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ABSTRACT

We consider methods for simultaneously estimat-
ing the gradient (resp. sensitivity) of J with re-
spect to a continuous (resp. discrete) parameter
6. While one can always estimate a derivative (or
sensitivity) by performing two distinct simulations
at different values of # (and forming the estimate
(Jor — Jo,)/ (68" — 6)), here we focus on methods
which compute estimates from a single sample path
(though multiple replications can be used to reduce
variance and compute confidence intervals). When
applicable, these single run methods are often com-
putationally more efficient. They also have applica-
tions beyond simulation (e.g. in on-line optimiza-
tion and control).

1 Introduction

In this paper, we give a tutorial overview of meth-
ods for estimating gradients and sensitivities of per-
formance measures themselves estimated via simu-
lation. We focus on single run methods—where the
estimates can be computed from a single simulation
run.

To fix the basic idea, let X denote an expo-
nentially distributed random variable with mean 6.
Letting F denote its distribution, we can write its
expectation in the usual way as

E[X]:/ zde(z,O)z/ xle"r/adr.
x o 0

Assuming we can interchange differentiation and in-
tegration, the derivative dE[X]/df can be written

dE[X]

d
== - ﬁ/xxde(z,B)
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This gives the derivative as the expectation of a
function of X' with respect to the original proba-
bility distribution of X. Thus we can estimate the
derivative dE[X]/df from samples {z1,...,z,} of

X by
12" z; 1
Ei:lxi [9—2_6] .

This is the basis of the likelthood ratio (LR) method
(also called the score function method).
Alternatively, we can view .X as being gener-
ated from a uniform random variable U via the in-
verse transform method (the usual case in simula-
tion). Then z(u) = F~!(u) = —fIn(1 — u) and we
can write the expectation with respect to U as

1
E[X]= / F~Yu)du= / [—01n(1 — u)] du.
U 0
Again, assuming we can differentiate through the

integral, we can write the derivative as

EX] _ d

20 z(u)du

do
/U:—QF_I(u)du
1
/ [-In(1 = u)] du
0

B EC
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Again we have the derivative as the expectation of
a function of X, but now the expectation is with
respect to an underlying, parameter-independent
distribution (the uniform). This is the essential
idea underlying infinitesimal perturbation analysis
(IPA).

In both the above methods, we obtain an esti-
mator by differentiating the expectation integrand
and in both cases we get an estimator which is a
function of the observation z. They differ in the
way we write the original expectation. In the LR
approach, the parameter 4 appears in the probabil-
ity measure, whereas in the IPA case it appears in
the observation functional. Straightforward calcu-
lations show that both estimators are unbiased.

It is useful to contrast these approaches with
a finite-difference (FD) approach based on simula-
tion runs at two different values of §. The single
run methods avoid both the “twin numerical evils”
of approximation error (approximating the slope of
a curve by its secant) and numerical noise (dividing
by small Af). Any FD method involves a tradeoff
between these two effects. In addition, the compu-
tational cost of the single-run estimators is gener-
ally much less than the cost of an additional simu-
lation run. This last effect is magnified if multiple
derivatives are of interest (i.e. when 6 is a vector
of parameters).

The key issues in applying these methods are:

e When do they “work”, i.e. yield unbiased and
consistent estimators?

e How well do they work, i.e. what is the vari-
ance of the resulting estimators? When both
methods work, which should we use?

e How can we calculate the estimators for per-
formance measures defined on sample paths of
the stochastic processes typically generated in
simulation?

The following sections explore these questions. The
quick answers are as follows. The question of unbi-
asedness reduces to justifying the interchange of dif-
ferentiation and integration used in deriving both
estimators. Roughly, this is valid if the integrand
is continuous in the parameter @ for each z. This
condition is much more broadly satisfied for prob-
ability measures than for observation functionals,
so the LR method has wider applicability. On the
other hand, the variance of IPA estimators is typi-
cally much smaller than that of LR estimators. In

some simple cases it can be shown that the IPA esti-
mator has the smallest variance among all sample-
based estimators. In both cases, consistency of the
estimators, as the sample path length (i.e. simu-
lation run duration) increases, requires some form
of regeneration of the estimator process. Both esti-
mators can be calculated recursively via relatively
straightforward methods.

Thus far we have considered a distributional
parameter which was continuous. A different ap-
proach is required for structural parameters which
are typically discrete. Examples include buffer ca-
pacities and routing thresholds. Here we must es-
timate sensitivities as in the finite difference ap-
proach. Given an observation .X(6), we want to
construct an observation of X (8 + A#). In the sim-
ulation context, this means using the information
contained in a sample run at 6 to construct a sam-
ple path corresponding to 8 + Af@. The principle
idea involves the separation of the event generation
process from the state updating process. In many
cases, systems which differ in a structural parame-
ter have similar event processes and we can trans-
form the event process characterized by 6 to obtain
an event process consistent with  + Af. We can
then apply this process to the state update mecha-
nism for the 8 + A system.

Example 1 Consider a single server queueing sys-
tem of capacity # where the server is autonomous,
1.e. 1t performs a service activity whether customers
are present or not. Assume that we are interested
in the sensitivity of customer waiting time with re-
spect to #. The arrival and service processes are
clearly independent of # and thus have the same
probability law for all . If we simulate one such
system we can use the resulting event process to
simultaneously generate state trajectories for any
other values of § and compute the associated av-
erage customer waiting time. In fact we can com-
pute any performance measure of interest. As com-
pared to distinct simulations, we save the compu-
tational costs of random number generation, event
scheduling, and event list management. Moreover,
this approach could be easily applied on-line, where
the event process is generated by an actual system
rather than a simulation.

Generalizations of this approach involve for-
mulating a fictitious system whose event process
can easily be transformed to any of a parametric
family of processes. This is the idea behind the
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augmented system method and the standard clock
approach. These techniques are readily adapted
to massively parallel simulation on SIMD super-
computers (such as the Connection Machine) where
each processor simulates a parametric variant of the
system.

The outline of this paper is as follows. In Sec-
tion 2 we develop the LR and IPA estimators in
more detail and describe their implementation in a
simulation. In Section 3 we discuss sensitivity esti-
mation for discrete parameters and describe tech-
niques for efficient simultaneous generation of sam-
ple paths at a set of parameter values. Section 4
concludes with a brief overview of the literature.

2 Gradient Estimation

The general gradient estimation process in simula-
tion involves extending the ideas above to stochas-
tic processes. In the likelihood ration method, this
extension is straightforward—in a sense. While the
formulation and calculation of the derivative esti-
mator is simple, the resulting estimator has poor
variance properties—the variance is monotonically
increasing in the length of the simulation run. Thus
some modifications to the basic approach are re-
quired, which imposes limitations on the class of
systems which can be handled.

The formulation of IPA estimators for perfor-
mance measures based on stochastic processes is
somewhat more complex. The key idea is to model
the system by a generalized semi-Markov process
(GSMP), which represents a sample path by a se-
quence of (state,holding-time) pairs. The evolution
of this sequence is given recursively in terms of the
input sequences of random variables (e.g. interar-
rival times and service times) by a set of dynamic
equations. We differentiate these equations to ob-
tain recursive equations for the sequence of holding-
time derivatives, from which we can calculate the
performance derivative.

2.1 Likelihood Ratio (LR) Methods
As in the introduction, we write the expectation of

interest as

E[L(X)] = /X L(2)dFx(z,0)
dE[X]

do

6o

= lim

860 0 — Bo [/x L(z)dFx(z,0)
_ /x L(z)de(;c,oo)]

The key “trick”, borrowed from importance sam-
pling, is to rewrite the first integral as an expec-
tation with respect to the distribution Fx(z,6o).
Then assuming we can interchange the limit and
integral, we get

dE[X]
b |,
= Jim ﬁ [ /X L(z)a%%de(x,eo)
- / L(r)de(:c,Ho)]
* dFx(s.8) _ 4
= /X L(z) Jim EFX—;’_"(;T- dFx(z, fo).
(1)

The likelihood ratio appearing in the above equa-
tions gives the method its name. Defining

APx(f)

-1
T dFx(z,00)
1/’(1', 00) - oll'n;o 0 — 00
we get
dE[X
_% - / L(z)¥(z, 80)dFx(z,00)  (2)
8o X

which is similar to the basic formula of importance
sampling and can be thought of its extension to
derivatives. A different but equivalent formulation
of ¢ is based on the observation that

9 (3]
S0
dE[X] 0
6 |, /)(L(x)%de(-’ﬂ,a)
= /L(z)?—lnde(:c,G)de(r,B).
X o4
Defining

¥(z,8) = (8/80) In dFx(z,6),
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we get (2). Modulo some regularity conditions,
these expressions for v are equivalent.

Given samples {z!,...,z"} of the random se-
quence z, we compute our estimator as

Ly 1t o)
k=1

To compute 1, we need dFx. Typically, the z;
are independent (think of independent interarrival
times and service times), so dFx = [] ; dFx;. Then

Y(z*,0) = (8/00)In [] dFxx(zf,0)

= i(a/ao)lnde,.(xf,a) (3)

i=1

= E "»b(xslc’ a)v

i=1

so the problem reduces to obtaining expressions for
9 for each of the simulation input distributions.
During the simulation we evaluate the appropri-
ate expression for each random variate generated,
accumulating the results. At the end of the sim-
ulation, we multiply the result by the sample per-
formance L(z) computed over the simulation run.
Thus the implementation of the LR estimator is ex-
tremely simple. Note that random variables which
do not depend on 6 can be ignored. They “cancel”
in (1) and evaluate to zero in (3). So we can es-
timate derivatives for extremely complex systems
with minimal computational cost if only one com-
ponent process depends on 8.

Mitigating these positive features, note that
the expression for ¢ is a sum of random terms; thus
its variance will grow with increasing n (which cor-
responds roughly to the “length” of the simulation
run). Since, at the same time, it is reasonable to
expect L(z) to be converging to a constant, it is
apparent that the variance of the likelihood ratio
derivative estimator will grow uncontrollably with
n. There are a few ways of dealing with this. First,
we make make short simulation runs. If initial-
ization bias is not significant, or the performance
measure is inherently finite horizon, then this may
suffice. Alternatively, if the system is regenerative,
i.e. a sample path may be broken into a sequence
ofi.i.d. “cycles”, then we can compute and average
the derivatives of the individual cycles. Then the
variance will decrease inversely with the number of
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cycles. For example, the single server queue regen-
erates with an arrival to an empty queue. If we
are interested in the derivative of the time-average
customer sojourn time, we can compute the deriva-
tive for each busy period and average. Although
many systems do not regenerate in the usual sense,
they can often be show to regenerate in a more
generalized sense. For example, if each distribution
can be expressed as a random mixture (composi-
tion) of an exponential and some other distribution,
then we can generate variates so that each variate
will be exponential with some probability. If we
now consider any fixed state, then a geometric tri-
als argument shows that the system will regenerate
with some probability each time the state is en-
tered. More general forms of regeneration are also
possible. Finally, several approximations have been
developed which break the sample path into cycles
a la batch means, ignoring the coupling between
cycles.

2.2 Infinitesimal Perturbation Analysis
(IPA)

Let u := {uy,us,... u,} denote the finite sequence
of uniform random variates generated during a sim-
ulation run and z := {z,,z,,... z,} the sequence
of generally distributed variates generated from u.
Further, let L(z) denote the sample performance
measure computed by the simulation. As in the
introduction, we write the expectation as

E[L(X)] = /U L(z(u))du
where now

z(u)

{z1(u1), z2(u2), ... n(un)}
{Fx}(w1), Fx}(u2), ..., Fx}(un).

Again, assuming we can differentiate through the
integral, we can write the derivative as

T2 = [ e

so our task is to compute dL(z(u))/df. To see how
this is done, consider the following simple example.

Example 2 Let W; denote the system time of cus-
tomer i in a single server queue, and let {4;} and
{B;} the interarrival time and service sequences,
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respectively. The classical Lindley Equation gives
Wi recursively in terms of {4;} and {B;} as

I’V’,.‘_l =

Wi—Aix1+ B W;—Aip1+Bi >0
0 otherwise.

Formally differentiating both sides, we get

dWiy,
de
{dgg %ﬂ+ﬂ; Wi—Aiy1+ B >0
otherwise.

This gives us the waiting time derivative recursively
in terms of elementary random variable derivatives.
These latter derivatives can be easily calculated in
several ways. For example, if the distribution func-
tion F4 is continuous and strictly monotone, we
can write,

da d
@, = @ (@
= G|

Alternatively, if F(a,#) is continuously differen-
tiable in both arguments, then

Oa _ OF(a,0)/00
06 ~ OF(a,0)/8a’

More generally, let X; be a stochastic process,
and let the performance measure be given by

L= /0 " F(X)dt

where t, is the occurrence time of the nth event.
In typical simulation situations X; is piecewise
constant and can be represented by the sequence
{(si,t:)}i=12,.., where s; is the ith state visited by
X; and t; is the epoch of the jump to s;. Then L,
becomes

L,= ;f(si)(ti —ti_1).

We define the sample derivative as

dLn _ Z fs:)

dti dt, 1 )

Under conditions to be discussed below, this is an
unbiased estimator of dE[L,]/d§.

It remains to describe how dt; can be com-
puted. We do this by formulating {(s;,¢;)} as a
GSMP. A GSMP is essentially a mathematical for-
malization of the process of discrete-event simula-
tion. For simplicity we will consider only GSMPs
with deterministic transitions, a class which in-
cluded queueing networks with deterministic rout-
ing. Such a GSMP is specified by (S, E,d, F),
where S is a discrete set of states, E a finite set
of event-types, d a function on S x E which speci-
fies the state which X; jumps to when event e € F
occurs in astate £ € X, and F = {F.}.cE is aset of
distribution functions—one for each event-type. In
a typical application, each event-type corresponds
to a particular arrival process or service process,
and F, is the associated renewal distribution (of
interarrival times or service times). Note that d is
usually a partial function—not all events can oc-
cur in each state—so let E(s) denote the subset of
E for which d(s,e) is defined, i.e. the set of pos-
sible events in state s. Given this specification, a
set of recursive equations specifies the construction
of {(si,t;)} from sample sequences from each F,.
Define the following notation

a(e, k) the kth sample variate from F,
€n the n-th event
tn the epoch of the n-th event;
Th t, — tp—1; the holding time in s,
Cn = {Cale):e€ E(s;)}, where Cp(e)

is the remaining clock time for e
at t,

N(s';s,e) = E(s)\(E(s)—{e}), the set of new
events followmg a transition from
stos
triggered by event e;

O(s';s,e) = E(s)N(E(s)—{e}), the set of old

events at such a transition.

the number of instances of e

among ey, ..., e,

N(e,n)

C, corresponds to the state of the event-list at
epoch n in a discrete-event simulation of X;. Given
an initial state s1, {(s;,t;)} is given recursively by

Initialization:

Ci(e) afe, 1) for e € E(sy)

n = min C(e
! e€E(sy) 1()
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= in C
L T
th = 1
N = ¢ 65
€ - 0 otherwise
Fvolution:
Sn == d(sn—l,en—l)
Cn(e) =
X(e,N(e,n—=1)+1), if e € N(sn;8n-1,€n-1),
Cn-1(€) — Tn-1, if e€O(snisn_1,6n-1);
Th = min Cn(e)§
e€E(sn)
e, = arg eerg(iilﬂ ) Cn(e);
tn = tn_l + Tn
_ Ne.n—-1)+1, if e=e,,
N(e,n) = { N(e,n—1), otherwise.

These equations can be regarded as a generalization
of the Lindley equation. We define the derivative
sequence by simply differentiating these equations.
This yields

dCp(e)
e
e Men=DF) - if e € N(sn;5n-1.€n-1),
dncale) _ drast if e € O(sn;5n-1,€n-1);
dr,  dCu(en) .
P do
dt, _ dt,_, dm
W - a6 T a

Having defined this derivative, we now consider
when it is an unbiased estimator of dE[L,]/df. As
noted in the introduction, this question essentially
reduces to the continuity of the sample path perfor-
mance with respect to 6. This question is addressed
in detail in Glasserman (1990). Intuitively, the idea
is as follows. First, we assume that each sample
from each F. i1s continuous in 6. This is true, for
example, if € is a scale or location parameter and
variates are generated by inversion (as in the exam-
ple in the introduction). Then small changes in
produce small changes in the a(e, k). Inspection of
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the dynamic equations shows that each #; is the sum
of a finite subset of the a(e, k). Moreover, Each C;
is determined by the a(e, k) and past values of ¢;,
so small changes in 6 will cause small changes in
t;, and thus the C;. For sufficiently small changes
in C;, the state sequence will be unchanged. Small
changes in the t; along with no change in s; means
a small change in L,,. On the other hand, this only
holds for sufficiently small Af. For any fixed A6,
the set of sample paths for which the above argu-
ment does not hold has positive probability. These
discontinuities result from changes in the result of
the "min” operations, and thus the event sequence.
In sum, events will interchange order. Assume that
the transition function d satisfies the following two
conditions:

Al Ife, e’ € E(s) with e # ¢, then e € E(d(s,¢'),
and

A2 d(d(s,e),e') =d(d(s,e'),e).

The first condition is referred to as non-
interruption, and means that once an event be-
comes active (i.e. in E(s)) it remains active until it
occurs. The second condition is called the commut-
ing condition and says that each s; is independent
of the order of the preceding events. The commut-
ing condition implies that the effect of an event
order interchange is to change the state during the
interval between the events. But the continuity of
the t; ensures that this interval is small. Thus the
effect on L, is small and L, is continuous in 6.
Under conditions (Al) and (A2), the IPA estima-
tor will be unbiased (presuming continuity of the
ale, k)).

One can largely determine if an IPA estimator
1s unbiased by considering the effect of event order
interchanges. If the interchange of events which
are infinitesimally spaced in time causes a jump
in the performance measure of interest, then IPA
will be biased. Thus IPA will be biased for L,, for
queueing systems with finite buffers. In addition,
IPA will generally be biased when the performance
measures involve hitting times (e.g. the length of a
busy period).

3 Sensitivity Estimation

In this section we consider estimating performance
sensitivities with respect to discrete parameters,
such as buffer capacities. This implies estimating
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the system performance at two or more values of .
We can pose this problem in two ways:

1. Given a simulation sample path at parameter
6, how can we use the information it contains
to construct a sample path at 6’7

2. How can we efficiently generate sample paths
at multiple values of 8 simultaneously?

So-called “cut & paste™ (C&P) methods address
formulation 1 while the standard clock (SC) ap-
proach begins with formulation 2. As mentioned in
the introduction, both techniques rely on the sep-
aration of the event process from the state update
process. Given the GSMP formulation developed
above, observe that the components (S, E, d) con-
stitute an automaton describing the state transi-
tion behavior of the system. This automaton makes
transitions in response to an event process consist-
ing of the “superposition” of the individual renewal
process characterized by F. The dependence of the
event process on the automaton is captured by E(s)
which, roughly speaking, switches the renewal pro-
cesses on and off as a function of the state.

The goal of the methods described in this sec-
tion is to construct, for each value of 8, an event
process with a probability law characterized by 6.
This event process is then used to update the state
for each system individually. The key idea is to ef-
ficiently “merge” the generation of these individual
event processes.

3.1 “Cut & Paste” Methods

C&P methods do exactly that—they “cut out” por-
tions of the event process and “paste” the remain-
ing pieces together. Cutting corresponds to delet-
ing the associated events in a time interval, and
pasting corresponds to shifting the time of the sub-
sequent events by the size of the deleted interval.
This process is based on characterizing the proba-
bility law of an event process by (E(s), {ac}ecE,),
where E(s) is the set of active events (as described
above) and a, is the age, or backward renewal time
of event e. This information suffices to character-
ize the probability law of the type of the next event
and the time until it occurs. Note that the age of
Poisson event processes can be ignored due to the
memoryless property.

Given the event process corresponding to 8, we
simultaneously update s; and t; for the 8’ system as
long as the characterizations are identical. When

the characterizations deviate, we suspend the up-
dating of the §’ system until they again coincide.
This simple idea is surprisingly effective. Consider
the M/G/1/6 system (6 is the buffer capacity) and
let (s,s’) denote the joint state of the # and 6 + 1
system. If we cut the interval from the time (s, s’)
enters state (0, 1) until the § system exits state 0,
then the resulting event process satisfies the prob-
ability law of the 6 + 1 system. Note that the
cut points need not coincide with event occurrence
epochs. This latter fact allows us to extend the
above idea to the G/G/1/6 queue to construct the
event process for § — 1. We cut from (s, s’) = (0,1)
until the 8 system is in state 0 and the arrival age
matches the value at the cut point. Of course the ¢
system may make some number of visits to state 0
before the age condition can be satisfied, but under
mild conditions, the expected number of visits will
be finite. In general, the C&P method may be used
when E(s) contains no more than one non-Poisson
event process, and each F(s) which occurs in the
6’ system also occurs in the 6 system (a few minor
technical conditions must also be satisfied). The
G/G/1/6 example just mentioned shows that this
condition is not necessary.

3.2 Standard Clock Methods

When all the F, are exponential, the character-
ization reduces to the set E(s) so we cut when
E(s') # E(s). This suggests generating an “aug-
mented” event process containing all the events in
E(s)UE(s"). This is the idea behind the augmented
system approach. The natural extension of this idea
when a large number of values of § are to be eval-
uated, is to generate an event process with all the
events in U; Ey,, where Ejp, is the set of events for
the system at ;. Thus, event e is active if it is
active in any of the system variants. From the
perspective of a particular system, this is a form
of uniformization. Notice that the Poisson inten-
sity of this aggregate process is constant. Let m,
be the mean of F. and define M = ", m, and
A = },(1/m.), where the sums are taken over
all events in the aggregate process. We can gen-
erate the process by first generating a sequence of
exponential variates {w;} with mean 1 (this is the
standard clock). We then set ; = Mw; and ¢; = e
with probability 1/(m.A) (recall that 7; is the ith
interevent time and e; the ith event). This event
process can be used to update the state for each
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variant with the proviso that events not in a vari-
ant’s E(s) are ignored by that variant.

The standard clock approach is effectively lim-
ited to Markovian systems. On the other hand,
it fits nicely with parallel simulation on mas-
sively parallel supercomputers of the SIMD (single-
instruction, multiple-data) architecture. These
computers consist of a front-end computer that gen-
erates instructions which are executed simultane-
ously by an array of processors—each with its own
data. In implementing a parallel simulation we can
use the front end to generate the event process and
associate each processor with a distinct parametric
variant of the system. The processor array updates
the state and computes the performance of all the
variants simultaneously. Note that this approach
differs substantially from older paradigms of par-
allel simulation which use multiple processors to
generate a single sample path. The multiple sam-
ple path approach is appropriate when we need to
explore the performance at a large number of pa-
rameter settings—a common situation in optimiza-
tion settings, particularly when € is a vector. Note
that we trivially obtain O(n) speedup.

4 Literature Overview

In these notes we emphasize references for further
study of the above techniques rather than a chrono-
logical accounting of their development. The stan-
dard reference on IPA is now the book by Glasser-
man (1991). Many extensions exist. See the book
by Ho and Cao (1991) and the papers by Ho (1987),
Suri (1989), Gong and Ho (1987), Glasserman and
Gong (1990), Shi (1992), and Gong, et. al. (1992).
Unbiasedness and consistency properties are stud-
ied in Cao (1985), Heidelberger (1988), Suri & Za-
zanis (1988), Glasserman (1991), Hu & Strickland
(1990), Glasserman, et al. (1991), Hu (1992), and
Glasserman (1993). The GSMP is described in
Glynn (1989) who also formulates the random re-
generation idea described at the end of Section 2.

The likelihood ratio method is described in
Rubinstein (1989), Reiman and Weiss (1998), and
Glynn (1987). Reiman and Weiss (1998), Zhang
& Ho (1989, 1991) and Rubinstein (1992) present
variance reduction modifications. See also the new
book by Rubinstein & Shapiro (1992).

The Cut & Paste approach was first presented
in Ho & Li (1987), with subsequent developments
in Cassandras and Strickland (1989a, 1989b, 1989¢)
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and Ho et. al. (1988). The standard clock
was described in Vakili (1991) and its adaption to
massively parallel simulation is detailed in Vakili
(1992).
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