Proceedings of the 1993 Winter Simulation Conference
G.W. Evans, M. Mollaghasemi, E.C. Russell, W.E. Biles (eds.)

MODELING AND SIMULATION WORLDVIEWS

John S. Carson

Carson/Banks & Associates, Inc.
4665 Lower Roswell Road, #140
Marietta, GA 30068

ABSTRACT

This paper provides a language-independent
introduction to the major simulation modeling world
views for discrete-event systems simulation. A world
view is the modeling framework that a modeler uses
to represent a system and its behavior. The main
terminology and concepts include systems and
models, system state variables, entities and their
attributes, lists, resources, events, activities and
delays. These concepts are covered from the
perspective of the modeler. Finally, in the tutorial,
we will attempt to make these ideas concrete through
the use of a number of examples and exercises.

1 INTRODUCTION

This paper introduces the major world views of
simulation modeling from the perspective of a person
about to begin development of his or her first model
using a discrete-event simulation language. The
purpose is to give modelers increased understanding
of the world views built into the major commercially
available simulation languages. Both the article and
the tutorial are introductory in nature and are meant
for the reader new to discrete-event simulation.

First, we discuss the basic concepts: system state,
events, entities, and activities. Then we discuss the
event-scheduling world view, historically the first
approach to discrete-event systems simulation.
Finally we discuss the process interaction and
transaction flow world views, and their
implementation through process procedures, block
diagrams, or arc/node representations.

In the tutorial, we will illustrate how a modeler
may take more than one view of a given problem,
leading to a number of possible models of one
system. Through an example, we illustrate how a
simple problem can be modeled in more than one

18

way, depending both on the world view of the
language being used as well as the view taken by the
modeler.

Many important issues of simulation are not
discussed in this paper, but are discussed in other
papers in the introductory series.

2 BASIC CONCEPTS

There are a number of concepts underlying all the
major world views in discrete-event simulation
modeling. These include system and model, system
state, entities and attributes, lists, event and event
notices, resources, and activities and delays.

2.1 System and Model

A model is simply a representation of a system.
The system should be defined with clear boundaries
between the outside world and the portion of the
world being simulated. Generally, the system
components are simulated in varying degrees of
detail, depending upon their perceived importance
with respect to the modeling objectives, while the
outside world is simulated only to the extent that
specific events impinge upon the system. A simple
example is random arrivals (from the outside world)
that place demands upon system resources.

A discrete-event simulation model is a specific
type of model that may be contrasted to other types
such as mathematical models, descriptive models,
statistical models, and input-output models. A
discrete-event model attempts to represent the
components of a system and their interactions to a
level of detail sufficient to meet the objectives of the
study and to answer the questions appropriate to
those objectives.

With their detailed representation of system
components, discrete-event models stand in contrast
to some mathematical, statistical and input-output

Modeling and Simulation Worldviews

models that represent a system's inputs and outputs
explicitly, but attempt to represent the inner workings
by a mathematical or statistical relationship derived
empirically or on some other ad hoc basis, not by a
detailed representation of the actual inner workings.
Some mathematical models, for example those from
physics, are based on a theory and are not merely
empirical as are many statistical models based solely
on data.

Discrete-event models are dynamic with respect to
time. In other words, time plays a crucial role in the
sense that the variables defining system state are
functions of time. Many mathematical, statistical and
spreadsheet models are static; they represent a
system's state at a fixed point in time.

Discrete-event models can also be differentiated
from continuous models, based on the nature of the
variables needed to track system state. The system
state variables in a discrete-event model remain
constant over intervals of time and change value only
at certain well-defined epochs (points in time) called
event times. On the other hand, continuous models
have system state variables defined by differential or
difference equations and thus its variables change
continuously over time. Some models are mixed
continuous and discrete, simply due to the nature of
the system being modeled or because of modeling
efficiencies. For instance, in some circumstances,
discrete systems can be efficiently modeled with
continuous models, and continuous systems with
discrete models.

We give a more precise definition of discrete-event
modeling after further discussion of system state and
events.

2.2 System State Variables

As implied in the previous section, system state
variables are the collection of all variables needed to
define system state to a level of detail sufficient to
meet the project's objectives. Determining those
variables is matter of art and experience as much as
science. Fortunately, for the most part, the act of
modeling, of putting a model together, will bring to
the fore any initial oversights in identifying system
state variables.

2.3 Events and Event Notices

An event in a model corresponds to a happening in
the real system that changes or potentially changes
the state of the system. In a model, future events are
modeled by making assumptions or using collected
data regarding the times of occurrences of these

events. For example, interarrival times may be
characterized by a statistical distribution and
generated in the model by sampling from this
distribution. This is one way among many of
generating (i.e. computing) the time of occurrence of
a future arrival event.

The so-called event times are recorded in event
notices and placed in a list called the event list. The
event list is managed by the underlying simulation
software system in such a way (discussed later) as to
cause events to occur at proper times in the model.
Note that an event occurs at an instant of time; it does
not have a duration.

Examples: an arrival to a system; the completion
of service at a particular service center; a breakdown
of a machine.

In Section 2.6, we distinguish two types of event,
the primary or unconditional event, and the
secondary or conditional event.

2.4 Entities, Attributes and Lists

An entity in a model represents some object or
element of the system that needs to be explicitly
modeled. An entity may be dynamic in nature in the
sense that it "moves" through the system, or it may
be static in the sense that it services other entities.

Examples: a customer in a queueing system
(dynamic entity); a server in a service system
(dynamic or static depending on how modeled).

An entity may have one or more attributes, or
properties, that belong to that entity. There may be
many entities of a particular entity class, all having
the same attributes but each having its own value for
an attribute.

Examples: (1) The set of all customers is an
entity class with attributes of demand, due date and
priority. [Each individual customer entity may have
unique values for demand, due date and priority.

(2) A server may have a service rate
and a schedule.

Typically, entities are managed by attaching them
to resources (discussed next in section 2.5) that
provide service to them, by attaching them to event
notices (thus suspending their activity until some
future time), or by placing them into an ordered list.
Lists of entities are used to represent queues, places
in a system where entities are forced to wait due to
scarce resources or other system conditions. In the
simulation literature (and in simulation languages),
lists are variously referred to as queues, files, chains
or some other similar term. A list may have a FIFO
ordering (first-in, first-out), so that entities are joined
to the back of the list and removed from the front of

19

20

Carson

the list. In fact, a list may be FIFO, LIFO (last-in,
first-out), or sequenced by a specified attribute of an
entity. For example, a set of entities representing
orders may be sequenced on a list from smallest to
largest due date, representing the priority in which
orders are to be handled.

2.5 Resources

A resource is a type of entity that provides service
to other entities. A resource may have a capacity,
typically representing a number of servers in parallel.
Typically, a dynamic entity may request one or more
units of a resource. If denied, the entity joins a
queue to wait or takes some other specified action; if
not denied, the entity captures the units of the
resource for a duration of time and eventually
releases the units of the resource.

Typically at minimum, a single-unit resource has a
status attribute representing busy and idle states;
more generally, a multi-unit resource has an attribute
for number of captured or busy units. In many
language implementations of these concepts, a
resource may have additional attributes representing
other possible states. These may have a name such as
availability (two values: available and unavailable).

Examples: a single server in a queueing system; a
bank teller; a machine; a grouping of two automated
teller machines.

A resource is manipulated by two actions, here
called CAPTURE and FREE, and typified by the
following pseudo-code referring to a resource called
MACHINE:

CAPTURE 1 UNIT OF MACHINE
WAIT FOR 10 MINUTES
FREE 1 UNIT OF MACHINE

2.6 Activities and Delays

An activity is a definite duration of time that is
explicitly defined by the modeler. It may be a
constant duration, a random duration (definition
based on a random number generator), a formula, or
a value from an input data file; it may be computed
by any means within the model. The key is that it is
definite and known to the model at the instant it
begins. The nature of an activity is expressed by the
following pseudo-code:

WAIT FOR x TIME UNITS

where x is explicitly defined by the modeler and is
either independent of past, current and future system

state, or is at most a computable function of past and
current system state. As we will see, an activity time
usually "holds" a dynamic entity for its duration.
Examples: service times, time to failure of a
machine or component, time between arrivals
Some typical examples include:

WAIT FOR 3 MINUTES
where MINUTES refers to simulated time units, or
WAIT FOR EXPONENTIAL(10.2) MINUTES

where the wait is for a random amount of time
generated as a sample from an exponential
distribution having mean 10.2 minutes.

In contrast to an activity time, a delay is an
indefinite duration of time that is caused by some
combination of system conditions. The nature of a
delay is expressed by the pseudo-code:

WAIT UNTIL CONDITION y IS TRUE

meaning that a process or entity is "held" until some
specific system condition becomes true. Typically in
complex real-world models, a delay is a complex
function of current and future system states and
cannot be computed ahead of time. Only the dynamic
"working out" of the simulation logic can determine
the duration of a delay. Specific examples of delays
include:

WAIT IN A QUEUE TO BE SERVICED
or,

WAIT UNTIL LEVEL IN TANK IS < 2400
GALLONS

or,

WAIT UNTIL MACHINE A IS AVAILABLE
AND IDLE

All discrete-event simulations contain activities,
else time does not advance in the simulation.
Virtually all such models have entities queueing,
resulting in delays to these entities.

The beginning and end of activities and delays are
events. A primary or non-conditional event is one
that occurs at the end of an activity time. A
secondary or conditional event is one that occurs as a
consequence of a primary event occurring during a
particular system state, or that occurs at the end of a

Modeling and Simulation Worldviews

delay time.

For example, if arrivals to a system are defined in
terms of a constant interarrival time, an arrival
becomes a primary event. On the other hand, when a
customer in a queue begins service is a secondary or
conditional event.

Warning: Simulation languages and packages do
not all use the same standard terminology. Some
languages use "delay" for what we have called an
activity time.

2.7 Discrete-event simulation model

With the above definitions and concepts in mind,
we can now give a more complete definition of a
discrete-event model, and a hint for how such a
simulation is carried out.

A discrete-event model is one in which the system
state variables change only at those discrete points in
time at which events occur. Events occur from time
to time as a consequence of activity times and delays.
Entities may compete for system resources, possibly
joining queues while waiting for a free resource.
Activity and delay times may "hold" entities for
durations of time.

Such a discrete-event model is carried out over
time (or "run", not solved) by a mechanism that
moves simulated time forward from current event to
next event, updating system state at each event time,
and freeing and capturing system resources. The
underlying mechanism involves event "scheduling"
and event execution in proper order with respect to
simulated time.

3 WORLD VIEWS

The representation of a discrete-event model and
the implementation of the event-scheduling
mechanism is a function of the world view. We will
discuss the major world views used by the popular
and time-tested major simulation languages in use in
the USA today. These world views are event
orientation, process interaction, and transaction flow.

3.1 Event oriented world view

When using the event oriented world view, a
modeler first identifies all events and their effect on
system state. Then he or she writes event routines
that completely define the consequence of each event.
Recall that an event occurs in an instant of time, so
that an event routine occurs in zero simulated time.

The consequences of an event may include:

One or more system state variables may

change value

- One or more conditional events may be
triggered to occur now, as a combined consequence
of this event and current system state

- One or more primary events may be
"scheduled" to occur at some future simulation time

At time zero during model initialization, the
modeler must do the following:

- Initialize all system state variables

- Initialize all resource capacities and states

- Generate and schedule at least one primary
event

Scheduling an event consists of, first, creating an
event notice, that is, a record that contains event type
and (future) event time, and secondly, placing the
event notice on a special list of event notices called
the event list or future event list. Event notices on
the event list are ranked from smallest to largest event
time. The event notice at the top of the event list
defines the imminent event or the event to occur next
in simulated time.

Every simulation has one stopping event, the event
that designates simulation completion. It may be a
primary event, as for example, "stop the simulation
after exactly 8 simulated hours". Or it may be a
conditional event, such as "stop the simulation after
100 customers have completed service".

The event oriented world view is implemented by
the event scheduling algorithm:

1. Initialize the model, as described above.

2. Remove the event notice for the imminent
event from the event list (event notice with smallest
event time.)

3. Advance the simulation clock to the event
time of the imminent event.

4. Execute the imminent event.

5. If the simulation is not complete, go to step
2.

Otherwise, stop the simulation and report
results.

In Step 4, one of the event routines is executed. In
this manner a simulation is carried forward in time,
from event to event, until the stopping event occurs.

Event oriented simulations may contain entities
that are created upon the occurrence of certain events,
whose attributes change when other events occur, and
which capture resources and join queues. However,
the point of view is that of an event and to envision
the "flow" of an entity through the system takes
imagination and an understanding of the entity's
interaction with the possibly many events affecting it.

Event scheduling simulations are traditionally
implemented in a general purpose programming

21

22

language such as FORTRAN, Pascal, or C. There
are a number of commercially available libraries of
routines in FORTRAN and other languages to
facilitate the programming of event oriented
simulation models. These libraries of event-
scheduling routines implement tasks common to all
event oriented models, such as management of the
event list, management of lists of entities (queues),
statistics collection for output reporting, and
management of resources.

A number of commercially available simulation
languages that emphasize a process interaction or
transaction flow world view also have an (optional)
built-in event-scheduling world view, and allow a
model to be a mix of process and event oriented
routines.

Example: A simple single server queue can be
modeled with three primary events:

- Arrival event
- Service completion event
- Stopping event

Consequently, the model will have three event
routines. The arrival routine would increment the
number of customers in the system (i.e. change
system state) and conditionally trigger a "begin
service" event. That is, if the server's status was idle
upon arrival, the server becomes busy. Beginning
service is a conditional event. Similarly, the modeler
would have to develop the logic and code for the
other two primary events.

3.2 Process interaction world view

The process interaction world view provides a way
to represent a system's behavior from the point of
view of the dynamic entities moving through the
system. A process is a time-ordered sequence of
events, activities and delays that describe the flow of
a dynamic entity through a system.

Languages implementing a process interaction
world view require the modeler to write process
routines, which are quite different from event
routines. While event routines occur in zero time,
process routines may contain both activities and
delays. Process routines are not possible in ordinary
programming language such as FORTRAN and
Pascal; they require special mechanisms for
interrupting and suspending the execution of a
routine, and resuming execution at a later simulated
time under the control of an internal event scheduler.
(Internally but hidden from the view of the modeler,
there are still events being scheduled and an event list
being manipulated.)

This world view is call process interaction,

Carson

because active processes may interact as they compete
for limited resources and in other ways. This process
interaction is handled essentially automatically by
languages that utilize the process world view.

As an example, consider customers arriving at a
bank and queueing for service from the three tellers
on duty. Here is some pseudo-code representing a
customer process:

CUSTOMER PROCESS:
CUSTOMER ARRIVES (arrival event)
'A' IF ALL UNITS OF TELLER (entity joins list)
RESOURCE ARE BUSY,
JOIN TELLER_QUEUE
ELSE (capture resource)
'C' CAPTURE ONE TELLER
WAIT FOR x TIME UNITS
FREE TELLER (free resource)
ENDIF
CUSTOMER DEPARTS (departure event)

Actually, to have a complete model requires at
least two other abstract processes, or the customer
entity must take on additional duties that do not,
strictly speaking, correspond to customer activity in
the real world. The two processes referred to are one
to create additional future arrivals and the second to
remove a CUSTOMER entity from the list called
TELLER_QUEUE whenever a service completion
event occurs.

The arrival process can be modeled in several
different ways. One is to envision the line
"CUSTOMER ARRIVES" above as a subsidiary
process that is used to "generate" future arrivals, as
illustrated by the following pseudo-code:

CUSTOMER ARRIVAL PROCESS:
'S' GENERATE T = INTERARRIVAL TIME

WAIT FOR T TIME UNITS

CREATE NEW CUSTOMER ENTITY

SEND NEW CUSTOMER ENTITY TO
CUSTOMER PROCESS, LOCATION
IAl

GO TO'S'

Many process interaction languages implement
such an entity arrival process in one statement in the
language, so that a modeler does not have to
explicitly program such processes.

We also may need to create an abstract process, or
extend the customer entity's duties, to bring the first
customer off the queue whenever a teller becomes
idle, perhaps as follows:

Modeling and Simulation Worldviews

FREE TELLER PROCESS:
IF TELLER-QUEUE IS NON-EMPTY,
REMOVE FIRST CUSTOMER ENTITY
FROM TELLER_QUEUE
SEND CUSTOMER IMMEDIATELY
TO LOCATION 'C'
ENDIF

Note that the "FREE TELLER PROCESS" occurs
in zero time; there are no activities or delays. In
effect, it is an event. (A zero time process procedure
is equivalent to an event routine.) Many simulation
languages implement the equivalent of the "FREE
TELLER PROCESS" automatically, so the modeler
does not need to explicitly address the handling of the
customer queue.

The process world view is the most popular world
view in terms of commercially available simulation
languages in the USA.

3.3 Transaction flow world view

A transaction flow world view is a special case of
the (possibly) more general process interaction world
view. A transaction is nothing but another name for
a dynamic entity that flows through a system.

In the transaction world view, transactions are
viewed as flowing through a block diagram or a
network of arcs and nodes. In the block diagram
framework, epitomized by GPSSyy and also adopted
by SIMAN7,, blocks represent either immediate
events, activities or delays. Languages such as GPSS
and SIMAN have a collection of blocks to represent
capture and release of resources, modeler
manipulation of lists of transactions, and activities
(explicitly defined passages of time). The block
diagram, similar to a process flow diagram, is a set of
blocks connected by arrows, representing the
transaction process.

Other simulation languages, such as SLAM Iy
and SLAMSystemry, adopt a node/arc point of view,
with arcs representing activities and nodes
representing all other events and actions. The
node/arc point of view is similar in philosophy to the
block diagram point of view.

In the transaction flow world view, process code
similar to that in the preceding section is viewed as
being executed by the entity or transaction as it
moves from statement (block, node or arc) to
statement (next block, node or arc). For some
implementations of this world view, this makes the
transaction flow world view somewhat more
restrictive than the process interaction world view.

4 SUMMARY

In the tutorial, we will give one or more examples
and exercises to illustrate the concepts discussed in
this paper. With one example, we will provide a
model from a number of different perspectives,
illustrating how two people can develop quite
different though equally accurate models of the same
system.

REFERENCES

Banks, J. and J.S. Carson, 1984. Discrete-Event
System Simulation. Prentice-Hall.

Law, A.M. and W.D. Kelton, 1992.
Modeling and Analysis, 2nd Edition.
Hill, New York.

Simulation
McGraw-

AUTHOR BIOGRAPHY

JOHN S. CARSON is a founder and president of
Carson/Banks & Associates, Inc., a firm specializing
in simulation model development, services and
training. He has developed numerous large-scale
simulation models with application to manufacturing,
material handling, warehousing, distribution,
transportation and rapid transit, port operations and
shipping, medical delivery systems, and reservations
systems. He has served on the faculties of the
Georgia Institute of Technology and the University of
Florida. With Jerry Banks, he is the co-author of the
widely-used texts Discrete-Event Systems Simulation
(Prentice-Hall, 1984)and Getting Started with
GPSS/H (Wolverine Software Corp., 1989). He is a
member of IIE, ORSA, and TIMS. Dr. Carson
received his Ph.D. in Industrial Engineering and
Operations Research from the University of
Wisconsin at Madison (1978).

23

