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ABSTRACT

This paper reviews advanced statistical methods for
analyzing output data from computer simulations
of single systems. In particular, it focuses on the
problems of choosing initial conditions and estima-
tion of steady-state system parameters. The estima-
tion techniques include the replication/deletion ap-
proach, the regenerative method, variations of the
batch means method, the autoregressive method, the
spectral estimation method, and the standardized
time series method.

1 INTRODUCTION

The primary purpose of most simulation studies is
the approximation of certain system parameters with
the objective of identifying parameter values that op-
timize some system performance measures. If some of
the input processes driving a simulation are random,
then the output data are also random and runs of
the simulation program only give estimates of system
performance characteristics. Unfortunately, a simula-
tion run does not usually produce i.i.d. observations;
therefore “classical” statistical techniques are not di-
rectly applicable to the analysis of simulation output.

A simulation study consists of several steps such as
data collection, coding and verification, model valida-
tion, experimental design, output data analysis, and
implementation. This paper focuses on the use of
output data for estimating system performance mea-
sures.

There are two types of simulations with regard to

output analysis:

1. Terminating (or iransient) simulations. The ter-
mination of a transient simulation is caused by the
occurrence of an event E. An example is the simu-
lation of a production system until a given machine
breaks down.
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2. Nonterminating (or steady-state) simulations.
The purpose of a steady-state simulation is the study
of the long-run behavior of the system of interest. A
performance measure of a system is called a steady-
state parameter if it is a characteristic of the equi-
librium distribution of an output stochastic process
(Law and Kelton 1991). An example is the simula-
tion of a continuously operating communication sys-
tem where the objective is the computation of the
mean delay of a data packet.

Section 2 discusses methods for analyzing output
from terminating simulations. Section 3 reviews ap-
proaches for removing bias due to initial conditions
in steady-state simulations. Section 4 presents tech-
niques for point and interval estimation of steady-
state parameters. Finally, section 5 contains conclu-
sions and recommendations for additional studies by
the interested reader.

2 TERMINATING SIMULATIONS

We start with the output analysis methodology for
terminating simulations. Suppose that we simulate a
system until m output data X;, X,,..., X,, are col-
lected with the objective of estimating p = E(X ),
where X, = L 357 X; is the sample mean of the
data. For example, X; may be the transit time of
unit ¢ through a network of queues or the total time
station 7 is busy during the ith hour. Clearly, X,,
is an unbiased estimator for p. Unfortunately, the
X;’s are generally dependent random variables mak-
ing the estimation of the variance Var(X,,) a non-
trivial problem. In many queueing systems the X;’s
are positively correlated making the familiar estima-
tor S2(m)/m = S_iv  (Xi — X m)?/[m(m—1)] a highly
biased estimator of Var(X p,).

To overcome this problem, one can run n in-
dependent replications of the system simulation.
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Assume that run i produces the output data
Xi1, Xi2, ..., Xim. Then the sample means

m
IS
m -_—
are 1.i.d. random variables,

— 1

is also an unbiased estimator of yu, and

MR TR - VA,
VR—n_lg(Y, Y.)

is an unbiased estimator of Var(X,,). If in addition m
is sufficiently large, an approximate 100(1—«) percent
two-sided confidence interval for @ is

pEY, tta_1,1-a/2\ Vr/n, (1)

where 14 represents the y-quantile of the ¢ distribu-
tion with d degrees of freedom.

Law and Kelton (1991) review sequential proce-
dures for determining the number of replications re-
quired to estimate y with a fixed error or precision.
Their procedure for obtaining an estimate with a rel-
ative error | X, — p|/|u| < v and a 100(1 — @) percent
confidence interval has performed well for initial sam-
ple size ng > 10 and v < 0.15. A well-known sequen-
tial procedure for constructing a 100(1 — «) percent
confidence interval for p with a small absolute error
|Xm — p| < B is due to Chow and Robbins (1965)
(see also Nadas 1969). Law (1980) observed that the
procedure is very sensitive to the value of 3.

The method of replications can also be used for
estimating performance measures other than means.
For example, suppose that we want to estimate the
p-quantile, say y,, of the maximum queue size in a
single-server queueing system during a fixed time win-
dow. We run n independent replications, denote by
Y; the maximum observed queue length during repli-
cation ¢, and let ¥{1), Y{(2), - . ., ¥(n) be the order statis-
tics corresponding to the Y;’s. Then a point estimate
for y, is

A Y(np) if np is an integer
Yp Y({np+1)) otherwise

and a confidence interval for y, is described in Welch
(1983, pp. 287-288).

3 INITIALIZATION PROBLEMS FOR
STEADY-STATE SIMULATIONS

One of the hardest problems in steady-state simula-
tions is the removal of the initialization bias. Suppose
that X;, Xo,... is a discrete-time output stochastic
process from a single run of a steady-state simula-
tion with initial conditions I and assume that, as
m — o0, P(Xm < z|I) » P(X < z), where X
is the corresponding steady-state random variable.
We consider the estimation of the steady-state mean
g = limy, 00 E(Xm|I). The problem with the use of
the estimator X, for a finite m is that E(Xn,|I) # p.

The most commonly used method for eliminating
the bias of X,, identifies a index 1 < I < m -1

and truncates the observations X1,..., X;. Then the
estimator
- 1 -
Xm,l = _m—I Z Xz
i=l41

is generally less biased than X,, because the initial
conditions primarily affect data at the beginning of a
run. Several procedures have been proposed for the
detection of a cutoff index ! (see Fishman 1972; Ga-
farian, Ancker, and Morisaku 1978; Kelton and Law
1983; Schruben 1982; Schruben, Singh, and Tierney
1983; Wilson and Pritsker 1978a,b). Unfortunately,
these procedures do not appear to work well in prac-
tice. The procedure of Kelton (1989) uses a pilot run
to estimate the steady-state distribution and starts
a production run by sampling from the estimated
distribution. A more sophisticated truncation rule
has recently been proposed by Chance and Schruben
(1992).

We now briefly discuss the graphical procedure of
Welch (1981, 1983) which is simple and general. An-
other graphical method has been proposed by Fish-
man (1978a,b) in conjunction with the batch means
method (see section 4.3). Welch’s method uses n in-
dependent replications with the ith replication pro-
ducing observations X;1, X2, ..., Xim and computes
the averages

_ 1< )
ijzz:X..j ji=1,...,m.

Then for a given time window w, the procedure plots
the moving averages

Yj(w): 2w+1 Zk——w XJ+k w+.1SJ'Sm—w
2j— IZk—_J+1XJ+k IS] Sw

against j. If the plot is reasonably smooth, then [ is
chosen to be the value of j beyond which the sequence
of moving averages converges. Otherwise, a different
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time window is chosen and a new plot is drawn. The
choice of w is similar to the choice of an interval width
for a histogram.

4 STEADY-STATE ANALYSIS

Several methods have been developed for the estima-
tion of steady-state system parameters. Below we
briefly review these methods and provide the inter-
sted reader with an extensive list of references. We
focus on the estimation of the steady-state mean p of
a (discrete-time) output process {X;,i > 0}. Anal-
ogous methods for analyzing continuous-time output
data are described in a variety of texts (Bratley, Fox,
and Schrage 1987; Fishman 1978b; Law and Kelton
1991). The process {X;} is called strictly station-
ary if the joint distribution of X;4;,, Xi4j,, - -, Xitjs
is independent of ¢ for all indices ji,Js2,...,Jk. If
E(X;) = p and Var(X;) = ¢2 < oo for all 7, and the
Cov(Xj, Xi+j) is independent of ¢, then {X;} is called
covariance-stationary.

4.1 The Replication/Deletion Approach

This approach runs n independent replications each
of length m observations and uses the method of
Welch (18981, 1983) to discard the first | observa-
tions from each run. One then uses the i.i.d. sample

means
1 m
i PIR
j=l+1

to compute point and interval estimators for the
steady-state mean p (see section 2). The method
works well if m is sufficiently large and is character-
ized by its simplicity and generality.

4.2 The Regenerative Method

This method assumes the identification of time in-
dices at which the process {X;} probabilistically
starts over and uses these regeneration epochs for ob-
taining i.i.d. random variables which can be used for
computing point and interval estimates for the mean
p. The method was proposed by Crane and Igle-
hart (1974a, 1974b, 1975) and Fishman (1973, 1974).
A complete treatment of the regenerative method is
given in Crane and Lemoine (1977). More precisely,
assume that there are (random) timeindices 1 < T <
T, < --- such that the portion {Xr, + j,j > 0} has
the same distribution for each ¢ and is independent
of the portion prior to time T;. The portion of the
process between two successive regeneration epochs is
called a cycle. Let Y; = Y74 X;j and Z; = Tiyy T

for i = 1,2,... and assume that E(Z;) < oo. Then
the mean g is given by

u= O
E(Z1)

Now suppose that one simulates the process {X;}
over n cycles and collects the observations Y1,..., ¥,
and Z,...,2Z,. Then

.Y,
,'l' - 7n

is a strongly consistent, although typically biased for
finite n, estimator of u. Furthermore, confidence in-
tervals for u can be constructed by using the random
variables Y; — uZ;,i = 1,...,n and the central limit
theorem (see Iglehart 1975). For small sample sizes
and bounded Y; and Z;, one can compute the con-
fidence interval in Alexopoulos (1993) which provide
superior coverage over confidence intervals based on
the central limit theorem at the expense of increased
width.

The regenerative method is difficult to apply in
practice because the majority of simulations have ei-
ther no regenerative points or very long cycle lengths.
A class of systems the regenerative method has suc-
cessfully been applied to are inventory systems.

4.3 The Batch Means Method

The method of batch means is frequently used to
estimate the steady-state mean g or the Var(X,,).
Basic references on the method are Conway (1963),
Fishman (1978a,b), Law and Carson (1979), and
Schmeiser (1982). The method divides the output
X1,...,Xm of a long simulation run into a number
of contiguous batches and uses the sample means of
these batches (or batch means) to produce point and
interval estimators.

Specifically, we assume that the process {X;} is
covariance-stationary with Cov(X;, X;4;) = C; and
split the data into n batches, each consisting of k ob-
servations (assume m = nk). The ith batch consists
of the observations

X(i-1)k41, Yi-1)k42) - - » Xik

fori=1,2,...,n and the ith batch mean is given by

k
D X1+
i=1

Since the process is covariance-stationary, it can be
shown that

Ci(k) = Cov[}’i(k),Y}+1(k)]
= 1oL (- ]%l) Clie+

Yi(k) =

El
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independently of i. Therefore, if the autocovariance
function {C}} is such that Ci(k) — 0 as k increases,
we can identify a batch size k for which the batch
means Y;(k), ¢ = 1,...,n are approximately i.i.d.
normally distributed. Then we form the grand batch
mean

- 1 &
Y =Xm = E;n(k),

estimate the Var[Y;(k)] by
N R P = \2
Vp = m;(}’z(’“) Ya)%

and compute the approximate 100(1—a) percent con-
fidence interval for p

IS 711 itn—l,l—a/Zv VB/n

The main problem with the application of the batch
means method in practice is the choice of the batch
size k. If k is small, the means Y;(k) will be correlated
and the resulting confidence interval will frequently
have coverage below the user-specified nominal cover-
age. Alternatively, a large batch size will likely result
in very few observations and potential problems with
the applicability of the central limit theorem. An ex-
tensive study of batch size effects was conducted by
Schmeiser (1982).

A number of procedures have been proposed for
determining an appropriate batch size (see Law and
Carson 1979; Fishman 1978a,b). Below, we briefly
discuss the method of Fishman because of its sim-
plicity and applicability to other analyses as the
computation of point and confidence intervals for
mVar(X ,), the elimination of initialization bias, and
the determination of a sample size m for which
P(|Xm — p| < d) ~ 1. The interested reader should
study the revised notes for chapter 5 of Fishman
(1978b) which are available by the author on request.

The method starts with a sample size that is a
power of 2 and batches of size 1. Then it goes
through a procedure which performs a hypothesis test
for lack of autocorrelation between adjacent batch
means and successively doubles the batch size (and
halves the number of batches) until either no sig-
nificant amount of autocorrelation is detected or the
number of batches is less than 8. In the former case
the current batch size is selected while in the latter
case additional observations are collected and the pro-
cedure is repeated. Schmeiser (1982) observed that if
the autocovariance function {C}} is positive and de-
creasing, then one rarely needs more that roughly 30
batches. Fishman’s procedure detects the presence
of cyclic behavior in {C;} by computing the p-values

of the hypothesis test for all batch sizes k for which
n = m/k > 8. An increasing sequence of p-values
is indicative of a monotonically decreasing autoco-
variance function. We should point out that a plot
of the batch means is a very useful tool for checking
the effects of initial conditions, nonnormality of batch
means, and existence of correlation between batch
means.

An interesting variation of the traditional batch
means method is the method of overlapping batch
means proposed by Meketon and Schmeiser (1984).
For given batch size k, this method uses all m—k+1
overlapping batches to estimate  and Var(X ). The
first batch consists of observations Xi,..., X, the
second batch consists of Xs3,..., Xgp41, etc. Welch
(1987) noted that both traditional batch means and
overlapping batch means are special cases of spectral
estimation (see section 4.5) at frequency 0 and, more
importantly, suggested that overlapping batch means
yield optimal variance reduction when one forms sub-
batches within each batch and applies the method to
the sub-batches. For example, a batch of size 64 is
split into 4 sub-batches and the first (overlapping)
batch consists of observations X, ..., Xe4, the sec-
ond consists of observations X;7,..., Xgo, etc.

4.4 The Autoregressive Method

This method was developed by Fishman (1978b) and
assumes that the output process {X;} is covariance-
stationary with mean p and 3722 |Cj| < oo, and
can be represented by the autoregressive model of or-

der p
P

D bi(Xicj —p) =€,

j=o0

where by = 1 and {¢;} is a sequence of uncorrelated
random variables with mean 0 and variance 2. The
procedure in Fishman (1978b) determines an order p
and computes estimates b; and &2 of b; and o2 respec-
tively. Then for large m an approximate 100(1 — &)
percent confidence interval for u is

pEXm tt4,1-0/2\/ Va/m,

N o2

Vo= —————
and the degrees of freedom are computed from

d= m Z?:O 5.7

where
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The major difficulty with the use of the autore-
gressive method is the validity of the autoregressive
model. A generalization of the method was proposed
by Schriber and Andrews (1984).

4.5 The Spectral Estimation Method

This method also assumes that the process {X;} is
covariance-stationary. Under this assumption, the
variance of X, is given by

m-1
Var(X,) = 1 (co +2) (1 _j/m)cj) .

m :
ji=1

The name of the method is due to the fact that if
Y=o ICjl < o0, then mVar(X,) — 2mg(0) as
m — 00, where g()) is the spectrum of the process at
frequency A and is defined by

1 & N
sV =52 D Cee™N <,

j=—o0

where ¢ = \/—1. Therefore, for large m the estimation
of Var(X ) can be viewed as that of estimating g(0).
Estimators of this variance have the form

N T PR 4t S

Vs = — (Co + 2;%@) )
where p and the weights are chosen for improving the
properties of the variance estimator Vg. The selection
of these parameters is discussed in Fishman (1978b)
and Law and Kelton (1984). Further discussions of
spectral methods are given in Heidelberger and Welch
(1981a,b, 1983).

4.6 The Standardized Time Series Method

This method was proposed by Schruben (1983). It
assumes that the process {X;} is strictly stationary
and phi-mizing (see Billingsley 1968, p. 166). Infor-
mally, {X;} is phi-mixing if X; and X,4; are ap-
proximately independent for large j. Suppose that
the data X1, ..., Xm are divided into n (contiguous)
batches, each of size k, and let Y1(k), ..., Y, (k) be the
respective batch means. Then for sufficiently large m
the random variables

k
A=Y lm+1)/2=X6-npes i=1,..,n
i=1

become approximately i.i.d. normal and an (approx-
imate) 100(1 — «) percent confidence interval for p

p € ?n :ttn,l—a/2 \Y; VT/m3

18

where

12 <
_ 12 2
V= o

The standardized time series method is easy to
implement and has asymptotic advantages over the
batch means method (see Goldsman and Schruben
1984). However, in practice it can require pro-
hibitively long runs as noted by Sargent, Kang, and
Goldsman (1992). The theoretical foundations of the
method are given in Glynn and Iglehart (1990). Ad-
ditional developments on the method are contained in
Goldsman, Meketon, and Schruben (1990) and Golds-
man and Schruben (1984, 1990).

4.7 Quantile Estimation

A variety of methods have been proposed for estimat-
ing quantiles of steady-state data (see Iglehart 1976;
Moore 1980; Seila 1982a,b; Heidelberger and Lewis
1984). The methods differ in the way the variance of
the sample quantile is estimated. It should be men-
tioned that quantile estimation is a harder problem
than the estimation of steady-state means.

4.8 Multivariate Estimation

Frequently, the output from a single simulation run is
used for estimating several system parameters. The
estimators of these parameters are typically corre-
lated. As an example, consider the average customer
delays at two stations on a path of a queueing net-
work. In general, Bonferroni’s inequality can be used
for computing a conservative confidence coefficient for
a set of confidence intervals. Indeed, suppose that D;
is a 100(1 — a) percent confidence interval for the pa-
rameter p;, 1 = 1,...,k. Then

k
POl {meD})>1-) ;.

i=1

This result can have serious implications as for
k = 10 and «; = 0.10 the r.h.s. of the above inequal-
ity is equal to 0. If the overall confidence level must
be at least 100(1 — «) percent, then the a;’s can be
chosen so that zle a; = a. The existing multivari-
ate estimation methods include Charnes (1989, 1990,
1991), Chen and Seila (1987), and Seila (1984).

5 CONCLUSIONS

The purpose of this paper is to alert the user on a vari-
ety of issues and methodologies related to the analysis
of output data from a simulation of a single system.
Several aspects of output analysis were left out such
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as comparison of systems, design of simulation exper-
iments, and variance reduction methods. These sub-
Jects are treated in a variety of articles in this volume,
additional publications listed below, and several texts
including Bratley, Fox, and Schrage (1987), Fishman
(1978b), and Law and Kelton (1991).
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