Proceedings of the 1993 Winter Simulation Conference

G.W. Evans, M. Mollaghasemi, E.C. Russell, W.E. Biles (eds.)

KEYNOTE ADDRESS:
SIMULATION SHOULD BE EASY AND FUN!

John D. Salt

CACI Products Division
Coliseum Business Centre
Watchmoor Park Riverside Way
Camberley Surrey GUIS 3YL

It may seem absurd to assert that stochastic discrete-
event simulation should be easy. The technique is
used to study systems exhibiting complex, time-
dependent behavior - systems that cannot reasonably
be studied by any other means. Where direct
observation of the live system is impractical; where
linear programming is insufficient; where queueing
theory is inadequate; on these problems, we use
simulation. Simulation enables us to study systems
that are otherwise intractable. How then can it be

easy?

[t is no part of my argument that simulation modeling
is, or should be, trivial. | believe that simulation is
one of the most demanding fields of the
programmer’s art. | further believe that the
construction of useful models requires special skills,
quite independent of programming or project
management ability, which will be increasingly in
demand as mainstream computing comes to adopt
more of the techniques developed by simulationists.
It is my contention that one of the most important of
these skills is the ability to keep things simple. Yes,
real problems are messes, but it is not desirable to
model them by creating an automated mess.
Simplification is the essence of simulation. The
whole modeling process consists in capturing the
important elements of a system, and leaving out the
rest. How many projects do you know that failed
because they were too simple?

A paper by Ward (1989) distinguishes between
"transparency” and "constructive simplicity".
Transparency is a perception of the model’s user, and
depends on factors such as the user’s familiarity with
modeling methods, interest in the problem, and the
degree to which the builder explains the model.
Constructive simplicity 1s a characteristic of the
model itself, and could in principle be objectively
measured. Thus a model of a given degree of
constructive simplicity that appears transparent to one
user might seem opaque to a user who is less skilled,
less experienced, or who has had less explanation of
the model. My concern here i1s mainly with
constructive simplicity.

Constructively simple simulation models generally
take less time to write, less time to run, and require
less input data than complex ones. This makes it
easier to use them in an exploratory fashion. Users
can form an impression of system behavior by trying
out a number of scenarios and comparing the results.

There is a real danger, with large models, that this
will not be possible. The user may take decisions
based on too few cases, and too little understanding
of the way the system parameters interact. Worse
still, a constructively complex model will have more
parameters to explore than a simple one. Even if the
same number of scenarios were tested in each model,
the proportion of the possible number of execution
paths investigated will still be smaller for the complex
model. The simple model has a double advantage.

Simple models are easier to change than complex
models. This is an important consideration in all
fields of computing, but especially so in simulation.
It is wholly unrealistic to expect the specification for
a simulation program to remain static over time. The
perception of the problem is bound to change as more
is understood about it - why else do a simulation
study, if not to improve understanding? So, not only
are simple models easier to use in an exploratory
fashion; they are also easier to develop in an
exploratory fashion. It is also quite possible for the
system under study to change. There is little point in
having a highly detailed model of the way a system
used to work last year. This has less chance of
happening during model development if the
development time is kept short. Again, the simple
model has a double advantage.

It is easier to throw a simple model away and start
again. This makes it easier to keep up with the latest
languages and techniques in new studies. Also, one
might hope that users will request more simulation
projects if they are perceived as short-term and
relatively low-risk activities.

Simple models are easier to make transparent to the
user, and so it is more likely that decisions will be
based on simulation results. It is no good having a
first-class recommendation for action that the user
does not act on because the reasoning behind it is not
understood.

Given all the advantages of simple models, why do
people write complex ones? I believe that there are
a number of reasons for simulation models becoming
complex. Many of these reasons are entirely non-
technical in nature, but arise from human factors, and
so are quite independent of the area of study.

The first consideration is that many programmers
enjoy creating intricate programs. This 1s
understandable, and, as I shall argue later, it is
desirable that programmers should be absorbed in

Salt

their work. However, it is tempting to lavish detail
on those parts of the system that are well understood,
and to skimp on those parts that are not. This is the
reverse of what is wanted. If we are to increase
understanding of the problem, it is the mysterious
parts that provide the greatest opportunities for
learning. There is little benefit in having any part of
the system much more detailed than the least-well
understood part.

Another temptation is to do something just because it
is possible. Computing power is still halving in price
every year, and so each successive generation of
computers can run increasingly large and complex
programs at acceptable speeds. However, simulation
models are not something to do, like climbing Mount
Everest, just "because it's there”, and the temptation
must be resisted.

It is all the more likely that the programmer or
model-builder will wander off into irrelevant detail if
the goal of the model has been poorly defined. As
Russell (1983) points out, the mere desire to build a
model of a system is not a legitimate goal; the model
must have some purpose. Where the overall aim is
poorly defined, the anxious simulationist may draw
the bounds of the model too wide, in the hope of
including whatever it is that the user is really
interested in. Better to refine the aims of the project
with the user - perhaps by means of a few "quick and
dirty" throw-away studies - than to embark straight
away on the construction of a baggy and over-
complicated monster.

Even if a model starts life as a simple and elegant
creation, it can become complex. It is easy enough
to add complexity to a model; it is very difficult to
subtract at out. The effects of the "ever-growing
model" syndrome become more pernicious still as the
staff involved in developing it changes. Perceptions
of the model may change as the staff changes, and
this will tend to blur the original aim. Fortunately,
there are some technical fixes for this problem. The
adoption of a modular programming style can give a
program “pluggability” and, equally important
"unpluggability”. Neatly interfaced modules can be
unplugged and replaced with simpler versions in

order to keep the overall complexity of the model
down.

It is easy to confuse detail with realism. They are
not the same. It is quite possible to create a mode]
that is at the same time finely detailed and wildly
inaccurate, Indeed, questionable assumptions can

Simulation Should Be Easy and Fun

hide much more easily in a detailed model than in a
simple one. Complexity can be used to baffle people
into acceptance, "blinding them with science".
However, the users will want some reassurance that
they are getting their money’s worth for a project.
The easiest way to measure programmer productivity
is by the number of lines of code written. The
easiest way to measure the output of a simulation
study is by the bulk of the final report. As long as
size is the measure used, simplicity and elegance will
g0 unrewarded.

The same is true of the model’s input data. A model
that requires an enormous amount of input data to
function may appear very impressive, but as the
volume of data required increases, so does the
problem of checking it become more acute. Reliance
on a large amount of input data provides a ready-
made excuse for the development team; if the results
of the study turn out to be unrealistic or misleading,
they can always be blamed on inaccuracies in the
data. In this way, fear of failure may, paradoxically,
be a motivation for making a model complex.

Once a large and complex model has been created, it
will be difficult ever to get rid of it. It is much
harder to admit the failure of a million-dollar system
that a thousand-dollar one. Even if the model has
become wholly inappropriate, managers may wish to
retain it because of the perceived investment it
represents. Consequently, there are millions of lines
of FORTRAN legacy code still in use today.

Dixon (1976) mentions that authoritarian personalities
show a preference for impracticably difficult tasks
rather than moderate risks, so that failure will appear
more excusable. Authoritarian traits are also linked
to obsessive behavior. Either of these might be a
motive for preferring detailed to simple models - |
regret that authoritarian personality types are not
unknown in the world of computing. Fear of failure
by insecure personalities can also explain reluctance
to establish a clear aim. Further, authoritarian
attitudes go and-in-hand with conservatism, which
might partly explain some of the reluctance to dispose
of legacy models. It would be most interesting to
conduct a survey of the correlation between
authoritarian attitudes, model complexity and model
success.

Simulation seeks to solve problems that are by their
nature complex, so one could argue that a degree of
complexity is unavoidable. This is true. However,
that complexity can be managed by "chunking" into

digestibly small portions. As General Creighton
Abrams said, "When eating an elephant, take one bite
at a time". This is another argument for a highly
modular programming style, and perhaps for a series
of small, tightly-focused models in place of one big
one.

Even if constructive simplicity cannot be attained,
transparency is still possible if communications
between user and modeler are good, and the modelers
speak the language of the problem domain. What is
not acceptable is the introduction of unnecessary
complications motivated by a fear of failure of
appearing mistaken. It is possible to view simulation
primarily as an exercise in making mistakes. By
making mistakes in a simulated environment, rather
than a real one, we hope to avoid expensive or
dangerous errors in the real thing. In this view, it is
a duty of both the developers and the users of
simulation to make their mistakes clearly and openly,
so that they can be corrected. DeMarco and Lister
(1987) go so far as to suggest that software
developers should have a quota for errors; anyone
who hasn’t made any mistakes obviously isn’t trying
hard enough.

The atmosphere in which simulation developers ply
their trade should be relaxed enough to permit
mistakes. More than that, it should encourage people
to play. It seems to me that using a simulation for
"what-1f" investigations is no different in kind to the
make-believe play of young children, who use fantasy
to help make sense of the world about them (Millar,
1968).

This is not to say that mistakes should not be
corrected. The first step in correcting a mistake is to
detect that a mistake has been made. Fear of blame
is only likely to ensure that mistakes stay hidden.
From the point of view of project success, it does not
matter where the blame for a mistake lies, as long as
it is corrected.

Mitrani (1982) distinguishes three kinds of mistakes
that occur in simulation projects: programming
errors, logic errors, and "errors of judgement”. The
first two categories of error can be handled by
mainstream software development techniques. One’
of the best such techniques is the technical inspection,
peer review, or structured walkthrough. Whichever
name it takes, this technique relies on the idea of
"egoless programming” - if software is the property
of the whole development team, blame cannot be
attributed to individuals. My experience is that a

properly-conducted inspection can be lively and
enjoyable. According to Yourdon, many managers
report that the introduction of walkthroughs boosts
staff morale. He even says that managers should "be
prepared to walk past the conference room where the
walkthrough is being held and hear raucous laughter,
shrieks and giggles, and all the other evidence of a
drunken orgy" (Yourdon, 1977).

Mitrani’s last category, "errors of judgement”, really
deals with whether the simulation is an adequate
representation of the real system. It is harder to
decide what constitutes a mistake here. The
judgement is better made by the domain experts than
the simulationists in this case. Validation in a strict
sense may not be possible, particularly in the case of
hypothetical systems. Law and Kelton (1991) offer
the more realistic goal of making simulation models
credible. This requires the intimate involvement of
the user and domain experts.

An excellent technique to involve users and improve
understanding is manual simulation, as recommended
by Paul and Balmer (1993) and others. Participation
in such an exercise is an excellent medium of
communication between developers and domain
experts, and is able to establish much deeper levels of
understanding than any number of memoranda.
Nothing improves understanding of a system as well
as pretending to be a functioning component of that
system. To investigate difficult execution paths,
Coad (1992) recommends exactly this technique, with
the slogan "If in doubt, act it out”. By impersonating
an object, the analyst obtains a new perspective on
the system, and can answer questions such as "what
do I need to know?" and "what do I need to do?"
from the object’s point of view. The popularity of
wargaming and role-playing as hobbies is testimony
to the fact that manual simulation can be great fun.
As with walkthroughs, the exercise is probably best
carried out among peers, without the deadening effect
of a senior management presence. If a walkthrough
can sound like a drunken orgy, a manual simulation
will sound like a riot. Nevertheless, total immersion
in the problem provides rich insights into it. That
people are enjoying themselves doing something
together can only have beneficial effects on creating
a "jelled" team (Demarco and Lister, 1987).

Pirsig (1974) holds that this identification with the
object - the suppression of the normal subject-object
relationship - is the key to quality. This seems to
apply to individuals as well as groups. DeMarco and

Salt

Lister (1987) point out that creative brain-work is
done in a state that psychologists call "flow". This a
meditative, mildly euphoric state, with decreased
awareness of the passage of time, when ideas flow
without effort. Unfortunately, it is very easy to
interrupt a state of tlow. The key offender in this
respect - what Pirsig would refer to as a "gumption
trap" - is the telephone. The office environment for
brain workers should permit them to use their brains
without endless interruptions.

To conclude, | believe that the easiest way for
management to prevent the development of high-
quality simulation software is to take the attitude that
fun is unprofessional. Building simulations is a
creative activity, and people cannot be forced to be
creative. They must be poor creatures indeed who do
not understand Brooks (1975) when he writes of the
joy of making things:

"As the child delights in his mud pie, so the adult
enjoys building things, especially things of his own
design. [think this delight must be an image of
God’s delight in making things, a delight shown in
the distinctness and newness of each leaf and each
snowflake."

No matter what else you do at this conference, have
fun!

REFERENCES

Brooks, F.P. 1975. The mythical man-month:
essays on software engineering. Addison-
Wesley, Reading Massachusetts.

Coad, P. 1992. Object-oriented analysis (course
notes). Object International, Austin, Texas.

Demarco, T. and T. Lister. 1987. Peopleware:
productive projects and teams. Dorset
House, New York.

Dixon, N.F. 1976. On the psychology of military
incompetence. Jonathan Cape, London.

Law, A.M. and W.D. Kelton. 1991. Simulation
Modeling & Analysis. McGraw-Hill, New
York.

Millar, S. 1968. The psychology of play. Penguin,
Hamondsworth, Middlesex.

Simulation Should Be Easy and Fun

Mitrani, I. 1982. Simulation techniques for discrete
event systems. Cambridge University Press,
Cambridge.

Paul, R. and D. Balmer. 1993. Simulation
modelling. Chartwell-Bratt, Bromley, Kent.

Pirsig, R.M. 1974. Zen and the art of motorcycle
maintenance. The Bodley Head, London.

Russell, E.C. 1983. Building simulation models
with SIMSCRIPT I1.5 CACI, Los Angeles.

Ward, S.C. 1989. Arguments for constructively
simple models. J.Opl Res. Soc., 40:2, 141-
153.

Yourdon, E. 1977. Structured walkthroughs.
Prentice-Hall, Englewood Cliffs, New
Jersey.

AUTHOR BIOGRAPHY

JOHN SALT is a Senior Simulation Engineer
working for CACI Products Division in Camberley,
UK, where he is responsible for technical support and
customer training. He is UK trainer for the
SIMSCRIPT II.5 and MODSIM II simulation
languages.

John has been in the simulation business for five
years. In January 1988 he joined Hunting
Engineering Limited (HEL), producing simulation
models in GPSS/H for the British Ministry of
Defence. Most of this work dealt with operational
availability models for helicopter squadrons or
flights. He successfully persuaded HEL to adopt
their first object-oriented lanugage, Simula, in place
of GPSS/H.

He then moved to Eurotunnel, the company that will
operate the channel tunnel. Here he was responsible
for setting up an in-house simulation capability from
scratch, and so became the first civilian user of
MODSIM 1II in the United Kingdom. The series of
simulation models he created dealt with topics such as
the management of road traffic in the Folkestone and
Coquelles terminals, the movement of vehicle streams
onto loading platforms, the effects of high winds on
shuttle operating policies, the manning levels required
at security checkpoints, and the effects of different
safety policies on shuttle loading patterns. An article
on the early work done at Eurotunnel made the cover

of OR/MS Today magazine.

John has previously spoken at Simulation Conference
16 in San Diego, Software Development 92 in
Wembley, Simulation Conference 18 at Maastricht,
and at simulation seminars in England, France,
Germany, Italy and Poland.

He holds a BA(Hons) in Russian and French from the
University” of Exeter and an M.Sc. in Computing
Science from the University of Newcastle-upon-Tyne.
Among his more unusual qualifications, he holds a
Certificate of Military Training from Exeter UOTC;
a first descent certificate from the Royal Marines and
Royal Navy Sport Parachuting Association; and a
Certificate of Excellence in Russian from a
Polytechnical Institute in what was then Leningrad.
He has recently enrolled at Brunel University for a
part-time PhD in simulation modelling.

