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ABSTRACT

This paper describes the structure of a parallel simulator
developed to investigate the performance of broadband
telecommunication networks. The simulator hardware is
based on a reconfigurable array of Inmos transputers. The
software has a layered architecture and issues of efficient
communication, deadlock avoidance and message route-
ing have been addressed. The synchronization mechanism
used is conservative, based on the Chandy-Misra model,
and exploits lookahead. The speed-up results are almost
linear when compared with the same parallel simulation
run on a single transputer and are still impressive when
compared with an optimized single processor version.

1 INTRODUCTION

The performance evaluation of telecommunication net-
works rapidly becomes analytically intractable as the
complexity of the network increases. In addition to this,
the behaviour of interest to the performance engineer is of-
ten that which occurs under transient conditions, such as
traffic fluctuations or component failures which are known
to be difficult to express mathematically.

Under such conditions the use of simulation techniques
to determine relevant performance parameters becomes
necessary. Conventional sequential simulations running
on sequential computer architectures suffer from limita-
tions imposed by the excessive processing time required
to achieve the required depth of information and the in-
trinsic statistical nature of the results. These problems
increase as functions of the traffic intensity and the size
and complexity of the network. This leads to detailed
simulations, of traffic intensive and very large networks,
often being economically and even physically impossible
to implement. Such problems have led to growing interest
in parallel simulation using multiprocessor hardware.

The argument becomes most pointed when considering
the performance evaluation of broadband networks. The
complexity, traffic intensity and the potential size of the
networks are all large. Simulation studies of systems of
this nature have thus far largely centred on the behaviour
of single traffic sources, multiplexers or switching nodes.
When complete networks have been studied it has usually
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been at the call- or burst-level since lower-level simulation
involves levels of complexity (and hence processing time)
which are orders of magnitude greater.

Nevertheless, for many investigations of network be-
haviour, lower-level simulation is unavoidable and has mo-
tivated the development of a parallel multiprocessor sim-
ulator by the University of Durham Telecommunication
Networks Research Group. The simulator is being used
for the study of network behaviour and, particularly, for
studying the integration of mobile communication proto-
cols into the broadband environment (Earnshaw and Mars
1991).

The use of parallel simulation introduces many addi-
tional issues into the simulation design process. These
include the hardware architecture, the decomposition ap-
proach used to produce the parallel software processes,
mapping these processes onto the processors and the syn-
chronization of the resulting parallel simulation. Reviews
of the application of parallel simulation techniques to the
performance evaluation of communication networks have
been written by Mouftah and Sturgeon (1991) and by
Hind (1991). An excellent general review of parallel sim-
ulation has been written by Fujimoto (1990).

2 BROADBAND NETWORKS

The CCITT define an integrated services digital network
(ISDN) as one “ ... that provides end-to-end digital con-
nectivity to support a wide range of services, including
voice and non-voice services, to which users have access
by a limited set of standard multi-purpose user-network
interfaces” (CCITT 1984). Initially, basic access was cen-
tred around two 64 kbits/s B channels and one 16 kbits/s
signalling D channel. The requirement for supporting
more advanced multi-media services within ISDN has led
to the development of broadband ISDN (B-ISDN).

The asynchronous transfer mode (ATM) is the tar-
get solution for B-ISDN defined by the CCITT. ATM
networks use a fixed-size data packet, known as a cell,
which consists of 48 octets of data and 5 octets of header.
They are typically transmitted, within the network, using
multi-megabit-per-second media, such as fibre-optic links;
such links will typically be running at data rates in excess
of 150 Mbit/s. A good background text on B-ISDN, and
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ATM networks in particular, has recently been published
by Handel and Huber (1991).

The ATM switch used in the simulation study is based
on the Orwell ring protocol which is a slotted ring proto-
col described by Chauhan, King and Micallef (1990). The
ring is divided into slots which circulate around the ring;
a node wishing to transmit a message waits until an un-
filled slot is found, changes the slot header and transmits
the message in the body of the slot. Slotted ring protocols
have been unpopular in the past for several reasons. A
monitor node is required to ensure that slots which be-
come corrupted can be identified and regenerated, thus
correct behaviour of the ring is critically dependent on
correct behaviour of the monitor. To get a reasonable
number of slots onto the ring delays have to be inserted at
each node and one node, normally the monitor, has to be
able to adjust its delay so that there are an integral num-
ber of slots. Finally, the efficiency of slotted rings is gen-
erally poor since the ratio of header to body is normally
high. Its greatest advantage over token-based protocols,
however, is that more that one node can be transmitting
information at a time, using different slots on the ring.
Acknowledgement of delivery is normally made by releas-
ing the slot at the source (correct receipt there is taken to
imply correct delivery at the destination); the node may
not refill a slot that it has just released, ensuring that the
slot is passed to the next node and thereby ensures fair
access to all nodes on the ring. An earlier implementation
of a slotted ring is the Cambridge ring protocol (British
Standard BS6531).

Examination of existing protocols has indicated that
those based on a slotted ring are probably the best suited
for carrying delay-sensitive traffic such as speech, but sim-
ulation studies of high-bandwidth Cambridge Rings have
indicated that there are still significant limitations when
operated under high load (Falconer, Adams and Walley
1985). Further, load control is difficult since there is no
relevant parameter that can easily be extracted from the
ring. The Orwell protocol was developed after making a
detailed study of the limitations of the Cambridge Ring
protocol: it was found that by introducing destination
release of slots, and by adding a novel, distributed, load
control mechanism to bound access delays, a viable level
of performance could be obtained. These developments
are discussed by Adams and Falconer (1984) and Falconer
and Adams (1985). For higher capacity networks multi-
ple, synchronized, rings can be used and such a network
is known as an Orwell Torus.

Whilst detailed simulations of a single Orwell ring have
been made, under a variety of load and traffic services,
there has, as yet, been very little investigation made into
the behaviour of an Orwell torus, or ring behaviour in
multi-ring systems. The reason for this, at least in part,
is because of the large amount of simulation time required
to investigate networks of Orwell rings: a single simulation
run of one ring takes, typically, a couple of hours on a VAx
11/750, or three times as long on a Sun 3/50 workstation
for just a couple of seconds of simulated time.

3 SIMULATOR ARCHITECTURE

3.1 The Multiprocessor Testbed

The multiprocessor testbed used for the ATM simulator is
based on a network of Inmos transputers. This was orig-
inally designed for use as a high-speed circuit-switched
network simulator, with code written in occam; subse-
quently, a traditional packet-switched network simulator
was also developed using the same language (Nichols 1990
and Clarke, Nichols and Mars 1989). The transputer net-
work consists of up to 31 simulation transputers, each
with up to 16 Mbytes of memory (the current implemen-
tation consists of 13 T800 processors each with 1Mbyte of
memory). The transputers are connected with a double
layer of cross-point link switches which enables any link
on each of the simulation processors to be connected to a
link on any of the other processors; this flexibility enables
the network to be configured in arbitrary topologies so
that the system being simulated can be mapped closely
onto the processor network, and enables the path length
required when passing messages between processors to
be kept to a minimum. Finally, a layer of control pro-
cessors are used to connect between the host transputer
and the link switches; one is connected to the link-switch
programming interface, while both can be connected, via
the switches, to any of the simulation transputers. An
optional transputer-based graphics card can also be con-
nected at this layer.

3.2 The Software Architecture

To isolate the simulation model, as far as possible, from
the implementation details of the hardware, the simula-
tor was structured in a hierarchical manner; each layer
building on the abstraction of the layer below in a simi-
lar approach to that of the ISO seven layer model. At the
lowest layer lie the transputer processors in a dynamically
reconfigurable array. On top of this a multiplexer task on
each processor provides the abstraction of virtual chan-
nels between each task in the simulation, regardless of
where the tasks are mapped in the processor network. A
simple packetizer layer hides the fact that the channels in
the multiplexer (and, indeed, the physical channels of the
transputer itself) work most efficiently when presented
with large packets as opposed to a series of very small
ones. A synchronization layer uses the packet layer pro-
cesses; it ensures that each message is correctly marked
with a time-stamp on dispatch and uses this at the re-
ceiver to maintain synchronization: the layer is optional,
if there is no definable synchronization between two tasks
(for example, diagnostic messages destined for the con-
sole) then the channel can be declared asynchronous and
the packet layer accessed direct. Finally, in parallel with
the simulation model and the synchronization layer, an
event manager is responsible for scheduling components
of the simulation model in the correct sequence. The
overall hierarchy is summarised in figure 1. The imple-
mentation is described by the authors in more detail else-
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where (Earnshaw and Mars 1990, Hind 1990 and Earn-
shaw 1992).

Figure 1: The overall hierarchy of the simulation
model. The Event scheduler is a control-plane for
the upper layers.

3.2.1 The Multiplexer

The multiplexer is the lowest layer of the simulator ker-
nel; it is responsible for the delivery of messages from one
task in the simulator to another, regardless of the topo-
logical mapping of either the tasks or the processors upon
which they are running. Each transputer in the network is
allocated exactly one multiplexer task; all other tasks de-
siring to communicate with tasks on another processor do
so by communicating indirectly via the multiplexer (fig-
ure 2). If two tasks that communicate are on the same
processor then it is, of course, possible for them to be
directly connected. The result is that for large simula-
tions a simulation task may have many of its channels
connected to the multiplexer; the routeing decisions that
the multiplexer makes are based solely upon the channel
from which each message is received.

3.2.2 The Flow Control Mechanism

The flow control mechanism has to ensure two things:
firstly that the multiplexer routeing, as a whole, can oper-
ate within a fixed amount of memory, i.e. a finite number
of buffers (deadlock free); and secondly that all messages
will be eventually delivered, regardless of the other traffic
in the multiplexer (livelock free). The algorithm adopted
for the implementation of the deadlock- and livelock-free
routeing is based on that of Toueg and Ullman (1979),
using a forward state controller.

Figure 2: Multiplexer processes run on each node to
provide virtual links between each task in the simu-
lator.

3.2.3 The Packetizer

Messages between the simulation tasks commonly consist
of several small pieces of information: for example, a cell
has associated with it not only the time of transmission
and the data and header fields but also the time of cre-
ation, the size of the data field in use (for efficiency) and
an optional series of trace information packets that can be
used when debugging the simulator. If each item were to
be transmitted individually across the processor network
then the efficiency of the multiplexer would be extremely
poor; each packet in the multiplexer would contain per-
haps as little as four bytes of information and an overhead
of eight bytes (four bytes for each of the packet-header
and the packet-size fields). To overcome this inefficiency,
each simulation message (e.g. a cell) is concatenated into
a single packet (or a series of packets if this would exceed
the maximum size of a single multiplexer packet) which
is then transmitted to the receiving process.

In addition to the inefficiency associated with using the
multiplexer with small units of data there would also be an
overhead due to the establishment of the occam channel
for passing data between one task and the next. Each
communication requires that both ends (the sender and
the receiver) are ready to proceed before any data can be
sent: if one end is not ready the other task blocks whilst
waiting. Because of the way in which the transputer’s
process scheduler works this can mean a large number
of process switches, each switch having an overhead in
terms of processor time; in addition, each time a process
is descheduled it is placed at the back of the relevant
queue (either high or low priority) and has to wait its
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turn for further access to the processor. It is clearly more
efficient if the number of times a channel communication
has to be initiated is kept to a minimum; work by Gould,
Bowler and Purvis (1989) has shown that the throughput
of the channels increases dramatically as the size of the
data block is increased.

3.2.4 The Event Manager

The event list is normally maintained using the twin-
list method described by Blackstone, Hogg and Phillips
(1981), but it is possible to convert the procedures to be
functionally the same as a single list manager by setting
the initial length of the first list to infinity. It was found
that for the T4 series of transputers (which do not support
floating-point arithmetic in hardware), using the twin list
method approximately halved the amount of time spent
maintaining the event list, but for the T800 transputer
(which does support floating-point arithmetic) the change
was negligible; indeed, for some configurations, the twin
list procedure was slower by about 0.5%.

3.2.5 Configuring the Simulator

For any simulation tool to be useful it must be capable of
being run with a series of different configurations, the ex-
tent of which has to be borne in mind when the simulator
is designed. For a truly flexible system it is not normally
sufficient for these to be parameters that are ‘hard coded’
into the simulator itself; instead, they should be made
available from a separate file (or by interactive prompt-
ing) at the time the simulator is invoked. In the ultimate
case, not only parameters such as load and various de-
lays should be configurable, but also the entire topology
of the network itself: this can require substantial effort
being expended on making the simulator easier to use,
but, consequently, significantly more powerful.

The method employed here is a parse-able grammar
that describes the simulation parameters (and some of
their dependencies) in a human comprehensible format:
in such environments it is rarely necessary for the infor-
mation to be in a totally fixed order since each param-
eter will have a tag associated with it that describes it
uniquely. Comments are normally easily supported. An
example entry might contain:

link 5:

% Link between nodes 1 and 6
prop-delay = 100u S
speed = 100M bitps

’

Parsers for grammars of this type are easily produced
using tools such as yacc and lex and would, probably, be
implemented using a preprocessor for the simulator that
produces the configuration tables that the simulator itself
reads. Another advantage of this approach is that default
values can now be used: a special entry (for example ‘1ink
default:’) might contain a series of fields that should be
used when a real definition omits a parameter.

The ATM Network Simulator currently parses two files
when it starts to run: the first describes the topology
of the network being simulated and how the individual
processes should be mapped onto the processors of the
transputer network; the second contains the various pa-
rameters required by each individual process. Both files
are of the ‘table of values format’. A parser is available
for generating the first file that understands a superset of
the 9L configurer language (Parallel C User Guide 1989);
the extensions are mainly aimed at supporting the recon-
figurability of the transputer array used. The second file
has to be generated by hand, but a built-in preprocessor
parses the special symbols ‘%date’ and ‘%seed’, replacing
them with the current date and an unique seed respec-
tively. The seeds are generated using a different random
number generator from the one used during simulation in
order to avoid, as far as possible, correlations between the
random number streams.

The compiler package supplied by 3L Ltd is described
in the Parallel C User Guide (1989) and consists of three
main components for use with multi-transputer networks:
the compiler, which produces object modules from the
source files; a linker, which links object modules and li-
braries to create tasks; and a configurer, which binds sev-
eral tasks together to form an executable application. A
task is a program in its own right: it is allocated a stack
and an area of memory, and has its own global variables; it
must always run on one processor, but can spawn threads
which execute part of the code of the task in parallel and
share the memory (they each, however, have their own
stack); a task can only communicate with other tasks by
using the occam channels implemented in the processor
hardware: the collection of program threads in a task
are collectively referred to as a process. The configurer
is responsible for allocating tasks to processors, creating
initial stacks and heap areas, and for mapping the con-
nexions between tasks onto occam channels (both internal
and external).

Unfortunately the configurer supplied with the com-
piler does not support the link-switch mechanism in the
transputer network used and, therefore, cannot be used
in the traditional sense to boot the entire network. The
approach used in the simulator, is to have a small main
application, which runs on the fixed topology part of the
network, and a series of un-configured tasks. The main
application does on-the-fly configuration of the remain-
der of the application using a single file that describes the
simulation run. To do this it uses the low-level configurer
execution primitives to load the tasks directly into each
Processor.

Once each task has been loaded and has started to run,
the simulation parameter files have to be loaded. Unlike
traditional simulators this poses a large problem: part of
the information contained in the parameter file is used
by the multiplexers to control the switching of messages;
until this is loaded they cannot operate properly. Simi-
larly, none of the other tasks knows any information about
where it lies in the overall topology, since to provide this
information would require ‘hard coding’. Indeed, the only
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information that each process has is its own array of chan-
nels for use in communicating, but even this has little
meaning unless some conventions are used. Fortunately,
‘false’ channels can be created during the configuration
process and their values set to represent something other
than a genuine channel. With this information, known as
a ‘tag’, each task in the simulator can be uniquely identi-
fied, enabling it to extract the relevant information from
the parameters file.

At this stage a task still does not know on which in-
put channel it will receive the configuration information;
further, it does not know on which output channels, if
any, it must forward the information so that it can reach
its neighbours. To obtain this information a boot-tree is
built which starts at the task connected to the fixed topol-
ogy part of the network (there is exactly one such task)
and extends outwards until all the tasks know a parent
and any children they might have. The protocol for doing
this in the presence of loops is quite complex if the use of
timeouts are to be avoided; the petri-net in figure 3 rep-
resents the code running on just one channel pair of one
task (all of the channels in the simulator are paired, one
input and one output, to the same remote task), the same
code runs on each channel pair throughout the simulator.

Offer of Bootfile
{One for each thread
on connected process)

I_need bootfile

_sent_re jection

I_don’t_need_bootfile

I_can_supply_bootfile

Figure 3: Petri-net showing the state transitions for a
single channel while determining the download path
for the simulator. The ‘square’ states are shared by all
of the channels, which have been omitted for clarity,
making it impossible for more than one channel to be
activated as a receiver.

The parameters file contains a few lines of global infor-
mation, such as the title of the simulation run, the size of
the network, and for how long the run must last, followed
by a series of entries, one for each task in the simulator.
To avoid the need for each task to have to be able to in-
terpret information for other tasks (which may well be of
a different class), each task scans the parameters file look-
ing for a string of the form ‘class xxx:’, where the class
is the type of task (‘SRCE’ for a traffic generator, ‘MUX’
for a multiplexer, etc.) and xxx is the tag-value that was
bound to the false link. On finding this string, the task
then interprets the following parameters as its personal
configuration file. Special routines are used to parse the
file while ensuring that at the same time the entire file is
passed on to its children in the boot-tree without mod-
ification or loss. Once the entire file has been read and
interpreted, the configuration process is complete and the
simulation can begin.

4 THE SYNCHRONIZATION MECHA-
NISM

In a sequential discrete event simulation, the synchroniz-
ation of the simulation is maintained by manipulation of
a data structure called the event list. This contains the
pending events in the system in time-stamped order. The
simulation progresses by removing the event with the ear-
liest time-stamp from the list and processing it. If another
event is generated, it is inserted into the event list at its
time-stamp position. Thus the simulator processes the
events in synchronized chronological order. If we now dis-
tribute the simulation over several processors, each having
a local event list, it becomes possible for a processor to
process an event which is not the earliest. Also, in pro-
cessing this event we may affect conditions for earlier, as
yet unsimulated events. Thus the future is affecting the
past, which is clearly unacceptable, and is known as a
causality error.,

Thus, synchronization schemes can fall into one of two
categories; conservative approaches and optimistic ap-
proaches, see Fujimoto (1990) for a fuller explanation of
these terms. Conservative approaches avoid causality er-
rors ever occurring by relying on some strategy of de-
termining events which are “safe” to process. That is,
they must determine when all events that could affect the
event in question have been processed. An added prob-
lem which categorises various conservative approaches is
that of deadlock. If processes do not have a “safe” event
which they can process then they are blocked and can-
not progress. If a cycle of blocked processes occurs then
we have deadlock and the simulation will grind to a
halt unless the deadlock can be broken. In the Chandy-
Misra conservative approach used here (Chandy, Holmes
and Misra 1979, Chandy and Misra 1979 and Chandy
and Misra 1981), NuLL-messages are used to avoid dead-
lock situations occurring. NuLL-messages are only used
for synchronization purposes and do not correspond to
any activity in the physical system being simulated and,
hence, have no message content only a time-stamp #yqu.
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Thus, it is essentially a promise that the sending process
will not send a real message to the destination process
with a time-stamp less than ¢y,y. NULL-messages are
sent on each outgoing port whenever a process finishes
processing an event; tnyuu being a lower bound on the
time-stamp of the next outgoing message on each outgoing
port calculated from the time-stamp value associated with
each incoming port and knowledge of the simulation per-
formed by the process. Generally conservative synchro-
nization approaches can achieve good performance with
sparsely-connected systems which have less opportunity
for deadlock and/or an application which contains good
lookahead properties. Lookahead refers to the ability to
predict what will, or will not, happen in the simulated
time future based on application specific knowledge.

For an ATM link it is possible to derive a simple formula
that describes the number of cells that will be in transit
across a link of given length at any one time (the link can
be considered as a delay line):

LSn

N = lc

where L is the length of the link, S is its speed (adjusted
to account for overheads such as framing), n is the re-
fractive index of the transmission media (typically, about
1.5 for a glass fibre), ! is the cell size and c is the speed
of light. Considering, for example, a 15 km link running
at 150 Mbit/s, then there may be up to twenty-six cells
in transmission across the link at any time; longer, or
faster, links would have correspondingly larger numbers
of cells in transit. This “pipeline” is used to advantage
as a method of lookahead within the simulator. Effec-
tively, a destination task can see a small amount of fu-
ture behaviour for the link: this can then be exploited
for two ends; the avoidance of deadlock with fewer NuLL-
messages and the improvement of concurrency between
the processes.

In the Chandy-Misra simulation, there is not normally
an event processor in the classical sense. Instead, events
are replaced exclusively by messages and the order of pro-
cessing is determined by selecting the message with the
oldest time-stamp: there must be a message available
from each incoming link in order to be able to do this;
the absence of a message causes the node to block. In the
ATM Network Simulator an event manager is used; con-
sequently, in addition to adding dependence on the link
mechanisms to the code of the event manager, monitor-
ing for messages would be inefficient. To overcome this,
the synchronization routines are implemented as normal
events that run in the same manner as all other events in
the simulator: two events are required for each link to a
remote process; these are a NuLL-message generator and
a process blocker.

The NuLL-message generator runs on the output of a
link: it compares the current simulation time with the
time when a message was last sent to the remote process;
if this is less than a propagation delay it simply resched-
ules itself to a time one propagation delay later than the
time at which the last message was sent; otherwise, it

must be exactly one propagation delay since a message
was last sent, so a NuULL-message is generated to the
remote process and the generator reschedules itself one
propagation delay later. The process blocker compares
the simulation time against the time when a message was
last received across a link from the remote process; if this
is less than a propagation delay then it simply resched-
ules itself for one propagation delay after the time the last
message was received; otherwise it blocks the current pro-
cess until a message is received and then reschedules itself
accordingly. The process blocker appears to the rest of the
simulation as a routine that takes just sufficiently long to
execute that the process remains in synchronization with
its neighbours; however, while blocking, it consumes no
processing time.

5 THE SIMULATOR RESULTS

The results produced by the simulator consists of sets of
statistics for the simulator performance, the traffic pat-
terns and the switching-node activity. The simulator per-
formance can be assessed from the run time, processor
usage and link usages. The performance of the synchro-
nization mechanism is also monitored, along with several
other aspects, by an event profiling process. This gives
the number of instances and and percentage processing
time spent on various simulation events. Such profiling is
made easier as the transputer has hardware timers which
allows the profiler to be run at fixed time intervals. Traffic
patterns are reported as a set of histograms of the voice
delay statistics for each source in the network. Switching-
node activities are also reported as histograms of the input
queue lengths to the Orwell rings, the ring reset and cell
delay statistics.

6 PERFORMANCE ANALYSIS OF THE
SIMULATOR

The ultimate goal with parallel simulation is to obtain a
simulator that runs as quickly as possible; if the speed
of the parallel simulator is less than that of a conven-
tional simulator then there is no reason for using it (and
many good reasons for not doing so). However, it is nor-
mally impossible to directly compare parallel and sequen-
tial simulators since the two are written in an entirely
different manner and the programmer rarely wants to
write both. A good indication of the possible behaviour
of the conventional simulator can sometimes be obtained,
though, by running an optimized version of the paral-
lel simulator on a single processor. The time taken for
the single processor version to run can be compared with
that for the multiprocessor version and the speed-up of the
simulator is then the ratio of the time for the multipro-
cessor version to that for the single processor: normally
this should lie in the range between one and n, when the
multiprocessor version is run on n processors; a speed-up
of n is said to be linear, as defined by Helmbold and Mc-
Dowell (1990). If the speed-up is greater than n we have
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superlinear speed-up and, if the speed-up is less than n,
we have sub-linear speed-up.

B
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?;O\/\,
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A Trunk Exchange
O Local Exchange
O Treffic Source
m Transputer

Figure 8: Network topology used for the simulator
performance analysis runs. The basic processor as-
signments are also shown; a traffic source presents a
very small load to a processor so it may be safely com-
bined with a local exchange without unduly affecting
the load balance.

The performance results given here are for the ATM
Network Simulator configured as shown in figure 8: the
network consists of four ATM exchanges in a fully-
connected trunk network and eight ‘local’ exchanges each
of which is dual-parented onto two trunk exchanges; each
local exchange has two traffic generators. The exchanges
were all running the Orwell ring protocol (see section 2).
Two sets of results were taken with differing switch ca-
pacities and traffic mixes. In both cases the links were
running at 150 Mbit/s and the propagation delay was set
to 1 x 10™* s (equivalent to about 20 km of glass fibre,
or about 35 cells). The results for the lower traffic loads
were taken using 150 Mbit/s Orwell rings for the switches
and with a mixture of voice and mobile traffic; the re-
sults for the higher loads used purely voice traffic and
a ring speed of 600 Mbit/s. With the smaller capacity
switches the maximum link loading was about 15%, but
was increased to about 50% for the high-capacity rings.
Two single processor simulations were run for each load:
one with identical code to the multiprocessor version, the
unoptimized version; the other with the redundant multi-
plexers removed to speed message transfer, the optimized
version. In the following graphs, when the load is shown
it is expressed as the average percentage of the capacity
of a link.

Figure 4 shows the time taken to simulate the two mod-

els on twelve processors. The fact that the two curves do
not pass through the origin has two causes: the NuLL-
message traffic for low loads and the overhead of simulat-
ing the ring slot-rotation action for the Orwell protocol.
That it is the latter that represents the largest factor can
be inferred from the fact that the NuLL-message traffic
generated for each of the two curves is almost identical
for a given link loading (see figure 7); so if this was the
cause the two curves would cut the axis at the same point.

Figure 5 shows the speed-up of the simulator as a func-
tion of load. It shows, for the 150 Mbit/s rings, that even
for a load of just 15% of maximum capacity, the speed-up
is approaching the ideal linear value of 12 for the unop-
timized version, and is starting to level out at just over
10 when compared with the optimized version. The dif-
ference between the two curves represents the proportion
of the processing time that is taken up in switching the
messages from one processor to another. The speed-up
of the simulator relative to the unoptimized version can
also be estimated from the processor activity monitoring
of each of the transputers in use: the results from do-
ing this agree well with the upper curve shown. Figure 5
shows, for the 600 Mbit/s rings that in comparison with
the unoptimized single processor version the speed-up is
greater than 9 for all loads simulated, and for link loads
greater than 30% it is almost linear.

It can be seen from figure 6 that the speed-up degrades
gracefully with increasing NuLL-message ratio; but, for-
tunately, as can be seen from figure 7, the NuLL-message
ratio remains very low for a large range of the load.
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