Proceedings of the 1993 Winter Simulation Conference
G.W. Evans, M. Mollaghasemi, E.C. Russell, W.E. Biles (eds.)

SELECTING INPUT MODELS AND RANDOM VARIATE GENERATION

Russell C. H. Cheng

School of Mathematics
University of Wales College of Cardiff
Senghennydd Road
Cardiff CF2 4 AG Wales

ABSTRACT

Discrete-event simulation almost invariably makes
uses of random quantities drawn from given probabil-
ity distributions to model chance fluctuations. This
introductory tutorial discusses the basic ideas and
techniques used to obtain such random variates. The
two main points addressed are how appropriate distri-
butions should be selected to model different quanti-
ties like arrival and service times, and how the variate
values should actually be generated from the selected
distributions.

1 INTRODUCTION

This tutorial is based on the tutorial that I gave at
WSC92 (Cheng, 1992). The main points that I gave
then are unchanged, but to make this tutorial self
contained I shall discuss them here again. To avoid
being overly repetitive, I shall try to emphasise and
focus on different aspects where possible, so that this
tutorial can be taken as a supplement to the earlier
one.

The first point i1s that random variate generation,
at least in discrete-event simulation, can be readily
understood provided that the user is clear about the
basic statistical ideas; most specifically about what
constitutes a random variable and what is its proba-
bility distribution. Moreover most computer libraries
contain subroutines for generating variate values from
a wide range of distributions. Thus it is not abso-
lutely necessary for a user interested mainly in the
simulation modelling to become too concerned with
the technical details of variate generation. However
as will be shown later, there are still potential traps
and dangers in too unquestioning a use of such rou-
tines, and it is as well to have some idea of what
problems can arise so that they can be recognised
and handled properly.

There are two main aspects to be considered. The
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first is the problem of selecting appropriate distribu-
tions, or input models as they are often called, to
represent the various random quantities to be used
in the simulation model. This is the more interesting
problem from the point of view of the practitioner;
and it is also the more difficult one. The main dif-
ficulty is that there are no hard and fast rules that
can be invariably followed in selecting distributions.
Guidelines can be set down, but the precise steps to
be followed may vary in any particular instance and
these steps will need to be chosen in the light of the
experience of the practitioner. As already mentioned,
a fundamental requirement is that the user does need
to have a clear understanding of basic facts about
random variables.

The other important aspect is the mechanics of
generating random variates from given distributions
once these have been selected. This is usually fairly
straightforward in that use can be made of known
methods. Many excellent texts exist which cover the
basic methods of variate generation in far greater de-
tail than would be possible in this tutorial. I shall
try to give a brief guide which will serve as a sim-
ple introduction to more advanced texts. It is worth
pointing out that, as far as discrete event simula-
tion is concerned, relatively few theoretical distri-
butions are used in practice. The main continuous
distributions are the uniform, normal, exponential,
gamma, lognormal, Weibull, beta of the first and
second kinds, the triangular and the inverse Gaus-
sian. The main discrete distributions are the discrete
uniform, Bernoulli, binomial, geometric and negative
binomial. To these should be added those distribu-
tions which simply mimic the sampled distributions
observed in past data. The idea here is that past
records may exist of actual service times, say. If it
is believed that the service time distribution has not
changed, then an easy way of generating service times
is to sample them so that they resemble such past
records.
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The next section reviews the basic definitions of
random variables that the user should be familiar
with already. Section 3 discusses how to choose input
distributions, and Section 4 discusses how to generate
random numbers and random variates.

Good basic references which I have found useful
are Law and Kelton (1991, 2nd Ed.), Lewis and
Orav (1989) and Morgan (1984). I stress below the
dangers of uncritical use of random number genera-
tors. Though rather advanced to be recommended
as an elementary introduction, the warnings given by
IEcuyer (1992) are well worth taking on board.

Finally it is perhaps worth repeating that variate
generation in the context of simulation in statistics
1Is a much more varied topic than when it is con-
fined to discrete event simulation. This is because
non-standard distributions are much more likely to
arise, requiring in consequence more advanced tech-
niques. Lewis and Orav focus on such problems, and
the books by Devroye (1986) and Ripley ( 1987) are a
rich mine of information on these statistical aspects.

2 RANDOM VARIABLES

This section reviews elementary facts about random
variables that a user really needs to know if he/she is
to use random variates meaningfully in a simulation.

A random variable, usually denoted by X is sim-
ply a quantity that varies with the different possible
outcomes of some experiment. For instance in a sin-
gle server queue, X might be the total number of
customers served in a given period, or it might be
the waiting time of a given customer, or it might be
the time of arrival of a given customer. Notice that
X can be an input quantity (one used to drive the
simulation) or it can be an output quantity (one that
results from the experiment). In either case X will
vary according to the outcome of the experiment, and
because different outcomes occur with different prob-
abilities, this means that X will take on different val-
ues also with different probabilities. We cannot say
beforehand what the outcome of the experiment will
be, and so we cannot predict the precise value of X
that will be observed. The only thing that we can
do is to say what the probability of occurrence of any
particular value will be. In effect this is the only ques-
tion that can be asked of a random variable: what is
its distribution?

The cumulative distribution function (cdf), F(z),
is a very convenient way of defining probabilities:

F(z) = P(X < z)

where P(X < z) means the probability that, as a
result of the experiment, X takes on a value less than

—00< <00 (1)

or equal to z. If X can take on a continuous range of
values then it is called a continuous random variable,
and F(z) is written as:

Fo)= [ w f(v)dy @)

where f(z) is called the probability density function.

The value of f at z is always positive and is a mea-
sure of the relative chance of X taking a value close
to . The larger f is the greater this chance. An
important instance is the behaviour of f(z) when z
is large. This determines how often large values of X
are likely to occur - the so called ’tail’ behaviour of
the distribution.

The equation

p=F(z)

can be viewed in two ways. It gives us the probability
(often called the p-value) that X will be less than a
given z. However it can be used in its inverse form

—00< <00 (3)

z, = F7(p) 0<p<1 4)

where F~1 is the function inverse to F, to determine
z for a given p value. The resulting z, is called the
pth quantile or percentage point. An example is the
exponential distribution which has cdf F(z) = 1 -
e~**, £ >0, when (4) becomes

zp = —a"!log(1 — p). (5)

Variate generation in cases like this where the inverse
function can be written in closed form turns out to
be easy.

If X can only take a fixed set of prescribed values
Zo,Z1, &2, ...,(for example when X is the number of
customers served in a given period) then it is called
a discrete random variable. In this case (2) becomes

F(z)= ) pi (6)
z,<=z
where p; =probability that X equals z;. The quantile
is not uniquely determinable for all p values in this
case. If p = Y1_p; for some j then a range of z-
values satisfies (6). However if we set

zp = z; whenever F(z;_;)<p< F(z;) (7)

with F(z_1) = 0, then this fixes z, uniquely for all
0 < p < 1 so that (7) may be regarded as the ana-
logue of (4). An example is the Bernoulli random
variable defined by X = 1 with probability 8§, X = 0
otherwise. Here
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z, =0 if 0<p<1-6,

z,=1 if 1-6<p<l (8)

The above definitions extend to random samples of
observations. If the sample is ordered z(;) < z(2) <
... < Z(n), then the empirical distribution function
(edf) is defined as

Fn(:l:) =0 if z <z(1)

i
Fa(z)=— if 2@ Sz <z

Fa(z)=1 if zm<=z (9)

and this is the analogue of (6). The analogue of (7)
is

1 :
: <p<

. (10

Tp = Z(i) if

Slie

n

3 SELECTING INPUT MODELS

3.1 Input models

Input models or distributions are the probability dis-
tributions of random variables used to drive the sim-
ulation. As already remarked, the selection of ap-
propriate distributions to represent quantities like in-
terarrival times between customers and service times
of customers, as far as model building is concerned,
is the more interesting as well as difficult step, com-
pared with their actual generation.

There are four main cases. Consider first the situ-
ation where substantial data already exists recording
a quantity of interest such as a set of service times.
This might be available from past records, or it might
be gathered specifically for the simulation. This data
can then be used directly in the simulation. An ex-
ample is the simulation of electricity demand. This is
known to depend heavily on daily air temperature.
The observed daily temperature from past records
can be used in the simulation. This is clearly a good
approach especially if a period of observations is se-
lected containing temperatures of special interest to
the investigation, like periods of unusually low tem-
peratures, say. This method is useful if comparison
is to be made of the performance of different versions
of a system.

The second case is when available data is sparse,
but the user still wishes to make use of it in the simu-
lation. Here the so called ’boot-strap’ method can be

used. The data is used to define the edf (9), and this
is treated as being the population distribution. Vari-
ate values can then be generated using the inverse
transform described in Section 4.2 below.

The third possibility is to fit a theoretical distri-
bution to the data. This can be done whether the
data is abundant or sparse. A distribution is se-
lected that is fixed apart from a few unknown pa-
rameters. These parameters are then estimated from
the data using some appropriate statistical estimation
technique. An advantage of this method is that the
theoretical distribution can be selected to have char-
acteristics known to be possessed by the distributions
to be modelled. For example, experience shows that
many service time distributions are positively skewed,
so it makes sense to select a theoretical distribution
that is known to be positively skewed.

Using a theoretical distribution whose parameters
have been estimated raises the question of how inac-
curacies in the estimates affects the results. One pos-
sibility is to find confidence intervals for the unknown
true parameter values and then carry out simulations
at the upper and lower limits of these confidence in-
tervals.

Finally, this last technique can be extended to situ-
ations where no past data is available at all. This sit-
uation occurs if a hypothetical system is being anal-
ysed. Theoretical distributions should be selected
with enough flexibility to model the range of be-
haviour that might occur. Simulations can then be
run at different parameter value settings. The ap-
propriate way of reporting results in this case, is to
make conditional statements: ’if the conditions are
like this, then the system behaves like this’.

The two main aspects of fitting distributions are
how to estimate parameters and how to assess the
accuracy of the estimates, and we discuss them a little
more fully.

3.2 Fitting Distributions

Suppose we have selected some particular type of
distribution to be an input model. We can de-
note its pdf by f(z,0), where 6 represents a vec-
tor of unknown parameters. A specific instance
is the Weibull distribution with density f(z,6) =
af~*z*~!exp(—(z/B)*), where 8 = («,B). This is
a useful distribution for representing failure times in
that it can be skewed in either direction depending
on the value of a. We wish to estimate 8 using a
sample of observed failure times: z,,zs,...,z,. An
extremely powerful way of doing this is the method of
mazimum likelthood (ml). In many well-known cases
it is equivalent to the more elementary least-squares
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technique, but it is really more general. The likeli-
hood is simply the product of the pdf’s evaluated at
the observed values, and then treated as a function
of 6. It is usually easier to work with the logarithm
of the likelihood (loglikelihood):

L(8) = ) _log f(z:,6)
i=1

The maximum likelihood estimate, 6, is simply the
value of § which maximizes the loglikelihood. In some
cases an explicit formula for § can be obtained by
setting the derivative of L(f) to zero. However I find
that it is usually easier to use a general search proce-
dure that evaluates L(6) at different § and then pro-
gressively improves the value of L based on compar-
isons of these different values.

Under general conditions the ml estimate has the
important property that its distribution is asymptoti-
cally normal as the sample size n becomes large. This
allows confidence intervals to be constructed which
contain the unknown true parameters with prescribed
degree of confidence. Various different ways can be
used to do this. I find that the most reliable is based
on the result that

2(L(é)_L(0true)) (11)

is approximately chi-squared with p degrees of free-
dom, where p is the number of unknown parameters
being fitted. This result means that a given 6 is un-
likely to be the true one if we find that the differ-
ence 2(L(6)—L(0)) is unusually large compared with
a chi-squared variate with p degrees of freedom. We
can thus form a «100% confidence region for ;. by
taking all those values of § for which (11) is less than
xg(a), this last quantity being the upper « quantile
of the chi-squared distribution with p degrees of free-
dom.

3.3 Goodness of Fit Tests

Law and Kelton give helpful descriptions of the gen-
eral shape of different pdfs and in what applications
they might be useful. Even if carefully chosen, when
fitting a theoretical distribution to observed samples,
it is usually advisable to check that the selected dis-
tribution matches the general characteristics of the
sample.

The simplest non-technical methods are graphi-
cal ones. These compare the fitted and empirical
distribution functions by plotting one against the
other. These are known as quantile-quantile (Q-Q)
or probability-probability (P-P) plots, depending on
the precise quantities being compared. In either case

if the two functions are similar in shape the resulting
plot will be a 45° straight line. Differences show up
as deviations from this straight line. See Law and
Kelton or Lewis and Orav for more details.

A more formal method is to use a so-called
goodness-of-fit test. A good review of the many such
tests available is given by D’Agostino and Stephens
(1986). The most well-known tests are the chi-
squared and the Kolmogorov-Smirnov tests. The for-
mer is in effect a comparison of observed and fitted
densities and is usually easy to apply. Moreover the
test makes an allowance for the case when parameters
of the theoretical distribution have been fitted. The
latter compares the difference between the empirical
and fitted cdf’s. Though simple it tends to be rather
sensitive to differences in the tails. It is also less easy
to allow for the when parameters are estimated than
the chi-squared goodness-of-fit test.

The Anderson-Darling test also compares cdf’s, but
it gives particular weight to differences in the tails.
It is a sensitive test and easy to apply. However as
with the Kolmogorov-Smirnov test it is not so easy
to make allowance for the situation when parameters
are estimated.

4 RANDOM VARIATE GENERATION

4.1 Random Numbers

The term random number is always used to mean
a random variate uniformly distributed in the inter-
val (0,1), thus it has pdf f(z) = 1if 0 < =z < 1,
f(z) = 0 otherwise. In computer simulations random
variates from other distrbutions are always generated
by taking random numbers and then converting these
in some manner to the required variate. Thus random
numbers play a fundamental role in random variate
generation, and methods for producing them has been
the subject of extensive study and review. Random
numbers will be denoted by U | U; or Us.

Most computer library routines contain what are
called pseudo random number generators. These pro-
duce a sequence of numbers (lying between 0 and 1)
using a fixed formula, but which give the appearance
of being true random numbers. The definition of true
randomness is difficult and this is reflected in the fact
that there is no obvious single test that can be applied
to check if a particular pseudo random number gen-
erator i1s always satisfactory or not. In fact, as such
a generator is based on a deterministic formula, it is
clear that one can always come up with a test (simply
the formula itself!) that will predict the next number
and which therefore shows that the numbers are not
truly random. The big danger is that, in some appli-
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cation, one is unwittingly transforms the numbers in
such a way that 'unravels’ the generator so that the
quantities produced are very obviously non-random.
Ripley (1987) and Lewis and Orav (1988) give ex-
amples which show that these problems are not just
mathematical niceties which can be ignored in prac-
tice. My advice would be to follow the suggestion of
Ripley (1990) and check the following key features of
a generator before relying on it too heavily.

One obviously desirable property is that the gen-
erator should produce numbers with little computa-
tional effort, i.e. it should be fast.

A good test of randomness is to treat consecutive
blocks of k-numbers produced by a generator as be-
ing a k-dimensional point. Such points should be
uniformly and independently distributed in the k-
dimensional hypercube. There is clear evidence (see
for example I’Ecuyer, 1992) that most generators pro-
duce points that are too uniformly distributed, and
that insufficient chance clustering occurs. Moreover
in high dimensions the points no longer appear to be
independent.

All pseudo random number generators produce a
sequence of numbers which ultimately repeat. The
number of values that one gets before the numbers
start to repeat is called the period of the generator.
To be useful the period has to be large. The first most
widely used generators were of the linear congruential
type. Such generators have periods that are of the or-
der of several thousand million. With the increased
power of modern computers simulations to use up all
the numbers of such a sequence very quickly. The
most modern generators, particularly those of bit-
shift register type, produce sequences which are sev-
eral orders of magnitude longer and should probably
now be preferred.

If there 1s any doubt about the performance of a
generator - and my advice based on personal experi-
ence is to be very skeptical of library generators - a
routine should be used that one has selected oneself,
taking into account the above considerations.

Assuming that a pseudo random number generator
is available, we now consider how it can be used to
produce variates from other distributions. There are
only three methods of any generality, and we consider
each in turn.

4.2 The Inverse Transform Method

This method can be applied to both discrete and con-
tinuous variables. Equations (4) and (7) give the pth
quantile z, in terms of the probability value p. If p is
set equal to a random number, U, then x, becomes a
random variable and its cdf is

P(X <z)=P(F(U)<z) (from(4))
= P(U < F(z))
= F(z). (12)

Thus .X produced in this way has exactly the dis-
tribution that we want. In the case of the Weibull
distribution this gives the explicit formula

X = f7 [~ log(1 - U)M/*

Note that the special case a = 1, corresponding to
equation (5), gives an exponential random variable.
Note also that (1 — U) can be replaced by U as both
have the same U/(0, 1) distribution.

The same result works for a discrete variable using
(7) instead of (4). The Bernoulli case (8) gives:

X=0 if 0<U<1-8

X=1 if 1-6<Ux<1

A very useful version of this result allows sampling
from an observed data set. Clearly equation (10) is
the sample analogue of (7), so use of (10) with p set
equal to a U(0,1) random number is all that is re-
quired.

4.3 Composition Method

If the cdf of interest can be written as

J
F(z) =) p;jFj(z)
j=1

where {p;} is a discrete probability distribution and
the Fj(z) are cdf’s, then F(z) is called a mixture
distribution. The mixture can arise naturally in the
context of the problem or it can simply be an arti-
ficially constructed decomposition. In either case X
can be generated with cdf F(z) by selecting the jth
distribution with probability p;, generating a variate
Xj with distribution Fj, and setting X = Xj.

Usually one tries make F) easy to generate from,
whilst at the same time making p; as large as possi-
ble, so that Fy is chosen frequently. For instance in
the Marsaglia and Bray (1964) ’convenient’ method
of generating normal variates over 86% of the time
a linear combination of three uniforms is taken, the
remainder of the time more elaborate cdf’s have to
be used.
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4.4 Acceptance-Rejection Method

This is most easily applied to continuous variables
though ingenious methods exist for certain discrete
cases. Suppose that (i) we wish to generate variates
with pdf f(z), (ii) we have a method of generating
variates with pdf g(z), and (iii) we can find a scaling
factor K for which

e(z) = Kg(z) > f(z) all z.

Thus e(z) is an envelope whose graph lies completely
above the graph of f(z). If we generate X so that it
has pdf g(z) and take Y = Ue(X) where U is a ran-
dom number independent of X, then (X,Y), treated
as a point, will always lie underneath the graph of
e(z) and in fact it is uniformly distributed in the
area under this graph. If now we generate such points
(X,Y) and discard those lying above the curve f(z),
then the remaining points will have the property that
the number with a given z value will be proportional
to f(z). Thus the sequence of X’s corresponding to
these accepted (XX, Y’) points will come from the dis-
tribution with the required pdf f(z).

The efficiency of the method is dependent on the
factor K. In fact N gives the average number of
points (.X,Y') needed for each X actually accepted.

An interesting example is the gamma distribution
with pdf f(z) = z%'e ?/T(«), £ > 0. Many
acceptance-rejection methods have been suggested for
this distribution. The method given by Fishman
(1976), valid for o« > 1, is one of the easiest to imple-
ment. It uses a (negative) exponential envelope. In
this case K is proportional to %, and the method
becomes increasingly inefficient as « increases; but it
is effective if a 1s less than 3, say. The method GB us-
ing a log-logistic envelope which I suggested (Cheng,
1977) has K < 1.47 for all « > 1; so it is satisfactory
for larger o.

4.5 Discrete Distributions

Various methods that we have discussed work well
for discrete distributions. Indeed we have already
mentioned that the method based on (10) is precisely
the inverse transform method applied to an empirical
(discrete) distribution. Because of the way it operates
in practice, it is sometimes called the table-look-up
method.

A very neat and powerful general method for dis-
crete distributions with a finite range is the alias
method introduced by Walker(1977) and improved by
Kronmal and Peterson (1979). A modified acceptance
technique is used which tests a uniform variable. De-
pending on the outcome one or other of two variate

values is produced so that no rejection ever occurs.
A good description is given by Law and Kelton.

5 FINAL COMMENTS

Library routines usually implement fast, accurate
methods with compactness considerations of sec-
ondary importance. A point worth bearing in mind is
that many methods require the setting up of certain
constants which actually depend on parameter val-
ues of the distribution. If such ’constant’ values need
changing for every variate produced then the cost of
setting them up needs to be taken into account in
assessing variate generation speed. A more impor-
tant point is that, in complex simulations, the cost
of generating variates is usually very small compared
with the rest of the simulation. Thus speed is usually
not of first importance. In this respect simple com-
pact methods are very tempting for the user building
‘one-off” simulation models, especially if they are rea-
sonably efficient.

It should be realised that, though the general meth-
ods that we have considered are reasonably useful,
many of the best techniques do make use of spe-
cial properties of a distribution to achieve maximum
speed and compactness. Forinstance a triangular dis-
tribution can be obtained as the sum of two uniforms,
a beta variate can be generated as a ratio involving
two gamma variates. A celebrated instance of this is
the Box-Muller method of generating normal variates
N pairs.
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