occur through event messages, it is sufficient that
each LP process events in timestamp order.

Two classes of synchronization algorithms have
been proposed. So-called conservative algorithms
guarantee that dependent events are never processed
out of order, i.e., synchronization errors never oc-
cur. Optimistic algorithms allow synchronization er-
rors to occur, but provide a mechanism to recover.
A more detailed taxonomy is described in [Reynolds,
Jr., 1988], but this simple dichotomy will suffice here.

2.1 Conservative Algorithms

(lonservative mechanisms must determine when it is
“safe” to process an event, i.e., when have all events
on which this event depends been processed? To re-
alize this, an LP cannot process an event with times-
tamp 7 until it can guarantee that no event with
timestamp smaller than T will later arrive.

Chandy and Misra [Chandy and Misra, 1979}, and
Bryant [Bryant, 1977] developed some of the first
algorithms. They assume the topology indicating
which LPs send messages to which others is known,
and messages arrive on each incoming link in times-
tamp order. This guarantees that the timestamp of
the last message received on a link is a lower bound
on the timestamp of any subsequent message arriv-

ing on that link. This information allows the LP to
determine a lower bound on the timestamp of future
messages, allowing it to determine if an event is safe
to process. If an LP has no safe events, it must block.
This blocking can lead to deadlock.

Null messages are used to avoid deadlock. A null
message with timestamp Ty, sent from LP4 to LPpg
is a promise by L P4 that it will not send a message to
LPg carrying a timestamp smaller than Tyyy. Null
messages do not correspond to any activity in the sim-
ulated system. Processes send null messages on each
outgoing link after processing each event. A null mes-
sage provides the receiver with additional information
that may be used to determine that other events are
safe to process. It can be shown that this algorithm
avoids deadlock under some mild constraints [Chandy
and Misra, 1979).

This algorithm may generate many null messages,
however. Chandy and Misra [Chandy and Misra,
1981] later developed another approach that allows
the computation to deadlock, but then detects and
breaks it.

Numerous other conservative approaches have since
been proposed. Space does not permit elaboration of
them here, but they are reviewed in [Fujimoto, 1990a,
Fujimoto and Nicol, 1992]. One technique does re-
quire mentioning as it is referred to later. Some
protocols use a synchronous execution where the
computation cycles between (i) determining which
events are “safe” to process, and (ii) processing those
events [Ayani, 1989, Chandy and Sherman, 1989,
Lubachevsky, 1989, Nicol, 1993). To determine which
events are safe, the distance between LPs is some-
times used. This “distance” is the minimum amount
of simulation time that must elapse for an event in
one LP to directly or indirectly affect another LP
[Ayani, 1989, Lubachevsky, 1989], and can be used
by an LP to determine bounds on the timestamp of
future events it might receive from other LPs.

2.2 Optimistic Algorithms

The Time Warp mechanism invented by Jefferson
and Sowizral [Jefferson and Sowizral, 1982, Jeffer-
son, 1985 is the most well known optimistic method.
When an LP receives an event with timestamp
smaller than one or more events it has already pro-
cessed, it rolls back and reprocesses those events in
timestamp order. Rolling back an event involves
restoring the state of the LP to that which existed
prior to processing the event (checkpoints are taken
for this purpose), and “unsending” messages sent by
the rolled back events. An elegant mechanism called
anti-messages is provided to “unsend” messages.

108 Fujimoto

An anti-message is a duplicate copy of a previ-
ously sent message. Whenever an anti-message and
its matching (positive) message are both stored in
the same queue, the two are deleted (annihilated).
To “unsend” a message, a process need only send the
corresponding anti-message. If the matching positive
message has already been processed, the receiver pro-
cess is rolled back, possibly producing additional anti-
messages. Using this recursive procedure all effects of
the erroneous message will eventually be erased.

A number of other optimistic algorithms have
been proposed [Fujimoto, 1990a, Fujimoto and Nicol,
1992]. Most attempt to limit the amount of opti-
mistic computation. Rather than focusing on these
approaches, we instead turn our attention to applica-
tions and experiences using these techniques.

3 APPLICATIONS

It is convenient to characterize applications as ei-
ther stalic or dynamic. Static applications utilize a
fixed topology of LPs. Dynamic applications vary the
communication pattern among LPs, and possibly the
number of LPs during the simulation.

3.1 Static Applications

Static applications are often simulations of a net-
work of components, e.g., digital circuits or switching
nodes in a telecommunication network. The null mes-
sage and deadlock detection and recovery algorithms
as well as some others that rely on “distance between
LPs” require a static network topology.

Queueing Networks and Synthetic Workloads.
Queueing networks are a standard benchmark for
evaluating concurrent simulation protocols. They
represent a “stress test” because the amount of com-
putation per event is small, so overheads in the syn-
chronization mechanism become readily apparent.
The literature is filled with queueing network sim-
ulations that achieve good performance for both con-
servative and optimistic synchronization protocols.
Reed et al. [Reed et al., 1988] describe perhaps the
first empirical measurements of performance of the
null message and deadlock detection and recovery al-
gorithms on a Sequent multiprocessor, but report dis-
appointing performance. Fujimoto [Fujimoto, 1989a)
reports much better performance for these applica-
tions for first-come-first-serve queues when the pro-
gram was written to exploit lookahead. Fujimoto [Fu-
jimoto, 1989b] also reports speedups as high as 57
using 64 processors on a BBN Butterfly using Time
Warp, and reports that Time Warp outperforms these

conservative algorithms for queues with preemption.
Others report good speedup using different concur-
rent simulation algorithms, e.g., see [Chandy and
Sherman, 1989, Ayani, 1989, Nicol and Heidelberger,
1993], among others.

A growing number of algorithms use time-parallel
simulation techniques to achieve massively parallel
simulations of queues. Greenberg et al. [Green-
berg et al., 1991] formulate the behavior of a G/G/1
queue as linear recurrence equations, and then solve
these equations using parallel prefix. Their approach
extends to certain types of feed-forward networks.
Related approaches include [Lin, 1993, Lin and La-
zowska, 1991, Wang and Abrams, 1992, Ammar and
Deng, 1992, Nikolaidis et al., 1992).

Fujimoto [Fujimoto, 1990b] describes an extension
to the “hold” model that has been used to evaluate
priority queue implementations in sequential simula-
tions. This parallel hold (PHOLD) model charac-
terizes symmetric workloads, and has been used for
empirical and analytic studies of Time Warp [Gupta
et al., 1991, Fujimoto, 1990b] and conservative algo-
rithm [Fujimoto, 1989a] performance. An asymmet-
ric version has also been proposed [Gupta, 1993].

Digital Logic Circuits. Simulation of logic cir-
cuits is of considerable interest to the electronic
computer-aided-design community because they are
a major bottleneck in the design cycle. LPs model
components such as memories, arithmetic circuits, or
individual gates.

Su and Seitz [Su and Seitz, 1989] use variations
of the null message algorithm to speed up gate-level
simulations on an Intel iPSC computer. Although
speedups are relatively modest (8 using 64 proces-
sors, and 10 to 20 using 128 processors), they con-
Jecture that better performance could be obtained on
shared-memory machines where the overhead of send-
ing null messages is reduced. However, Soulé and
Gupta [Soulé and Gupta, 1991] examine gate-level
simulations using deadlock detection and recovery on
shared-memory machines, and report disappointing
results. Although they achieve speedup relative to a
sequential execution of the concurrent program rang-
ing from 7 to 9, they go on to report that the simula-
tor is actually slower than a traditional parallel logic
simulation that uses a global clock and only allows
concurrent execution of events containing the same
timestamp. The Soulé and Gupta study examines re-
alistic circuits ranging from a multiplier to an entire
CPU.

On the other hand, Bailey [Bailey, 1989] points out
that the timing model plays a critical role in evaluat-
ing the effectiveness of asynchronous simulation algo-

Parallel and Distributed Discrete Event Simulation 109

rithms relative to traditional parallel logic simulators
using a global clock. She indicates that the global
clock approach offers little hope of speedup if propa-
gation delays are variable from one gate to the next
(variable-delay timing models). Soulé and Gupta use
the so-called “unit delay” model where each gate has
a delay of one unit of time, so Bailey’s conclusion is
consistent with their results.

Nandy and Loucks [Nandy and Loucks, 1992] and
Davoren [Davoren, 1989] study partitioning and map-
ping algorithms used with the null message algorithm.
DeBenedictis et al. [DeBenedictis et al., 1991] de-
velop a conservative simulation algorithm that trans-
forms cyclic networks into acyclic ones, and demon-
strate the algorithm on two cross-coupled NAND
gates.

Using Time Warp, Briner [Briner, 1991] reports
speedups ranging from 10 to 25 for simulations of a
variety of gate- and transistor-level circuits. Sporrer
and Bauer [Sporrer and Bauer, 1993] also report
speedups ranging from 4 to 8 in using Time Warp
for a variety of circuits, with speedup saturating at
approximately 12 processors.

A few studies compare the performance of differ-
ent synchronization algorithms for concurrent logic
simulation. Lin et al. [Lin et al., 1990] argues that
Time Warp offers better performance than conser-
vative algorithms based on a critical path analysis.
Chung and Chung [Chung and Chung, 1991] com-
pare the null message algorithm, Time Warp, Time
Warp augmented with time windows [Sokol et al.,
1988], and the global clock algorithm, and indicate
Time Warp with time windows yielded the best per-
formance on an SIMD Connection Machine. Man-
jikian and Loucks [Manjikian and Loucks, 1993] re-
port that optimistic synchronization algorithms per-
form somewhat better than conservative ones for logic
simulations performed on networked workstations.

Computer Architectures. Logical processes in
an architecture-level simulation model CPUs or
switches rather than individual gates. Concurrent
simulation has been applied to simulating critical
components as well as the entire parallel computer.

Yu et al. [Yu et al., 1989] and Goli et al. [Goli et
al., 1990] study the use of a synchronous timestepped
approach to simulate multistage interconnection net-
works (MINs), and report speedups of over 14 on a
16 processor Sequent Symmetry. Ayani and Rajaei
[Ayani and Rajaei, 1990] also demonstrate good per-
formance using a conservative algorithm based on the
distance between objects.

Concurrent simulation of cache memories driven
by memory reference traces have also been studied.

Lin et al. [Lin et al., 1989] propose a technique that
features minimal communication and linear speedup.
In one of the first approaches to utilize time-parallel
simulation, Heidelberger and Stone [Heidelberger and
Stone, 1990] simulate uniprocessor caches using a
“fix-up” procedure to perform state-matching. Nicol,
et al. [Nicol et al., 1992] also employ time-parallel
simulation techniques to uniprocessor cache simula-
tions, and demonstrate their algorithm on a Masspar
SIMD machine.

The Wisconsin Wind Tunnel project [Reinhardt
et al., 1993] reports good performance in simulat-
ing a shared memory multiprocessor using so-called
direct execution techniques that execute application
programs directly on the simulator host, rather than
through an interpreter. A synchronous conservative
algorithm is used where all instructions within a time
window can be executed concurrently because the size
of the window is set to be no larger than the mini-
mum distance between any two LPs in the simulation.
Konas and Yew [Konas and Yew, 1991, Konas and
Yew, 1992] compare the performance of the null mes-
sage algorithm with Time Warp and a synchronous
approach using a global clock for simulating a syn-
chronous multiprocessor system and an asynchronous
network. Bailey et al. [Bailey and Pagels, 1991,
Bailey et al., 1993] study parallel simulation of paral-
lel architectures using point-to-point connections and
bus-based multiprocessors using the null message al-
gorithm, and report encouraging results.

Telecommunication Networks. The increasing
use of fiber optics technology and the need to inte-
grate different types of traffic (voice, video, data, fax)
in so-called broadband integrated services digital net-
works (B-ISDN) have heightened the need for high
performance simulation techniques to aid in network
design. Several have obtained significant speedup.
Earnshaw and Hind [Earnshaw and Hind, 1992] re-
port up to an order of magnitude speedup in simu-
lating B-ISDN networks.

Gaujal et al. [Gaujal et al., 1993] report an or-
der of magnitude speedup in simulating call routing
using time and space-parallel techniques, and indi-
cate that simulator performance exceeds 3,000,000
calls per minute. Nikolaidis et al. [Nikolaidis et al.,
1992] describe a time-parallel algorithm that exploits
the bursty structure of telecommunication traffic in
simulating ATM (asynchronous transfer mode) mul-
tiplexors. They report performance between 10° and
10° simulated cell arrivals per second of real time us-
ing 30 processors of a KSR-1 machine. Turner and Xu
[Turner and Xu, 1992] report success in speeding up
telephone switching network simulations using a vari-

110 Fujimoto

ation of Time Warp. Lomow [Lomow, 1992] reports
an order of magnitude speedup was obtained in sim-
ulating telephone switching networks on Time Warp.
Mouftah and Sturgeon [Mouftah and Sturgeon, 1990]
report that a distributed simulation executing on two
workstations provides a modest speedup (up to 20%)
for certain test cases.

Not all report success, however. Phillips and Cuth-
bert [Phillips and Cuthbert, 1991] report that their
Transputer-based conservative simulations ran more
slowly than a sequential simulator. Tallieu and Ver-
boven [Tallieu and Verboven, 1991] also report disap-
pointing performance in simulating an Ethernet.

Transportation, Manufacturing, and Others.
Use of concurrent simulation techniques in a variety of
other applications have also been studied. Merrifield
et al. [Merrifield et al., 1990] studied the use of the
null message algorithm in simulating a road trans-
portation network. Traffic for 292 vehicles and 292
road junctions were simulated in this study. Approx-
imately an order of magnitude speedup was obtained.

Nevison [Nevison, 1990] examines the use of con-
current simulation in manufacturing applications. In
particular, he develops a conservative synchroniza-
tion algorithm that exploits the structure of the ap-
plication, namely collections of closed loops that fre-
quently occur in flexible manufacturing systems.

Baezner et al. [Baezner et al., 1993] simulate a
health care system consisting of a hierarchical net-
work of hospitals. Hospitals at higher levels in the
hierarchy have a higher degree of capability. Pa-
tients move up the hierarchy if their illness cannot
be handled by the local facility. They report 18 fold
speedup using Time Warp executing on 32 processors
of a Transputer network. A 20 millisecond delay was
added to each event to reduce the effect of overhead
computations, and expose the amount of parallelism
that the simulator is able to exploit.

Lubachevsky [Lubachevsky, 1989] applies conser-
vative synchronization techniques to simulate Ising
spin. Atoms are assigned to positions in a two dimen-
sional grid, and spin in one of two directions. They
attempt to change the direction of their spin at ran-
domly selected points in time. At each attempt, a
new spin direction is computed based on the direc-
tion of spin of neighboring atoms as well as the spin
value of the atom attempting to change. Speedups
as high as 1900 are reported on a 16,384 processor
Connection Machine (CM-1).

Other researchers have applied concurrent simu-
lation techniques to simulate timed Petri networks.
Thomas and Zahorjan [Thomas and Zahorjan, 1991]
obtain an order of magnitude speedup using a con-

servative protocol tailored to this application. Ku-
mar and Harous [Kumar and Harous, 1990] describe
a variation on the null message algorithm for this pur-
pose. Nicol and Roy [Nicol and Roy, 1991] simulate
timed Petri nets using a conservative windowing pro-
tocol. Baccelli and Canales [Baccelli and Canales,
1993] use time-parallel techniques to achieve mas-
sively parallel simulations.

3.2 Dynamic Applications

Dynamic applications often involve a number of phys-
ical entities moving over a terrain, and interacting,
e.g., based on physical proximity to other entities.
Applications include combat models, biological sys-
tems, and cellular telephone networks.

A typical operation in such a simulation is an en-
tity, e.g., a combat unit, will scan other entities in its
immediate vicinity, and then act according to some
plan, e.g., attack or retreat. In order to determine
physical proximity the map is typically partitioned
into a checkerboard-like grid. This means that each
unit need only check a few neighboring grid sectors to
determine which units are close by rather than exam-
ine the location of all units in the system. The grid

“structure typically uses square or hexagonal shaped

grids.

It 1s important to realize that most concurrent syn-
chronization algorithms (e.g., null messages, Time
Warp, etc.) do not allow LPs to access common state
variables, i.e., no shared state is allowed. Thus, a typ-
ical approach is to use a logical process to implement
each grid sector. The intercommunication pattern is
dynamic because the LPs modeling the moving enti-
ties will communicate with different grid sector LPs
depending on their current location.

Sharks, Ants, and Colliding Pucks. Several
benchmark applications have been proposed for dy-
namic applications. “Shark’s world” [Conklin et al.,
1990] consists of an ocean and a set of migrating
sharks and fish. The sharks swim in a random pat-
tern until they come within a certain distance of a
fish. It then attacks the fish, and devours it. This
benchmark was implemented by Presley et al. [Pres-
ley et al., 1990] using Time Warp, Bagrodia and Liao
[Bagrodia and Liao, 1990] using another optimistic
algorithm, and Nicol [Nicol and Riffe, 1990] using a
conservative scheme. All three were able to achieve
speedup, although the conservative program does so
by precomputing the sharks’ path, which may not al-
ways be possible.

Two other related benchmarks are the colliding
pucks [Hontalas et al., 1989] and the ant foraging

Parallel and Distributed Discrete Event Simulation 111

[Ebling et al., 1989] models developed at JPL. In the
first, a set of pucks slide over a frictionless surface
and deflections are simulated as the pucks collide with
each other or the edge of the surface. “Ant world”
is in a similar spirit as shark’s world, and consists of
ants moving over a terrain foraging for food. Logi-
cal processes are used to model ants, nests, and grid
sectors that define the terrain. Both “pucks” and
“ant world” demonstrated good speedup using Time
Warp.

Combat Models. Perhaps the most substantive
dynamic application to which concurrent simulation
techniques have been applied thus far are combat
models. Researchers at JPL [Wieland et al., 1989] de-
scribe a combat model implemented on Time Warp.
The simulation consists of two opposing armies mov-
ing through three major phases: an advance phase
where the armies approach each other, a conflict
phase where they fight, and a clean up phase where
the outcome of the battle has been determined,
but minor pockets of fighting remain. Thirty-fold
speedup on a BBN Butterfly is reported for this ap-
plication.

Morse [Morse, 1990] reports success in speeding
up a combat model developed in Modsim, an object-
oriented simulation language, running on top of the
JPL Time Warp Operating System (TWOS). On the
other hand, Rich and Michelsen [Rich and Michelsen,
1991] report a failed effort to port a combat model to
the Modsim/TWOS system. A major problem was
the model contained many thousands of very small
objects, while TWOS was designed to support per-
haps a few hundred large-grained objects. Sufficient
“hooks” were not available in the compiler to prop-
erly map the application to the TWOS software.

Steinman [Steinman, 1992] examines the question
of determining which aircraft/radar can “see” each
other (proximity detection) in optimistic simulations
and demonstrates linear speedup up to 32 processors
on a hypercube machine. A convincing demonstra-
tion of distributed simulation technology is the Sim-
net project [Kanarick, 1991] for training military per-
sonnel, although the synchronization techniques used
there differ substantially from the methods discussed

here.

4 DEVELOPING EFFICIENT CODE

At present, achieving speedup requires expertise in
both simulation modeling and parallel computation.
In principal, synchronization algorithmssuch as Time
Warp free the programmer from specifying program

synchronization, however, poor performance will re-
sult if proper precautions are not taken. A few im-
portant issues are discussed next.

Lookahead. Performance of both conservative and
optimistic synchronization algorithms is usually im-
proved if events are scheduled far into the simulated
future. This allows events with low timestamps to be
processed concurrently without being affected (e.g.,
by rollback in Time Warp or blocking in conserva-
tive protocols) by events that will be produced later.
Failure to exploit lookahead can result in a dramatic
performance degradation, particularly for conserva-
tive protocols [Fujimoto, 1990a).

Granularity. All synchronization algorithms entail
a certain amount of overhead computation in process-
ing each event. An LP must be scheduled and exe-
cuted, data structures manipulated, messages sent,
etc. In Time Warp, additional overheads for state
saving and rollback are also required. If the amount
of computation per event is very small, most of the
simulator’s time will be spent in the overhead com-
putations, degrading performance. Increasing event
granularity may be difficult, however, depending on
the application.

Push vs. Pull Processing. In many applications,
particularly dynamic ones, LPs must access state that
is stored in another LP, e.g., information in grid sector
LPs. A simple approach is to send a message to the
grid sector to obtain this information as it is needed
[Wieland and Jefferson, 1989]. The drawback of this
“pull processing” approach is that the LP must wait
until the information is delivered. This may be very
time consuming.

A more efficient approach is to transmit informa-
tion to processes in advance of when it is needed.
This “push processing” approach has been demon-
strated to overcome the performance problems de-
scribed above [Wieland and Jefferson, 1989]. It does,
however, greatly complicate the coding of the sim-
ulation, and thereby inflate development time and
detract from the software’s maintainability. Be-
cause multiple copies of modifiable data may be dis-
tributed across several processes, the application pro-
gram must be careful to maintain consistency among
the multiple copies.

Self-Driven Processes. Consider a source process
in a queueing network simulation that generates jobs
for the network. This might be implemented by an LP
that continually sends messages to itself to advance

112 Fujimoto

in simulated time, and generates new “job” messages
as needed. Such “self-driven” processes never re-
ceive messages from other LPs, so they may not roll-
back or block. Instead, they may flood the system
-with messages, straining the synchronization protocol
and memory management system. If no flow control
mechanism is provided, the program may not be able
to run at all.

One solution is to program the simulation without
self-driven processes. For instance, a protocol might
be established where processes receiving new jobs will
periodically ask for additional job arrivals rather than
allowing the source to generate an excessive number
of jobs.

5 CONCLUSIONS

Although many successes have been reported in ap-
plying concurrent simulation techniques, this technol-
ogy has not been widely embraced by the general sim-
ulation community. Important reasons for this lack of
penetration include the current high level of expertise
required to effectively exploit the technology, and a
lack of development tools and concurrent simulation
products. Migrating large, existing sequential simu-
lation models to concurrent environments is difficult.
To fully realize its potential, much additional work
is required to make concurrent simulation technology
more accessible to the general simulation community.

REFERENCES

Ammar, H., and S. Deng. 1992. Time warp simulation
using time scale decomposition. ACM Transactions
on Modeling and Computer Simulation, 2(2):158-177,
April.

Ayani, R., and H. Rajaei, 1990. Parallel simulation
of a generalized cube multistage interconnection net-
work. In Proceedings of the SCS Multiconference on
Distributed Simulation, volume 22, pages 60-63. SCS
Simulation Series, January.

Ayani, R. 1989. A parallel simulation scheme based on
the distance between objects. In Proceedings of the SCS
Multiconference on Distributed Simulation, volume 21,
pages 113-118. SCS Simulation Series, March.

Baccelli, F. and M. Canales. 1993. Parallel simulation of
stochastic petri nets using recurrences equations. ACM
Transactions on Modeling and Computer Simulation,
3(1):20-41, January.

Baezner, D., G. Lomow, and B. Unger. 1993. A parallel
simulation environment based on Time Warp. Inter-
national Journal of Computer Simulation, to appear.

Bagrodia, R. L. and W-T. Liao. 1990. Parallel simu-
lation of the shark’s world problem. In Proceedings
of the 1990 Winter Simulation Conference, pages 191
198, New Orleans, December.

Bailey, M. L. and M. A. Pagels. 1991. Measuring the
overhead in conservative parallel simulations of multi-
computer programs. In Proceedings of the 1991 Winter
Simulation Conference, pages 627-636, Phoenix, De-
cember.

Bailey, M. L., M. A. Pagels, and K. K. Wong. 1993.
How using busses in multicomputer programs affects
conservative parallel simulation. In 7" Workshop on
Parallel and Distributed Simulation, volume 23, pages
93-100. SCS Simulation Series, May.

Bailey, M. L. 1989. The on-chip parallelism of VLSI cir-
cuits. Technical Report 89-08-05, University of Wash-
ington, Seattle, July.

Briner Jr., J. 1991. Fast parallel simulation of digital sys-
tems. In Advances in Parallel and Distributed Simula-
tion, volume 23, pages 71-77. SCS Simulation Series,
January.

Bryant, R. E. 1977. Simulation of packet commu-
nication architecture computer systems. MIT-LCS-
TR-188, Massachusetts Institute of Technology, Cam-
bridge, Massachusetts.

Chandy, K. M. and J. Misra. 1979. Distributed simula-
tion: A case study in design and verification of dis-
tributed programs. IEEE Transactions on Software
Engineering, SE-5(5):440-452, September.

Chandy, K. M. and J. Misra. 1981. Asynchronous dis-
tributed simulation via a sequence of parallel compu-
tations. Communications of the ACM, 24(4):198-205,
April.

Chandy, K. M. and R. Sherman. 1989. The conditional
event approach to distributed simulation. In Proceed-
ings of the SCS Multiconference on Distributed Simu-
lation, volume 21, pages 93-99. SCS Simulation Series,
March.

Chung, M. and Y. Chung. 1991. An experimental anal-
ysis of simulation clock advancement in parallel logic
simulation on an SIMD machine. In Advances in Par-
allel and Distributed Simulation, volume 23, pages 125-
132. SCS Simulation Series, January.

Conklin, D., J. Cleary, and B. Unger. 1990. The sharks
world (a study in distributed simulation design. In Dis-
tributed Simulation, volume 22, pages 157-160. SCS
Simulation Series, Jan.

Davoren, M. 1989. A structural mapping for parallel dig-
ital logic simulation. In Proceedings of the SCS Multi-
conference on Distributed Simulation, volume 21, pages
179-182. SCS Simulation Series, March.

DeBenedictis, E., S. Ghosh, and M.-L. Yu. 1991. A
novel algorithm for discrete-event simulation. Com-
puter, 24(6):21-33, June.

Earnshaw, R. W. and A. Hind. 1992. A parallel simulator
for performance modelling of broadband telecommuni-
cation networks. In 1992 Winter Simulation Confer-
ence Proceedings, pages 1365-1373, December.

Ebling, M., M. DiLorento, M. Presley, F. Wieland, and
D. R. Jefferson. 1989. An ant foraging model im-
plemented on the Time Warp Operating System. In
Proceedings of the SCS Multiconference on Distributed
Simulation, volume 21, pages 21-26. SCS Simulation

Parallel and Distributed Discrete Event Simulation 113

Series, March.

Fujimoto, R. M. and D. M. Nicol. 1992. State of the
art in parallel simulation. In 1992 Winter Simulation
Conference Proceedings, pages 122-127, December.

Fujimoto, R. M. 1989a. Performance measurements of
distributed simulation strategies. Transactions of the
Society for Computer Simulation, 6(2):89-132, April.

Fujimoto, R. M. 1989b. Time Warp on a shared memory
multiprocessor. Transactions of the Society for Com-
puter Simulation, 6(3):211-239, July.

Fujimoto, R. M. 1990a. Parallel discrete event simulation.
Communications of the ACM, 33(10):30-53, October.

Fujimoto, R. M. 1990b. Performance of Time Warp under
synthetic workloads. In Proceedings of the SCS Multi-
conference on Distributed Simulation, volume 22, pages
23-28. SCS Simulation Series, January.

Gaujal, B., A. G. Greenberg, and D. M. Nicol. 1993.
A sweep algorithm for massively parallel simulation of
circuit-switched networks. Journal of Parallel and Dis-
tributed Computing, August. To appear.

Goli, P., P. Heidelberger, D. Towsley, and Q. Yu. 1990.
Processor assignment and synchronization in parallel
simulation of multistage interconnection networks. In
Distributed Simulation, volume 22, pages 181-187. SCS
Simulation Series, January.

Greenberg, A. G., B. D. Lubachevsky, and I. Mitrani.
1991. Algorithms for unboundedly parallel simulations.
ACM Transactions on Computer Systems, 9(3):201-
221, August.

Gupta, A., I. F. Akyildiz, and R. M. Fujimoto. 1991.
Performance analysis of Time Warp with multiple ho-
mogeneous processors. IEEE Transactions on Software
Engineering, 17(10):1013-1027, October.

Gupta, A. 1993. Performance analysis of Time Warp
mechanism for parallel discrete event simulation. Tech-
nical report, Georgia Institute of Technology, Seattle,
Georgia, May.

Heidelberger, P. and H. Stone. 1990. Parallel trace-driven
cache simulation by time partitioning. In Proceedings
of the 1990 Winter Simulation Conference, pages 734
737, New Orleans, December.

Hontalas, P., B. Beckman, M. DiLorento, L. Blume,
P. Reiher, K. Sturdevant, L. Van Warren, J. Wedel,
F. Wieland, and D. R. Jefferson. 1989. Performance of
the colliding pucks simulation on the Time Warp Op-
erating System. In Proceedings of the SCS Multiconfer-
ence on Distributed Simulation, volume 21, pages 3-7.
SCS Simulation Series, March.

Jefferson, D. R. and H. Sowizral. 1982. Fast concurrent
simulation using the Time Warp mechanism, part I:
Local control. Technical Report N-1906-AF, RAND
Corporation, December.

Jefferson, D. R. 1985. Virtual time. ACM Transactions
on Programming Languages and Systems, 7(3):404-425,
July.

Kanarick, C. 1991. A technical overview and history of
the simnet project. In Advances in Parallel and Dis-
tributed Simulation, volume 23, pages 104-111. SCS
Simulation Series, January.

Konas, P. and P.-C. Yew. 1991. Parallel discrete event
simulation on shared-memory multiprocessors. In Pro-
ceedings of the 24th Annual Simulation Symposium,
volume 21, pages 134-148. IEEE Computer Society
Press, April.

Konas, P. and P.-C. Yew. 1992. Synchronous parallel
discrete event simulation on shared-memory multipro-
cessors. In 6" Workshop on Parallel and Distributed
Simulation, volume 24, pages 12-21. SCS Simulation
Series, January.

Kumar, P. and S. Harous. 1990. An approach towards
distributed simulation of timed petri nets. In Proceed-
ings of the 1990 Winter Simulation Conference, pages
428-435, New Orleans, LA., December.

Lin, Y.-B. and E.D. Lazowska. 1991. A time-division al-
gorithm for parallel simulation. ACM Transactions on
Modeling and Computer Simulation, 1(1):73-83, Jan-
uary.

Lin, Y-B., J-L. Baer, and E. D. Lazowska. 1989. Tai-
loring a parallel trace-driven simulation technique to
specific multiprocessor cache coherence protocols. In
Proceedings of the SCS Multiconference on Distributed
Simulation, volume 21, pages 185-190. SCS Simulation
Series, March.

Lin, Y-B., E. D. Lazowska, and M. L. Bailey. 1990. Com-
paring synchronization protocols for parallel logic level
simulation. In Proceedings of the 1990 International
Conference on Parallel Processing, volume 3, pages
223-227, August.

Lin, Y-B. 1993. Parallel trace-driven simulation for
packet loss in finite-buffered voice multiplexors. Paral-
lel Computing, to appear.

Lomow, G. 1992. private communication, December.

Lubachevsky, B. D. 1989. Efficient distributed event-
driven simulations of multiple-loop networks. Commu-
nications of the ACM, 32(1):111-123, January.

Manjikian, N. and W. M. Loucks. 1993. High perfor-
mance parallel logic simulation on a network of work-
stations. In 7** Workshop on Parallel and Distributed
Simulation, volume 23, pages 76-84. SCS Simulation
Series, May.

Merrifield, B. C., S. B. Richardson, and J. B. G. Roberts.
1990. Quantitative studies of discrete event simulation
modelling of road traffic. In Proceedings of the SCS
Multiconference on Distributed Simulation, volume 22,
pages 188-193. SCS Simulation Series, January.

Misra, J. 1986. Distributed-discrete event simulation.
ACM Computing Surveys, 18(1):39-65, March.

Morse, K. 1990. Parallel distributed simulation in Mod-
sim. In Proceedings of the 1990 International Confer-
ence on Parallel Processing, volume 3, pages 210-217,
August.

Mouftah, H. T. and R. P. Sturgeon. 1990. Distributed
discrete event simulation for communication networks.
IEEE Journal on Selected Areas in Communications,
8(9):1723-1734, December.

Nandy, B. and W. Loucks. 1992. An algorithm for par-
titioning and mapping conservative parallel simulation
onto multicomputers. In 6* Workshop on Parallel and

114 Fujimoto

Distributed Simulation, volume 24, pages 139-146. SCS
Simulation Series, Jan.

Nevison C. 1990. Parallel simulation of manufacturing
systems: Structural factors. In Distributed Simulation,
volume 22, pages 17-22. SCS Simulation Series, Jan-
uary.

Nicol, D. M. and S. Roy. 1991. Parallel simulation of
timed petri nets. In Proceedings of the 1991 Winter
Simulation Conference, pages 574-583, Phoenix, Ari-
zona, December 1991.

Nicol, D. M. and P. Heidelberger. 1993. Parallel algo-
rithms for simulating continuous time markov chains.
In 7** Workshop on Parallel and Distributed Simula-
tion, volume 23, pages 11-18. SCS Simulation Series,
May.

Nicol, D. M. and S. E. Riffe. 1990. A conservative ap-
proach to parallelizing the shark’s world simulation. In
Proceedings of the 1990 Winter Simulation Conference,
pages 186-190, New Orleans, December.

Nicol, D. M., A. Greenberg, B. Lubachevsky, and S. Roy.
1992. Massively parallel algorithms for trace-driven
cache simulation. In 6°* Workshop on Parallel and
Distributed Simulation, volume 24, pages 3-11. SCS
Simulation Series, January.

Nicol, D.M. 1993. The cost of conservative synchroniza-
tion in parallel discrete-event simulations. Journal of
the ACM, April.

Nikolaidis, I., R. M. Fujimoto, A. Cooper, T. Ott, and
T. V. Lakshman. 1992. Parallel simulation of high-
speed network multiplexors. Technical report, College
of Computing, Georgia Tech.

Phillips, C. I. and L. G. Cuthbert. 1991. Concurrent
discrete-event simulation tools. IEEE Journal on Se-
lected Areas in Communications, 9(3):477-485, April.

Presley, M. T., P. L. Reiher, and S. Bellenot. 1990. A
Time Warp implementation of shark’s world. In Pro-
ceedings of the 1990 Winter Simulation Conference,
pages 199-203, New Orleans, December.

Reed, D. A., A. D. Malony, and B. D. McCredie. 1988.
Parallel discrete event simulation using shared mem-
ory. IEEE Transactions on Software Engineering,
14(4):541-553, April.

Reinhardt, S. K., M. D. Hill, J. R. Larus, A. R. Lebeck,
J. C. Lewis, and D. A. Wood. 1993. The Wisconsin
wind tunnel: Virtual prototyping of parallel comput-
ers. In Proceedings of the 1993 ACM SIGMETRICS
Conference on Measurement and Modeling of Computer
Systems, volume 21, pages 48-60, June.

Reynolds, Jr., P. F. 1988. A spectrum of options for par-
allel simulation. In 1988 Winter Simulation Conference
Proceedings, pages 325-332, December.

Rich, D. O. and R. E. Michelsen. 1991. An assess-
ment of the Modsim/TWOS parallel simulation envi-
ronment. In 1991 Winter Simulation Conference Pro-
ceedings, pages 509-518, December 1991.

Richter, R. and J. C. Walrand. 1989. Distributed sim-
ulation of discrete event systems. Proceedings of the
IEEFE, 77(1):99-113, January.

Roberts, J. W., editor. 1992. Performance Evaluation
and Design of Multiservice Networks. Commission of
the European Communities, Luxembourg.

Sokol, L. M., D. P. Briscoe, and A. P. Wieland. 1988.
MTW: a strategy for scheduling discrete simulation
events for concurrent execution. In Proceedings of the
SCS Multiconference on Distributed Simulation, vol-
ume 19, pages 34-42. SCS Simulation Series, July.

Soulé, L. and A. Gupta. 1991. An evaluation of the
Chandy-Misra-Bryant algorithm for digital logic simu-
lation. ACM Transactions on Modeling and Computer
Simulation, 1(4):308-347, October.

Sporrer, C. and H. Bauer. 1993. Corolla partitioning
for distributed logic simulation of VLSI-circuits. In Tth
Workshop on Parallel and Distributed Simulation, vol-
ume 23, pages 85-92. SCS Simulation Series, May.

Steinman, J. 1992. Speedes:an approach to parallel sim-
ulation. In 6" Workshop on Parallel and Distributed
Simulation, volume 24, pages 75-84. SCS Simulation
Series, January.

Su, W. K. and C. L. Seitz. 1989. Variants of the Chandy-
Misra-Bryant distributed discrete-event simulation al-
gorithm. In Proceedings of the SCS Multiconference on
Distributed Simulation, volume 21, pages 38-43. SCS
Simulation Series, March.

Tallieu, F. and F. Verboven. 1991. Using Time Warp
for computer network simulations on Transputers. In
Proceedings of the 24th Annual Simulation Symposium,
volume 21, pages 112-117. IEEE Computer Society
Press, April.

Thomas, G. S. and J. Zahorjan. 1991. Parallel simula-
tion of performance petri nets: Extending the domain
of parallel simulation. In 1991 Winter Simulation Con-
ference Proceedings, pages 564-573, December.

Turner, S. and M. Xu. 1992. Performance evaluation
of the bounded Time Warp algorithm. In 6 Work-
shop on Parallel and Distributed Simulation, volume 24,
pages 117-128. SCS Simulation Series, January.

Wang, J. J. and M. Abrams. 1992. Approximate time-
parallel simulation of queueing systems with losses. In
Proceedings of the 1992 Winter Simulation Conference,
pages 700-708.

Wieland, F. and D. R. Jefferson. 1989. Case studies in
serial and parallel simulation. In Proceedings of the
1989 International Conference on Parallel Processing,
volume 3, pages 255-258, August.

Wieland, F., L. Hawley, A. Feinberg, M. DiLorento,
L. Blume, P. Reiher, B. Beckman, P. Hontalas, S. Bel-
lenot, and D. R. Jefferson. 1989. Distributed combat
simulation and Time Warp: The model and its perfor-
mance. In Proceedings of the SCS Multiconference on
Distributed Simulation, volume 21, pages 14-20. SCS
Simulation Series, March.

Yu, Q., D. Towsley, and P. Heidelberger. 1989. Time-
driven parallel simulation of multistage interconnection
networks. In Proceedings of the SCS Multiconference
on Distributed Simulation, volume 21, pages 191-196.
SCS Simulation Series, March.

