Proceedings of the 1992 Winter Simulation Conference
ed. J. J. Swain, D. Goldsman, R. C. Crain, and J. R. Wilson

SIMULATION OF DATABASE TRANSACTION MANAGEMENT PROTOCOLS:
HYBRIDS AND VARIANTS OF TIME WARP

John A. Miller

Department of Computer Science
415 Graduate Studies
University of Georgia

Athens, Georgia 30602, US.A

ABSTRACT

The Time Warp protocol has been used successfully for parallel
and distributed simulation. This paper considers several vari-
ants of Time Warp adapted for database transaction manage-
ment, and also hybrids of Time Warp with traditional transac-
tion management (concurrency control and recovery) protocols.
Simulation models are constructed to simulate the behavior of
these protocols, and an analysis of their relative performance is
given. The results indicate that hybrids and variants of the
Time Warp protocol can exhibit excellent performance.

1. INTRODUCTION

The combination of newer more demanding database applica-
tions, along with the increasing use of multiprocessor machines
(both loosely and tightly coupled) produce a need and an
opportunity for improved database performance. As levels of
concurrency get higher and higher the impact on performance
of transaction management protocols becomes more and more
important. The use of common concurrency control protocols
such as Two-Phase Locking may lead to an unacceptable per-
formance bottdeneck (Kim 1990), particularly for long-duration
transactions. Possible solutions include: (1) finding a useful
weaker correctness condition than serializability, (2) finding
higher performance protocols to enforce serializability, and (3)
exploiting special semantics of operations. Approaches (1) and
(3) are relatively complicated for a naive user to work with, so
a higher performance protocol for enforcing serializability is an
attractive alternative.

One way to achieve acceptable response time and
throughput is to avoid protocols that block processors, whether
they are protocols for synchronization of simulation events or
protocols for concurrency control. This claim is based on the
intuition that it is better to use available processors, even if the
work using those processors turns out to be incorrect and must
be thrown away, than to block processing when processors are
available. This argument assumes that the useful work done by
transactions in the forward direction outweighs the non-
productive work that has to be reversed. The simulation results
presented in this paper and in (Miller 1986, 1992; Miller and
Griffeth 1992) indicate that this assumption is justified. A
second way to improve performance is to have multiple ver-
sions of objects (rather than updating an object, new versions of
the object are created). This reduces the kinds of conflicts that

1232

can occur (e.g., write-write conflicts are no longer a problem).
Many object-oriented database systems provide versioning
capabilities (Kim 1990) for application reasons (Biliris 1989).

A secondary motivation for this work is to select proto-
cols suitable for concurrency control in the query driven simu-
lation system that is being developed at the University of Geor-
gia (Miller and Weyrich 1989; Miller et al. 1990, 1991a,
1991b, 1992b; Kochut, Miller and Potter 1991). Query driven
simulation is an approach to simulation modeling and analysis
that uses database technology to automate the storage and
retrieval of simulation data and simulation models. The funda-
mental tenet of query driven simulation is that simulationists or
even naive users should see a simulation system as a sophisti-
cated information system. This system should be able to store
or (just as easily) generate information about the behavior of
systems that users are studying. Some of the application areas
to which we are applying query driven simulation include
model management (Potter et al. 1990), decision support sys-
tems (Potter et al. 1992), and most recently genome mapping
(Miller et al. 1992a). Since object-oriented database systems
have such powerful data and behavioral structuring mechan-
isms, they provide an ideal foundation to support demanding
applications like query driven simulation. On such a system,
the concurrency control protocols used by the object-oriented
database will have a major impact on performance (Griffeth
and Miller 1985; Miller 1986). They will affect the perfor-
mance of both ordinary database operations (queries and
updates) and the execution of simulation models.

Interestingly enough, there are similarities between pro-
tocols for database concurrency control and protocols for syn-
chronization of simulation events (Chandy and Misra 1979;
Misra 1986). Richard Fujimoto has pointed out in (Fujimoto
1990) that the protocols developed for the difficult problem of
parallel and distributed simulation can be adapted to other
parallel/distributed applications. In the mid 1980's David
Jefferson (Jefferson 1985; Jefferson and Motro 1986) adapted
his Time Warp protocol to serve as a concurrency control pro-
tocol for database transactions. Time Warp is one of the more
successful optimistic protocols used for parallel and distributed
simulation. It is convenient that there are protocols that apply
to both problems, since the approach used for the concurrency
control protocol needs to be compatible with the approach used
for distributed event synchronization. If one protocol blocks

Database Transaction Management Protocols: Variants of Time Warp 1233

while the other attempts to proceed, we will negate the advan-
tages of both protocols.

A similar protocol, which has been found to have good
performance (Miller 1986) enforcing serializability in highly
concurrent systems, is the Multiversion Timestamp Ordering
protocol (Reed 1978). Protocols such as the Multiversion
Timestamp Ordering and Time Warp protocols have the fol-
lowing advantages: (1) high effective concurrency levels, (2)
deadlock free operation (because there is no or limited block-
ing), and (3) efficient operation unless there is a conflict. These
types of protocols resolve conflicts by partially rolling back
(undoing some operations) or completely aborting transactions.
The fact that transactions are not blocked leads to higher effec-
tive concurrency levels. Thus, if aborts or partial rollbacks do
not occur with great frequency, these protocols should exhibit
excellent performance.

We extend Jefferson’s work on the Time Warp protocol,
developing several other variants of Jefferson’s Time Warp
protocol (Miller and Griffeth 1991, 1992; Miller 1992). In
addition, we develop a Hybrid protocol that combines the best
features from the Time Warp and Multiversion Timestamp
Ordering protocols. The performance of these protocols is
compared by simulating their execution on a multiprocessor.

2. DATABASE CORRECTNESS CONDITIONS

The two primary correctness conditions to maintain in a data-
base are serializability and recoverability. Serializability main-
tains the consistency of data, by guaranteeing that if the indivi-
dual transactions are correct then their combined effect will be
correct (Papadimitriou, Bernstein and Rothnie 1977; Ullman
1982). Serializability is maintained by constraining the order-
ing of operations so that their effect is equivalent to a serial
execution of the transactions. We also need to guarantee that
the effects of successfully completed work are permanent. To
this end, we provide a commit operation for a transaction to sig-
nal its successful completion and require that after it has com-
mitted, its effects will be part of the database forever.

Recoverability guarantees that after a failure (either tran-
saction failure or system crash) the database can be recovered
to a consistent state, at which point things can carry on as usual
(Hadzilacos 1983; Gray et al. 1981). Recoverability is main-
tained by not allowing a transaction to commit until all the data
it has read is committed. After a failure, we recover the data-
base to a state including the effects of exactly those transac-
tions that committed before the failure.

As a baseline for examining the performance of the
Time Warp hybrids and variants, a simulation model was con-
structed for the Two-Phase Locking protocol (Two-Phase
Locking is by far the most commonly used protocol in today’s
database systems). Under this protocol, objects to be read are
read-locked, objects to be written are write-locked, and read-
locks can be upgraded to write-locks. The transactions acquire
their locks just before they are needed, and release them at
commit time. Deadlocks are checked by using a WaitsFor
graph, and are broken by aborting a transaction.

3. MULTIVERSION TIMESTAMP ORDERING PROTO-
CoL

Under the Multiversion Timestamp Ordering protocol, each
transaction is timestamped upon initiation. In the simulation
this is simply done by calling the Time () function. In a paral-
lel or distributed database, the generation of good unique times-
tamps is a bit more challenging (see (Bernstein, Hadzilacos and
Goodman 1987) for techniques to do so). Each version of an
object is also timestamped with the timestamp of the transac-
tion writing it. Additionally, it is important to keep track of the
latest reader of each version. Hence, the following information
needs to be maintained for the successful operation of the pro-
tocol,

ts(T;) = timestamp of transaction T;
ws(vy) = write-stamp of version v
rs(vi) = read-stamp of version v,

where T; is the i transaction to initiate. A write operation
will simply write a new version of an object. The write W;(0y)
by transaction T; produces a new version v; with write-stamp
ws(vy) =ts(T;). This version is inserted into the ordered list
0, according to its write-stamp. Transactions will read the
most recent version of an object. Specifically, the most recent
from its time frame; versions from the future may not be read.
Consequently, when transaction T; reads from object O;, the
version with the largest write-stamp not exceeding the times-
tamp of T; is returned.

The Multiversion Timestamp Ordering protocol supports
high concurrency since reads can be executed in a relatively
unrestricted way. Except for the concern for recoverability,
there are no restrictions at all (simply the appropriate version is
chosen and read). Writes, however, may cause a transaction to
be aborted. In particular, if transaction T; attempts to write a
version of object O; that interferes with an existing information
transfer, then this write cannot be allowed to proceed. This
occurs under the following conditions,

ws(v) < ts(T;) < rs(w)

where v, is the version that immediately precedes the version
T; is attempting lo write. In other words, T; is attempting to
insert a new version immediately after v, but since the read-
stamp on v, is greater than the timestamp of T; this cannot be
allowed. The problem is that a transaction reading version v,
should have really read the version that transaction T; is
attempting to write. For example, consider the following
schedule,

W0 10) R (0 10) W (O 20) R7(0 2) R (0)

where Ri(0)/Wi(o) denotes a read/write of object o by tran-
saction i. If transaction 8 attempts to write a version of O 3, it
must be aborted since transaction 9 has already read the version
written by transaction 5.

Since writes may be aborted, some type of recovery pro-
tocol is necessary to maintain consistency. One that appears
particularly well suited is the Realistic Recovery protocol. It
will block reads until the versions they are attempting to read
are committed. This will introduce some extra delay into the
system, but the amount of blocking will be rather small in com-

parison to the Pessimistic Recovery protocol (Griffeth and
Miller 1985) or the commonly used Two-Phase Locking con-
currency control protocol. Furthermore, so long as the transac-
tions are two-stage (see Section 6) no deadlocks can occur.
(Another possibility is to use the Optimistic Recovery protocol
(Miller and Griffeth 1992). This approach was used in the
study by (Liu, Miller and Parate 1992) with the result being
that the overall performance is marginally worse than using the
Realistic Recovery protocol.)

4. TIME WARP PROTOCOL

The Time Warp protocol has been studied extensively for
parallel and distributed simulation. It allows active objects
(processes) to advance their state forward as rapidly as possi-
ble, until a message (from some other active object) is received
whose receive time is in the past. When this happens, the
receiver object must be rolled back to this time so that the event
specified in the message can be executed. This same Time
Warp protocol can be adapted for use as a database con-
currency control protocol (Jefferson 1985; Jefferson and Motro
1986).

In the schedule given in Section 3, transaction 7 also
reads the version written by transaction 5. Unlike the read by
transaction 9, this presents no problem for transaction 8 in its
write attempt. To maintain serializability, it suffices to have
transaction 9 change its read from transaction 5’s version to
transaction 8's version. Hence, we need to be able to partially
rollback a transaction. The simplest approach is to back up
transaction 9 to the point of the read of O x (i.e., the read-in-
question) and then begin redoing the transaction. A more
detailed analysis shows that the following would suffice:

1. "Redo" the read-in-question. In addition, handle errone-
ously included/excluded reads: (a) "undo" any reads that
were previously performed, but should not have been as
their guard condition now evaluates to false; and (b) "do
for the first time" any reads that were previously skipped
because a condition that uses the value of the read-in-
question evaluated to false. We say such reads are con-
ditionally dependent on the read-in-question.

2, "Undo" and then "redo” writes that are either condition-
ally or value dependent on the read-in-question. A write
is value dependent, if the value obtained by the read-in-
question is used in the write's calculation.

Note that in Time Warp, since transactions are only par-
tially rolled back, their intenal structure (including if state-
ments) becomes important. Choosing to partially roll back
rather than abort as is done with the Multiversion Timestamp
Ordering protocol, has appeal since aborting is a more drastic
operation. However, when the writes of a transaction are
undone, they may cause other transactions to be partially rolled
back leading to cascaded rollbacks. This would suggest that as
the rate of conflict gets high, the performance of this protocol
would degrade rapidly.

4.1. Jefferson’s Original Protocol

The adaptation of the Time Warp algorithm, as originally done
by Jefferson (Jefferson 1985; Jefferson and Motro 1986) is

Miller

similar to the deferred commitment variant discussed below.
However, Jefferson requires that all messages be processed in
timestamp order. Thus the relative order in which reads are
processed is significant. This requirement is above and beyond
what is necessary to enforce serializability, so one would
expect a tradeoff of possibly higher consistency for lesser per-
formance. However, optimizations can be used to enhance per-
formance.

4.2. Anti-Transaction Varfant

The thomiest problem in using the Time Warp protocol is that
some of the transactions that need to be partially rolled back
cannot, since they have already committed. A possible remedy
for this assumes that transactions can be effectively reversed
through the use of anti-transactions. An anti-transaction is a
system spawned transaction that reverses or counterbalances
the effects of some transaction. Therefore, under this variant,
conflicts are handled by rollbacks for uncommitted transac-
tions, and by spawned anti-transactions for committed transac-
tions.

4.3. Deferred Commitment Varlant

In some applications, the use of anti-transactions (or compen-
sating transactions) is infeasible. For example, if money is
dispensed from an automated teller machine, reclamation of
this money is not possible. The deferred commitment variant
of the Time Warp protocol avoids the necessity of anti-
transactions by delaying the commitment of transactions.
Using this variant, transactions are committed in timestamp
order. (Actually, commitment occurs when the system's esti-
mate of Global Virtual Time (GVT) exceeds the timestamp of
the transaction (Jefferson and Motro 1986). At this time, exter-
nal outputs may be physically performed and older versions
may be purged.) Although this may introduce a significant
amount of blocking, it should not dramatically degrade
throughput (Jefferson and Motro 1986). The main effect would
be to increase the transaction completion time. However, it is
possible that a few very long duration transactions could
increase the delay encountered by average transactions to an
unacceptable level.

S. HYBRID PROTOCOL

An alternative to these non-ideal possibilities is to use a Hybrid
protocol. The Hybrid would use Time Warp so long as none of
the reads-in-question belong to committed transactions, and use
Multiversion Timestamp Ordering otherwise. Thus, when a
write of a new version is attempted by T; three possible actions
may ensue: (1) The first possibility is to continue normally --
the read-stamp is smaller than s (T;) so there is no conflict. (2)
The second possibility is to partially roll back the transactions
with questionable reads -- there is a conflict and all of the
reads-in-question belong to uncommitted transactions. Since
rollbacks are less costly than aborts, this is the preferred correc-
tive action. (3) The final possibility is to abort transaction T; --
there is a conflict and at least one of the reads-in-question
belongs to a committed transaction. Unless one uses anti-
transactions or substantially delays the commitment of transac-
tions, rolling back transactions will not always suffice. If the

Database Transaction Management Protocols: Variants of Time Warp 1235

new write destroys one of the information transfers where the
reader has already committed, then the write will be prevented
from occurring by aborting the transaction and making it start
over with a new, larger timestamp.

§.1. Anti-Transaction Variant

Avoiding anti-transactions by choosing to abort, leads to addi-
tional complexities. To prevent aborts from corrupting the
correctness of the database either a recovery protocol is nceded,
or again anti-transactions must be used (although less fre-
quently). To see why this is so, consider the following case:
Transaction T reads a version written by transaction T, after
which T aborts. It is possible, even though T, started before
T, that T, commits before T, finishes (or in this case aborts).
Thus, T has committed having read uncommitted (i.e. dirty)
data, violating the recoverability condition.

5.2. Realistic Recovery Variant

Coupling a recovery protocol with the Hybrid protocol will
solve this problem. Since we desire to keep blocking to a
minimum, the Realistic Recovery (or Optimistic Recovery)
protocol would make a good candidate. If a recovery protocol
is not used then anti-transactions must be used to clean up the
damage.

The Realistic Recovery protocol described in (Hadzi-
lacos 1983) is a good choice for a multiversion database. To
describe the Realistic Recovery protocol, let us consider how
recovery protocols must operate. Data that has been written by
transactions that have yet to commit is termed dirty data. From
the definition of recoverability, we can see immediately that
recoverability must be enforced by not allowing commits of
transactions that have read dirty data. To do this, we can block
either reads of dirty data or we can block commits of transac-
tions that have read dirty data. In either case we have to block;
from simulation results (Griffeth and Miller 1985; Miller
1986), the better choice appears to be to block reading of dirty
data. The Realistic Recovery protocol simply blocks transac-
tions attempting to read dirty data, until that data is committed.
Writes, however, are not blocked since they simply produce a
new version. (See the Appendix for a more detailed
specification of this protocol.) We will now specify in detail
how the Realistic Recovery protocol can be combined with the
Hybrid protocol.

Read. When a read operation is processed, the most
recent (from the time frame of the reading transaction) version
is selected. If this version is committed, then the read is
dispatched; otherwise the transaction is blocked until the ver-
sion is committed. (If we allow parallelism within transactions,
then much of this blocking can be reduced.) Since the read-
stamp indicates the last transaction to have read a version it will
only be updated once a read is actually dispatched, i.c., waiting
readers do not effect the read-stamp of a version.

Write. When a write operation is processed, it will
succeed without conflict or corrective action if it does not inter-
fere with an information transfer that has already occurred.
This will be the case if the read-stamp of the previous version
is less than or equal to the timestamp of the writing transaction.
If there is a conflict, then the action to be taken is as specified

in the previous sub-section (i.e., abort the transaction, or roll
back any transactions which should have read this new ver-
sion). Notice that waiting reads do not produce conflicts. If a
read by transaction 9 was waiting for transaction 5 to commit,
while in the meantime transaction 8 writes a new version of the
same object, then transaction 9 now simply waits for transac-
tion 8 to commit. The write will be carried out by inserting (in
timestamp order) the new version into the list of versions for
the specified object and marking it uncommitted.

Commit. When a transaction commits, the version of
each object it has written will be marked as committed. Any
reads that were waiting on these versions will now be
dispatched. Even though commitment is not delayed, it is still
necessary to keep track of Global Virtual Time (GVT) for the
purpose of purging older committed versions. A committed
version may be purged when it can be assured that no addi-
tional reads will need this version (i.e., when GVT has
exceeded this and a subsequent versions' timestamp).

Abort. When a transactions aborts, all of the versions
which it has written will be removed from relevant version
lists. Any reads that were waiting for the transaction to commit
will now be assigned to the immediately preceding version. If
this version is already committed, then these reads will be
dispatched. Notice that cascaded aborts are not possible, since
transactions are not allowed to read uncommitted (dirty) data.

Rollback. When a transaction is to be rolled back, the
read-in-question will need to be redone, and a determination
will be made as to what other read operations need to be
undone or done for the first time. Similarly, writes that are
conditionally dependent on the read-in-question will need to be
either undone or done for the first time. Finally, any writes that
are value dependent on the read-in-question will need to be
undone and then redone (both actions can be handled by one
anti-message if lazy cancellation is used). Notice that since
reading of uncommitted versions is prohibited by the realistic
recovery protocol, rollbacks will never cascade to other tran-
sactions.

6. SIMULATION MODELS

In this paper, we consider only two-stage transactions which do
all their reading before writing. In (Miller 1986), non two-
stage transactions where reads and writes are intermixed are
considered. Two-stage transactions are very good from a per-
formance standpoint, as deadlock recovery is greatly simplified.
Indeed deadlocks cannot occur for several of the protocols,
including the Realistic Recovery protocol. For this protocol,
only reads can be blocked; they must wait for writes to be com-
mitted; since transactions are two-stage, once into their write
stage they cannot be blocked; therefore it is impossible for a
circular wait condition to develop. In addition, the throughput
for two-stage transactions is significantly better than the
throughput for non two-stage transactions (Miller 1986).
Furthermore, any transaction can be turned into a two-stage
transaction by a simple change to the execution of the write
operations: The data to be written is held in a local work area
until the transaction is complete, then all writes are output.
Note that this requires that we also postpone scheduling activi-
ties (e.g., setting locks, timestamps, etc.) associated with writes.

1236

The concurrent behavior of multiversion object-oriented
databases can be modeled as follows: The database consists of
a set of D active objects. At any time, M of these active
objects are requesting operations to be performed by other
active objects. This is accomplished by sending messages
between active objects. For the sake of consistency, a sequence
of interrelated operations are grouped together to form a tran-
saction. These M active objects are said to be transacting. The
other D — M active objects sleep until the next operation
request message comes in.

In the models, transacting active objects perform a
sequence of transactions. Furthermore, in this modecling study
only read and write operations are considered. (Note, some
operations such as increment allow very general interleavings
and therefore contribute to high concurrency (Alichin 1983;
Garcia-Molina 1983).) Each transaction goes through a
sequence of J stages each corresponding to an operation (i.e.,
after completing an operation a transaction goes to the next
stage to perform its next operation). From an analytic model-
ing point of view, we can model each of the stages as a node in
a queueing network. Therefore, the system will be composed
of M concurrent transacting active objects traversing / nodes
of the queueing network, reading and writing versions of D
active objects. In (Miller 1986), we developed the queueing
network models in detail. After applying a mean substitution
approximation, we were able to derive simple continuous-time
Markov chain models where X () represents the state of a tran-
saction at time ¢. In the derivation we showed that any service
time distribution will work; it does not have to be exponential.

From a simulation modeling point of view, active
objects in the database can be modeled as SIMODULA
processes (Miller et al. 1990; Miller and Griffeth 1991, 1992).
(SIMODULA is a simple process-oriented simulation system
coded in Modula-2 (Miller, Weyrich and Suen 1988; Miller and
Weyrich 1989; Miller et al. 1992b).) In the script procedure
used for these processes, a transacting active object repeatedly
performs transactions until the simulation is over. Within a
transaction, k read/write operations are performed followed by
a commit (k =r +s, where r = number of reads and s =
number of writes). This usual behavior is modified if the tran-
saction is aborted or partially rolled back. (A PreCommit
operation is added for the Time Warp protocol to allow a tran-
saction to be reversed up until the last moment of its execu-
tion.) An abbreviated version of the ActiveObject script for the
Time Warp protocol is given in (Miller and Griffeth 1992).

In our modeling study, we consider two possible depen-
dency scenarios for the anti-transaction variant of the Time

Warp protocol.

1. High Dependency Scenario. We assume for the sake of
simplicity (both in modeling and in actual protocol
implementations) that all of the writes are value depen-
dent, and that no conditionally dependent reads need to
be performed. Thus, a transaction in its write phase will
only need to be backed up to the state preceding the
write phase. If the transaction is still in its read phase,
the situation is even better. The transaction simply
needs to do its read-in-question again.

Miller

2. Low Dependency Scenario. More optimistic scenarios
are certainly possible. For example, one or a few writes
could be dependent on the read-in-question, while the
other operations are independent.

In this paper, we present results for the low dependency
scenario (see (Miller and Griffeth 1992) for results assuming
high dependency). Specifically, to test the Time Warp protocol
under an optimistic, yet realistic scenario, we examine the case
where only one write is dependent on a given read.

7. SIMULATION ANALYSIS

With D fixed at 500 active objects and the object access time
distributed uniformly from 0 to 20 milliseconds (expected
value of 10 milliseconds), several experiments were conducted.
Each experiment generated simulation results for the Two-
Phase Locking (2PL), Multiversion Timestamp Ordering
(MVTO), Time Warp (TW) (anti-transaction variant), and
Hybrid (HYB) (anti-transaction variant) protocols. These
results are summarized in Tables 1-3. These tables show the
throughput (tps), and the number of rollbacks, anti-transactions,
aborts, and blocks per 100 committed transactions. The
method of batch means was used to control the simulation; 10
batches each representing 100 committed transactions were
produced; the first batch was thrown out to reduce transient
effects; the performance measures were computed on this basis.

Tablel: k=12, r=3, ¢=35 a=25
Table2: k=12, r=6, ¢ =35 a=25
Table3: k=12, r=9, ¢=35 a=25

Note, ¢ =3.5 means that the expected time to commit is 35
milliseconds (or 3.5 times the read time), while a = 2.5 means
that the expected time to abort is 25 milliseconds. The results
given in Table 2 are summarized graphically in Figure 1. This
figure displays the throughput in committed transactions per
second (tps) of the four protocols (HYB: dash-dot, TW: dot,
MVTO: dash, 2PL: solid). In particular, the throughput is plot-
ted versus the concurrency level (M), which ranges from 10
(low concurrency) to 70 (high concurrency). Finally, Figure 2
shows a three dimensional plot of the throughput for the HYB
protocol (x-axis: concurrency level (M), y-axis: number of
reads (r), z-axis: tps).

7.1. Low Read-Write Ratio

The low read-write ratio scenario represents the case where
writes are more common than reads (read probability = 0.25).
For 2PL, this represents the worst scenario. The throughput at
low concurrency is 43 tps, and proceeds to steadily drop from
there. For the other protocols, however, their performance
under this scenario is nearly as good as their performance when
the read-write ratio is high. The explanation for this dichotomy
is that the last three protocols (MVTO, TW and HYB) are all
multiversion protocols which do not suffer from write-write
conflicts, as 2PL does. Comparing the peak performance of the
protocols, it is evident that the multiversion protocols perform
3 to 5 times better than 2PL. This is the case because the
experiments were designed to test the protocols under condi-
tions that are non-ideal for 2PL, namely high concurrency (and
hardware support for it), and high levels of conflict (a database

Database Transaction Management Protocols: Variants of Time Warp

1237
Table 1: Summary of Simulation Results for k= 12 and r = 3
2PL MVTO ™ HYB
M | blocks aborts tps blocks aborts ips rbacks aniis tps rbacks aborts tps
10 93.78 6.33 4343 16.00 18.78 5597 | 3600 033 58.04 | 36.67 0.44 58.85
20 | 21833 3478 3527 | 4333 5544 8832 | 7533 1.00 108.26 | 84.78 122 109.09
30 | 34400 77.00 2662 | 6922 91.56 13.81 | 13044 322 14546 | 146.89 2.78 148.02
40 | 56322 167.00 1834 | 98.11 12800 12948 | 203.00 622 17244 | 223.44 422 179.59
50 | 793.00 272.67 1344 | 136.89 18322 13552 | 259.00 7.00 199.76 | 325.11 833 19947
60 | 1125.00 421.56 10.19 | 197.67 28433 126.50 | 407.89 18.78 191.73 | 400.89 10.11 223.15
70 | 163636 668.67 7.53 | 266.67 379.78 122.45 | 485.11 22.56 203.81 | 584.11 16.67 223.07
Table 2: Summary of Simulation Results for k = 12 andr =6
2PL MVTO TW HYB
M | blocks aborts tps blocks aborts Ips rbacks antis ips rbacks aborts tps
10 65.33 4.22 50.75 15.22 2933 52.21 38.67 0.78 57.46 41.56 0.44 57.74
20 161.11 2344 5226 | 3778 7456 81.26 | 97.11 1.89 10420 | 103.89 278 104.06
30 | 273.22 60.22 3744 | 6756 144.11 91.43 | 16256 5.89 13499 | 189.44 533 13755
40 | 41300 12644 27.80 | 10933 19856 101.91 | 263.89 13.44 152.69 | 265.33 822 166.54
50 | 579.00 21244 2131 | 159.00 329.78 93.12 | 339.22 18.56 171.12 | 41456 1589 176.86
60 | 86378 370.11 15.83 | 227.67 456.44 89.97 | 64400 4333 14268 | 546.00 20.67 187.64
70 | 129344 604.78 1120 | 273.78 60589 84.62 | 860.11 5222 143.81 | 738.89 29.22 185.70
Table 3: Summary of Simulation Results for k=12 andr =9
2PL MVTO T™W HYB
M | blocks aborts ips blocks aborts tps rbacks antis tps rbacks aborts tps
10 [33.78 1.44 5757 7.11 21.67 5497 2400 0.67 58.70 [25.11 1.11 58.72
20 | 7244 7.00 9038 | 13.89 46.78 93.38 59.00 322 107.29 59.00 244 1109.12
30 | 124.00 19.11 83.10 | 2533 87.57 11189 | 100.00 5.89 14542 | 91.00 422 151.21
40 | 168.11 35.00 8047 | 3567 13400 12340 | 147.67 11.00 173.64 | 139.22 7.78 184.61
50 | 23622 7833 5286 | 4933 177.22 131.79 | 18233 14.00 200.16 | 19478 1222 205.85
60 | 281.00 10133 5277 | 63.00 24933 129.07 | 258.67 21.67 207.75 | 232.67 13.78 230.22
70 | 35922 173.11 4048 | 79.22 331.22 122.65 | 386.78 35.67 194.90 | 30589 19.22 239.27

Throughput, tps

Miller

180

160

140+

3

&

5

St
(=]
N
o
W
o
N S LR TSNS S SR S
W
o
~J
o

Concurrency Level, M

Figure 1: Protocol Performance

Figure 2: Surface for Hybrid Protocol

Database Transaction Management Protocols: Variants of Time Warp 1239

size of 500 objects is relatively small). Consequently, the rate
of blocking and even aborting (due to deadlocks) becomes very
high, resulting in poor performance. It is interesting to note
that, although the abort rate for MVTO begins much higher
than that of 2PL, as the concurrency level climbs this situation
reverses. Comparing the multiversion protocols among them-
selves on the basis of peak performance, we find that TW (at
204 tps) performs 50% better than MVTO (at 136 tps), while
HYB (at 223 tps) performs 64% better than MVTO.

7.2. Medium Read-Write Ratio

The medium read-write ratio scenario represents the case where
reads and writes are equally likely (read probability = 0.50).
Under this scenario, the performance of 2PL improves over the
previous scenario, starting at 51 tps and increasing to 52 tps at a
concurrency level of 20 before dropping. Although the mul-
tiversion protocols all had reduced performance under this
scenario, they still outperformed 2PL by a factor of 2 to 4.
Again, comparing the multiversion protocols among them-
selves on the basis of peak performance, we find that TW (at
171 tps) performs 68% better than MVTO (at 102 tps), while
HYB (at 188 tps) performs 84% better than MVTO.

73. High Read-Write Ratio

The high read-write ratio scenario represents the case where
reads are more common than writes (read probability = 0.75).
Under this scenario, all of the protocols exhibit their best per-
formance. This is fortunate since the high read-write ratio is
the most likely scenario to occur in practice. The performance
improvement under this scenario is particularly noticeable for
2PL. Its throughput begins at 57 tps, and then increases and
stays in the range of 80 to 90 tps for the mid levels of con-
currency. Still, the multiversion protocols exhibit substantially
higher throughput. Once again, comparing the multiversion
protocols among themselves on the basis of peak performance,
we find that TW (at 208 tps) performs 58% better than MVTO
(at 132 tps), while HYB (at 239 tps) performs 81% better than
MVTO.

In general, for all of the multiversion protocols we find
that the throughput drops off as the number of reads versus
writes becomes balanced. At either extreme (mainly reads or
mainly writes) the performance level is the greatest. This
phenomenon is clearly indicated by the trough pattern exhibited
in Figure 2 (i.e., for all levels of concurrency throughput is at a
minimum when r is equal to 6).

8. CONCLUSIONS

Overall, we can conclude that the multiversion protocols pro-
vide ever increasing performance relative to Two-Phase Lock-
ing (2PL) as concurrency levels increase. Of the multiversion
protocols, the newer ones, Time Warp (TW) and Hybrid (HYB)
exhibit better performance than Multiversion Timestamp Ord-
ering (MVTO). In comparing TW with MVTO, there is a sub-
stantial performance improvement with TW. Although the rate
of corrective action is roughly the same for the two protocols,
with MVTO relying upon blocks (due to the embedded Realis-
tic Recovery protocol) and aborts, and TW relying upon roll-
backs and anti-transactions, TW exhibits better performance

since its corrective actions are less costly. Anti-transactions are
costly corrective actions, but fortunately, the frequency of their
occurrence within TW is 1 to 2 orders of magnitude less than
the occurrence of rollbacks. Because rollbacks are relatively
cheap in comparison to aborts, the primary corrective action
used by MVTO, TW spends less time fixing problems and
more time progressing the states of transactions forward.
Finally, the HYB protocol was developed to reduce or elim-
inate the need for anti-transactions. Usually, HYB will respond
o conflicts in the same way that TW would, by rolling back
transactions. However, the protocol at times behaves like the
MVTO protocol by aborting transactions to avoid using an
anti-transaction. The HYB protocol performs even better than
TW, with higher throughput, fewer rollbacks and fewer aborts
(than TW’s anti-transactions). Although the difference is not
as great as the difference between TW and MVTO, it appears
to be consistent. When a write produces a conflict, a decision
must be made to either rollback the reader(s) or abort the
writer. Evidently, HYB makes the right choice more often than
either TW or MVTO, thus accounting for its better perfor-
mance.

On the negative side, TW is susceptible to a type of data
contention thrashing. When the concurrency level and proba-
bility of conflict are very high, the frequency of rollbacks
begins to explode leading to a sharp downturn in throughput.
The problem of cascaded rollbacks escalates to the point where
more work is done in reversing time than in progressing time.
This is particularly cvident for the longer transactions, sce
(Miller 1992). Once the throughput reaches its peak, it begins
an ever more precipitous drop. The throughput curve seems to
drop dramatically when the rate at which anti-transactions exe-
cute begins to exceed the rate at which transactions commit.
By throttling the concurrency level, though, high performance
for TW can be maintained. The data we have collected so far,
indicates that this explosive performance degradation is much
more minor for HYB and has a later onset.

Some interesting related performance results may be
found in our previous work. In the paper by (Liu, Miller and
Parate 1992), it was found that multiversion protocols per-
formed substantially better than their single version
equivalents, if the system had the resources necessary for high
concurrency (e.g, a multiprocessor systems with plenty of pro-
cessors around to advance the states of transactions). The com-
bination of the results from (Miller 1992; Miller and Griffeth
1992) and this paper indicate that TW exhibits performance
superior to that of MVTO. Furthermore, as the degree of
dependency within transactions is reduced, the cost of aborting
a transaction becomes much greater than the cost of partially
rolling back a transaction, thereby giving TW an even bigger
advantage over traditional protocols.

In the field of simulation, the Time Warp protocol has
been shown to be one of the better protocols for parallel and
distributed simulation (Fujimoto 1990; Jefferson and Reiher
1991). In this paper, we have used simulation models to
demonstrate that adaptations and hybrids of the Time Warp
protocol can provide superior database transaction throughput.
Our major findings may be summarized as follows: (1) So long
as the probability of conflict does not get too high, the Time

1240

Warp protocol has an excellent potential for high performance.
Its peak throughput is higher than that of any traditional proto-
col we have studied. (2) The Hybrid protocol reduces and can
even eliminate the need for anti-transactions, without resorting
to lengthy blocking delays, and according to our simulation
results provides even higher performance than Time Warp.
Furthermore, the severity of performance degradation as con-
currency levels become very high is less with the Hybrid proto-
col.

ACKNOWLEDGMENTS

The author would like to thank Dr. Nancy D. Griffeth of
Bellcore, Dr. Krys J. Kochut of the University of Georgia, and
Mr. Nilesh R. Parate of Oracle Corp. for their comments and
suggestions related to this work. This research was partially
supported by a University of Georgia Faculty Research Grant.

APPENDIX

This appendix explains in more detail how the Realistic
Recovery (Hadzilacos 1983; Graham, Griffeth and Smith-
Thomas 1984) protocol works. The Realistic Recovery proto-
col requires that each object maintain a list of operations that
have been requested (some of which may have also been exe-
cuted) and that each transaction maintain a list of objects at
which it has requested write operations. When a read or write
operation is requested of an object, the operation is added to the
object’s list of operations. When a transaction requests a com-
mit or abort, it notifies each object at which it has requested a
write. The object may then remove some writes from its list of
operations or dispatch some reads. Committed writes must be
left on the operation list until they are immediately followed by
another committed write. Reads are removed once they have
been dispatched. The following summarizes how each opera-
tion is handled:

1. Read. Dispatch the read if it is immediately preceded by
a committed write operation. Otherwise, add the read to
the end of the operation list.

2. Write. Add the write operation (including the value to
be written) to the end of the operation list. Mark the
write operation as uncommitted.

3. Commit. Notify the objects to mark all write operations
of the transaction as committed. If any of these writes is
immediately preceded by a committed write, the earlier
committed write is removed from the operation list. If
any of these writes is immediately followed by one or
more read operations, the reads are dispatched.

4. Abort. Notify the objects to remove all write operations
of the transaction. If after removal, any committed write
is immediately preceded by another committed write,
the earlier one may be removed. Again, if any commit-
ted write is immediately followed by one or more reads,
the reads may be dispatched.

Miller

REFERENCES

Allchin, J.E. 1983. An Architecture for Reliable Decentralized
Systems, Ph.D. Thesis, Information and Computer Science,
Georgia Tech.

Bernstein, P.A., V. Hadzilacos and N. Goodman. 1987. Con-
currency Control and Recovery in Database Systems,
Addison-Weslcy, Reading, MA.

Biliris, A. 1989. A data model for engineering design objects.
Proceedings of the IEEE Second International Conference
on Data and Knowledge Systems for Manufacturing and
Engineering, Gaithersburg, MD, pp. 49-58.

Chandy, K.M,, and J. Misra. 1979. Distributed simulation: A
case study in the design and verification of distributed pro-
grams. [EEE Transactions on Software Engineering, SE-
5:5, pp. 440-452.

Fujimoto, R.M. 1990. Optimistic approaches to parallel
discrete event simulation. Transactions of the Society for
Computer Simulation, 7:2, pp. 153-191.

Garcia-Molina, H. 1983. Using semantic knowledge for tran-
saction processing in a distributed system. ACM Transac-
tions on Database Systems, 8:2, pp. 186-213.

Graham, M.H., N.D. Griffeth and B. Smith-Thomas. 1984.
Reliable scheduling of transactions on unreliable systems.
Proceedings of the 1984 Conference on Principles of Data-
base System, Waterloo, Canada.

Gray, JN,, et al. 1981. The recovery manager of the System R
database manager. ACM Computing Surveys, 13:2, pp.
223.242.

Griffeth, N.D., and J.A. Miller. 1985. Performance modeling
of database recovery protocols. [EEE Transactions on
Software Engineering, SE-11:6, pp. 564-572.

Hadzilacos, V. 1983. An operational model for database sys-
tem reliability. Proceedings of the 1983 Conference on
Principles of Distributed Computing, pp. 244-257.

Jefferson, D.R. 1985. Virtual time. ACM Transactions on Pro-
gramming Languages and Systems, 7:3, pp. 404-425.

Jefferson, D.R., and A. Motro. 1986. The time warp mechan-
ism for database concurrency control. Proceedings of the
Second International Conference on Data Engineering, Los
Angeles, CA, pp. 474-481.

Jefferson, D.R., and P. Reiher. 1991. Supercritical speedup.
Proceedings of the 24th Annual Simulation Symposium,
New Orleans, LA, pp. 159-168.

Kim, W. 1990. Introduction to Object-Oriented Databases,
The MIT Press, Cambridge, MA.

Kochut, K.J., J.A. Miller and W.D. Potter. 1991. Design of a
CLOS version of Active KDL: A knowledge/data base sys-
tem capable of query driven simulation. Proceedings of the
1991 Al and Simulation Conference, New Orleans, LA, PP-
139-145.

Database Transaction Management Protocols: Variants of Time Warp 1241

Liu, X., JA. Miller and N.R. Parate. 1992. Transaction
management for object-oriented databases: Performance
advantages of using multiple versions. Proceedings of the
25th Annual Simulation Symposium, Orlando, FL, pp. 222-
231.

Miller, J.A. 1986. Markovian Analysis and Optimization of
Database Recovery Protocols, Ph.D. Thesis, Information
and Computer Science, Georgia Tech.

Miller, JLA. 1992. Evaluation of hybrids and variants of time
warp protocols for database transaction management. /EEE
Transactions of Knowledge and Data Engineering. (in
review)

Miller, JA., and N.D. Griffeth. 1991. Performance modeling
of database and simulation protocols: design choices for
query driven simulation. Proceedings of the 24th Annual
Simulation Symposium, New Orleans, LA, pp. 205-216.

Miller, J.A., and N.D. Griffeth. 1992. Performance of time
warp protocols for transaction management in object-
oriented systems. International Journal in Computer Simu-
lation. (to appear)

Miller, J.A., W.D. Potter, K.J. Kochut and O.R. Weyrich, Jr.
1990. Model instantiation for query driven simulation in
Active KDL. Proceedings of the 23rd Annual Simulation
Symposium, Nashville, TN, pp. 15-32.

Miller, J.A., K.J. Kochut, W.D. Potter, E. Ucar and A.A. Kes-
kin. 1991a. Query driven simulation using Active KDL: A
functional object-oriented database system. International
Journal in Computer Simulation, 1:1, pp. 1-30.

Miller, J.A., W.D. Potter, K.J. Kochut, A.A. Keskin and E.
Ucar. 1991b. The Active KDL object-oriented database
system and its application to simulation support. Journal of
Object-Oriented Programming, Special Issue on Databases,
4:4, pp. 30-45.

Miller, J.A., J. Amold, K.J. Kochut, A.J. Cuticchia and W.D.
Potter. 1992a. Query driven simulation as a tool for genetic
engineers. Proceedings of the International Conference on
Simulation in Engineering Education, Newport Beach, CA,
pp. 67-72.

Miller, J.A., O.R. Weyrich, Jr., W.D. Potter and V.C. Kessler.
1992b. The SIMODULA/OBJECTR query driven simula-
tion support environment. In Progress in Simulation, 3,
Leonard and Zobrist (Eds.). (to appear)

Miller, J.A., and O.R. Weyrich, Jr. 1989. Query driven simula-

tion using SIMODULA. Proceedings of the 22nd Annual
Simulation Symposium, Tampa, FL, pp. 167-181.

Miller, J.A., O.R. Weyrich, Jr. and D. Suen. 1988. A software
engincering oriented comparison of simulation languages.
Proceedings of the 1988 Eastern Simulation Conference:
Tools for the Simulationists, Orlando, FL, pp. 97-104.

Misra, J. 1986. Distributed discrete-cvent simulation. ACM
Computing Surveys, 18:1, pp. 39-65.

Papadimitriou, C.H., P.A. Bernstein and J.B. Rothnie. 1977.
Computational problems related to database concurrency

control. Proceedings of the Conference on Theoretical
Computer Science, Waterloo, Canada.

Potter, W.D., J.A. Miller, K.J. Kochut and S.W. Wood. 1990.
Supporting an intelligent simulation/modeling environment
using the Active KDL object-oriented database program-
ming language. Proceedings of the Twenty-First Annual
Pittsburgh Conference on Modeling and Simulation, Pits-
burgh, PA, pp. 1895-1900.

Potter, W.D., T.A. Byrd, J.A. Miller and K.J. Kochut. 1992.
Extending decision support systems: The integration of
data, knowledge, and model management. Annals of
Operations Research. (1o appear)

Reed, D.P. 1978. Naming and Synchronization in a Decentral-
ized Computer System, Ph.D. Thesis, MIT.

Ullman, J.D. 1982. Principles of Database Systems, Computer
Science Press, Rockville, MD.

AUTHOR BIOGRAPHY

JOHN A. MILLER is an assistant professor of Computer Sci-
ence at the University of Georgia in Athens, Georgia. His
research interests include simulation, object-oriented database
systems, knowledge base systems, object-oriented program-
ming and performance analysis. Dr. Miller received the BS
degree in Applied Mathematics from Northwestern University
in 1980, and the MS and PhD in Information and Computer
Science from the Georgia Institute of Technology in 1982 and
1986, respectively. During his undergraduate education, he
worked as a programmer at the Princeton Plasma Physics
Laboratory as part of a co-operative education program. He is
a member of the Association for Computing Machinery (ACM)
and the Society for Computer Simulation (SCS), and is
currently the President of the 26th Annual Simulation Sympo-
sium and a Guest Editor for the International Journal in Com-
puter Simulation.

