Proceedings of the 1992 Winter Simulation Conference
ed. J. J. Swain, D. Goldsman, R. C. Crain, and J. R. Wilson

REPRESENTATION OF USER TRANSACTION PROCESSING BEHA VIOR
WITH A STATE TRANSITION MATRIX

William S. Keezer
Andrew P. Fenic

Mead Data Central, Inc.
Systems Evolution and Modeling
P. O. Box 933
Dayton, Ohio 45401, U.S.A.

ABSTRACT

A new method of modeling user sessions as Markov
chains using NxN transition matrices is presented.
These matrices are used to provide the user transaction
sequences for discrete event simulation models of an on-
line transaction processing system. Methods are given
for validating the matrices, and algorithms are provided
for modifying the matrices. Methodology for
implementation in SLAM II® is given. This method
allows the realistic simulation of user behavior and can
also be used as the control for load generators for system
level tests. Using comparisons of two matrices, one may
compare the behavior of two different user populations.

1 INTRODUCTION

We wanted to realistically and compactly characterize
customer behavior for a simulation model of an on-line
transaction processing (OLTP) system, which delivers
full-text data to users. In this system a user session
consists of signing on, defining an area of research from
a set of menus, conducting the research, and eventually
signing off. Users may retrieve documents, read them
in any of several formats, print those of interest, obtain
more documents, and read those. They may quit at any
time or make other choices, such as use of other
services. Since the various transaction choices have
different resource requirements, changes in user behavior
can make major changes in the system requirements.
We also wanted to easily modify our behavior model.
The addition of new transactions, modifications to
existing transitions, and the implementation of new
interfaces and features are on-going processes that can
cause changes in the manner that users conduct their

Barry L. Nelson

Department of Industrial and Systems Engineering
The Ohio State University
1971 Neil Avenue
Columbus, Ohio 43210-1271, U.S.A.

sessions. By using a model of the predicted behavior to
control the load generator for the system model, the
impact of enhancements may be anticipated.

Our intent was to maintain as much of the original
vanability in transaction sequences at the session level as
possible, while minimizing the complexity of generating
transactions. The problem was compounded by the
number of choices for the next transaction (over 30), and
the variability in the length of the session (minutes to
hours).

Several options for determining the transactions and
arrival rates can be used. There are a number of
advantages and disadvantages to repeated traces (Jain
1991). The biggest problem with traces, from our point
of view, is that one cannot easily account for changes in
user behavior as the system changes.

Transaction specific generators, each creating
transactions at an average rate expected for the overall
system, can overcome several of the disadvantages of
scripts. They also can allow for the addition of new
transactions, and changes in the relative arrival rates.
However, they provide testing only at the overall
average system level. This hides the variability at the
session and transaction level that is of interest in OLTP
systems. We also briefly considered using separate
tables for each user and generating transactions in some
probabilistic way. The memory and computational
requirements of this made it impractical, and it was
difficult to implement it in such a way as to relate it to
the overall system transaction frequencies.

In our opinion, a transition matrix overcomes all of the
difficulties we perceived in other approaches. In
addition, we developed a set of algorithms to create
modifications in an existing matrix, based on
redistributing the total work done among a combination
of new and old transactions or among the same set of

1224 Keezer, Fenic, and Nelson

transactions where behavior changes are anticipated.
These modification methods allowed the authors to
incorporate future predictions of behavior, add new
transactions, and change the overall number of
transactions for a session for a given sign-on arrival rate.
This last capability is important in examining the impact
on a system of extending session length.

One possible drawback to using a transition matrix is
that, in theory, an entity could circulate for an extremely
long time through the model (each entity represents a
single user session). However, in the time spans being
modeled, this would appear only as one of the longer
sessions that did not complete during the test period.
This is realistic in that there are sessions that are very
long compared to the average and that do extend beyond
the test period duration.

State transition matrices have been used in modeling to
describe user behavior on a gross scale such as
application or resource choice (Jain 1991), modeling
telecommunications (Kreiger, Miiller-Clostermann, and
Sczittnick 1990), simulating bursts of line noise (Eier
1989), speech recognition (Vaseghi 1991) and other uses
such as those listed in Kelton and Kelton (1987), but the
authors’ use of state transition matrices to model the
details of customer sessions is a new application of the
technique.

2 PRINCIPLES OF USE

The functionality of the state transition matrix is in
representing each transaction as a state. Then by
computing the relative probabilities of going from one
transaction to any other and placing them in the cells of
the matrix, state transitions will represent user choices of
the next transaction. The key transactions for use of the
matrix are sign-on and sign-off, which are the only two
constants across all sessions. They provide known, fixed
entry and exit points. A small hypothetical example of
a matrix based on relative probabilities is shown in Table
1. In the examples we assume one-step dependency,
which is proven valid for our application later in the
paper.

The table is entered on the row that corresponds to the
current state and exited on the column corresponding to
the next state. If we assume that state 1 represents sign-
on; state 2, fetch document; state 3, read a document’s
page; and state 4, sign-off, then we can see that entering
the table at row 1 gives an 79 % probability of fetching
a document, a 1% probability of trying to read a
document (an error-- there’s none there at sign-on) and
a 20% probability of immediately signing off. Once the
user chooses to fetch a document (search), then there is
a 63% probability of reading it, 17% probability of

fetching a different document and a 20% probability of
ending the session. The same kind of reasoning applies
to state 3, reading a document page. The probabilities
for state 4 are zeroes, except state 4, which terminates
the modeled session. By convention this state is set
equal to 1 to allow all rows to add to 1. This matrix
will model varying sessions which on average will have
20% of the users signing on and immediately leaving the
system, and the remainder fetching a document.

Looking at columns 2 and 3 in Table 2, the
corresponding frequency matrix, the 79 transitions to the
search (fetch document) state from the sign-on state will
eventually create a total of 40 more entries to the search
state and 125 entries to the read state. Therefore about
half the users that do a search will do a second search.
Since the 79 entries generate 125 total read state entries,
then over half the users will read a second page.
Looking at column 4, we can see that about one third
sign off from the search state and the remainder sign off
from the read state.

Table 1: Example of a State Transition Matrix, Mp,
Based on Relative Transition Probabilities

Relative Transition Probabilities
St 1 2 3 4
1 0 .79 .01 .20
2 0 .17 .63 .20
3 0 .16 .40 44
4 0 0 0 1.0

Table 2: Example of a State Transition Frequency
Matrix, Mf

Transition Frequencies
State 1 2(A)|3@B) | 40
1 0 79 1 20
2 (A) 0 20 75 24
3(B) 0 20 50 56
4 (O 0 0 0 100

For implementation purposes, it is difficult to deal
with relative transition values. It is easier to create

Representation of User Transaction Processing Behavior 1225

cumulative probabilities for a row and store them in a
matrix, Mc. One can then determine the index of the
pext state by using a uniform random variate, v, between
0 and 1 according to the rule that the next state is n+1
if

Mc,, <v < Mc,,y,

1,0
where Mc, , is the cumulative probability in row r up to
column n.

The cumulative probability matrix corresponding to
Table 1 is shown in Table 3. In the cumulative matrix,
a uniform random variate, v, would generate a transition
from state 1 as follows: If v < .79, the user will fetch
a document; if .79 < v < .80, the user will erroneously
try to read a page, and if .80 < v < 1.00, the user will
sign off. The other rows are handled similarly.

Table 3: State Transition Matrix, Mc, Based on
Cumulative Transition Probabilities

Cum. Transition Probabilities

St 1 2 3 4

.79 .80 1.0

.16 .40 1.0

0

2 0 17 .80 1.0
0
0

0 0 1.0

Each transaction duration is composed of system time
and think time. The system time for the transaction is
determined by the simulation model. Think time is the
time the user spends reading the screen received,
deciding the next transaction, and keying it. Think time
is calculated as discussed in Section 3.1. This leads to
three matrices, one for the state transitions (transaction
choices), one for the average think times associated with
the transitions, and one for the corresponding standard
deviations of the think time averages. The matrices are
constructed from system-level transaction logs. As
modeled, each session is an entity that repeatedly enters
the matrix and makes a choice of next transaction until
sign-off is selected, the total number and sequence of
transactions for an entity being highly vanable. In
addition, when each entity returns to the matrix, think
time is calculated and then modeled.

3 TRANSITION MATRIX DETAILS

3.1 Creation of the Matrix

The relative probabilities may be obtained by least
squares estimates from the macro data of the total
occurrences of each state (Kelton and Kelton, 1985,
1987, 1991) or from the micro data of a compilation of
the individual transitions. The latter are ten times more
precise than the former (Kelton and Kelton, 1987, 1991)
and were available.

Transaction logs were analyzed for individual state
transitions for approximately 2,000,000 transactions.
Each transaction of interest was assigned an index into
the matrix, and each transaction was paired with its
following transaction. We will refer here to these as T
and T', respectively, with indices into the matrix of t
and t’. For a session with S total transactions we would
then have S-1 pairs (sign-off has no subsequent
transaction). Each T,T’ pair could be considered to
provide a row-column index into the frequency matrix,
Mf, by using their assigned indices, t and t'. The
corresponding cell, Mf,., was incremented by one.

One of the considerations in building the table was to
balance representation of all possible transactions against
processing time and memory for building and storing the
table. Careful analysis of the transactions and their
frequencies allowed us to combine some which had the
same system behavior and impact and eliminate others
that were due to infrequent error conditions. The result
was an NxN matrix, where 20<N <30 accounted for
over 90% of the system transactions.

From the transition frequency data, the probability
table was generated, considering the best estimator of the
probability to be the relative transition frequencies
(Kelton and Kelton 1987, 1991). The total transitions
for a row are summed and each cell of the row is then
divided by the sum to obtain relative frequency. In our
implementation this gives an NxN matrix similar to
Table 1. This was then converted to a cumulative
probability matrix similar to Table 3. The number of
transitions for each state exceeded 1000, and for the
most common transitions several thousand were counted.

To estimate think time, a constant value for
communication time was subtracted from the elapsed
time for the trip from the system to the user and back.
Think times were modeled using a lognormal
distribution. This distribution was chosen by finding the
best match with the Unifit® program from Averill M.
Law and Associates for the highest frequency transition
for each of six transactions. In addition, frequency
curves for the think time for an entire row of the table
appeared to be lognormal in distribution. Since the
average and standard deviation for each cell was
available (see section, 4.1.3), using the assumption of

1226 Keezer, Fenic, and Nelson

lognormally distributed think times for each transition
allows the dynamic generation of a random variate for
think time at each state change.

3.2 Principals of Operation

Figure 1 illustrates the implementation of the transition
matrix in a SLAM I1® model context. As can be seen in
the illustration, sign-on and sign-off provide the entry
and exit points for a loop that has no set number of
iterations for a session.

The state transition matrix is implemented in the
cumulative probability (by row) matrix format (Table 3).
Additionally, two corresponding matrices of the average
think time and its standard deviation for each cell in the
transition matrix are stored in the model.

When the entity returns to the transition matrix, the
index of the next transaction is chosen using DPROBN,
and the corresponding think time is calculated using
RLOGN and the appropriate average and standard
deviation values. The transaction type and the think time
values are stored as attributes and the entity is scheduled.
In the model context, each transaction type has its own
path to set the variables for the transaction and complete
its work.

Model ign-
Sign-on e Sign-off ? End

D

N
Think
Time
Set Matrix
Trans.

Figure 1: Use of the State Transition Matrix in a SLAM
1% Model.

3.3 Algorithms to Modify the Matrix

When changes in user behavior are postulated or new
transactions are added to the system or proposed to be
added, the matrix must be changed accordingly. The
complete set of algorithms to do this is described in the
Appendix. Generally, changes would require the
application of several algorithms to several rows of the
matrix. Changes are made to the underlying frequency
matrix, and the transition (probability) matrix is then

recalculated. In these algorithms, one-step dependency
is assumed. For a given state, the frequency row and
the frequency column for that state must sum to the same
value, and the frequency row sum for the start state must
equal the frequency column sum for the stop state. This
guarantees that all sign-ons will eventually have a sign-
off (even if not in the span of the modeling run).

To illustrate their use, we will take a simple case in
which it is postulated that customers will change
behavior and 50% of the time go from states A to B to
C instead of A to C as they currently do. We will use
for our example the data in Table 1. In this particular
example the user will do more browsing on more found
documents rather than signing off after searching.

The algorithms operate on the frequency matrices and
not the probability matrices. Therefore, we use Table 2,
the underlying frequency matrix for the example. We
will take as state A, state 2; as state B, state 3; and as
state C, state 4.

Referring to the Appendix, algorithm 2.2 is the
appropriate choice. It adds a number, n, of A->B->C
transitions, replacing the same number of A->C
transitions, using the following equations, (1-3), where
Mf;; are the cells of the frequency matrix.

Mf,, = Mf,, + n;)
Mf,. = Mf,. + n; 2
Mfl,c = an,c = n; (3)

Looking in Table 2, we see that currently the user has
24 transitions, A->C. If fifty percent of them will
become transitions to B, then

n = 12, Mf,, = 75, Mf, . = 56, and Mf, . = 24.
After calculation,
Mf,, = 87, Mf, . = 68, and Mf, . = 12.

The resultant frequency matrix is shown in Table 4. The
modified values are indicated with an asterisk and can be
compared to Table 2. The corresponding probability
matrix is shown in Table 5. This can be compared to
Table 1 to see the differences the change has made.

The impact is to increase the number of sign-off
transactions (C) after entering the read state (B), and
decrease the number of sign-offs from the search state
(A). It also increases the number of entries to the read
state from the search state. Since the sign-offs must
equal the sign-ons, it is evident that the sign-offs from
the browse state must increase in absolute numbers.
However, the proportion of sign-offs does not increase
as rapidly, as can be seen in Table 5, the new
probability matrix.

Representation of User Transaction Processing Behavior 1

The increased probability of signing off from the read
state decreases the probability of staying there. This is
somewhat offset by the greater arrival probability.

Table 4: Example of a State Transition Frequency
Matrix after Modification

Modified Transition Frequencies

St 1 2 3 4
1 0 79 | 20
2 0 20 | =87 * 12
3 0 20 50 * 68
4 0 0 0 100

Table 5: Example of a State Transition Probability
Matrix Based on the Frequencies in Table 4

Relative Transition Probabilities
St 1 2 3 4
1 0 .79 .01 .20
2 0 .17 .73 .10
3 0 .15 .36 .49
4 0 0 0 1.0

One can apply these algorithms in an iterative manner
to modify more than one transaction’s transitions in a
matrix. Some scenarios to illustrate the use of the
algorithms are:

If a subsequent state becomes mandatory for all exits
from a given state (A->B->y changes to A->B-
>C), use algorithm A.4.1 iteratively to replace each
former transition from the given state with one to
the mandatory state;

If a new transaction is created, use any of the addition
algorithms depending on how much is known about
the preceding and subsequent states;

If executing more or fewer B transactions, use addition
of x->B->y, algorithm A.2.5, or its removal
analog, if nothing is known about the preceding or
subsequent states, and

If a new transaction is providing partial or total
replacement of an existing transaction, use
algorithms A.4.1-A.4.4, depending on how much is
known about the preceding and subsequent states.

(8]
o
=1

4 EXPERIMENTAL RESULTS
4.1 Validation Tests
4.1.1 Matrix Representativeness and Reproducibility

A relative probability matrix was calculated for each of
six days. A standard error for each cell was created for
the average of corresponding cells’ probabilities across
the six days. The standard error was less than 1% for
any cell with more than 1000 data points. We took this
to indicate that we had represented the overall behavior
of users on the system in a reproducible way, and that
users had fairly consistent behavior from day to day.

4.1.2 One-Step Dependency Test

It was important to determine whether we had one-step
or two-step dependencies. Using data from a restricted
set of the most significant transactions, a 16x16 matrix
representing one-step dependence and a 16x16x16 matrix
representing two-step dependence were created. Using an
algorithm based on Bhat (1984) and Anderson and
Goodman (1957), the two matrices were compared. A
Chi-squared statistic of 1800 for 16*15*15 degrees of
freedom was obtained. This was compared to a Chi-
squared distribution with the same degrees of freedom at
the 0.95 quantile which gave a value of 3740. Since
1800 < 3740, the null hypothesis of one-step
dependence was accepted.

4.1.3 Think-Time Dependence

The question arose about whether think time was
dependent on the preceding transaction (row effect), the
subsequent transaction (column effect), the specific
combinations (cell effect) or was totally random (no
effect). Our desire was to minimize storage of think
times, and a row or column effect would reduce by N
the number of values we would have to have to calculate
think times, and no effect would allow using a single
distribution. ANOVA calculations indicated a definite
cell effect. Therefore we provided matrices of mean
think times and standard deviations for each cell in the
transition matrix.

4.1.4 Comparison of Output to Input Data

A program was created to create sessions of transactions
without system time but with accumulated customer think

1228 Keezer, Fenic, and Nelson

time, using the transition matrix and its associated think
time mean and standard deviation tables.

Six runs of 2000 sessions each were performed. The
batch means for session length exclusive of system time
and frequency of a key transaction were calculated.
Both were reproducible to 0.5% error. The expected
values for session length and transaction frequency
means were taken from actual system values and were
well within the 95% confidence interval of the batch
means.

Using the matrix modifying algorithms listed above, a
modified matrix was produced to reflect hypothetical
changes in user behavior. Tests of this matrix produced
session length histograms of the same general shape as
before but with a higher mean length, as was expected
with the addition of new transaction choices.

4.2 Use of the Matrix in the System Model

The state transition matrix built from current user
behavior was incorporated into a system model. The
output from the model had session lengths and
transaction frequencies that agreed well with the current
system values. Output from the model for modified
matrices gives values that agree well to those estimated
from the theoretical behavior that created the
modifications.

4.3 Comparison of Two User Populations

We would expect to see differences in behavior reflected
in differences in the transition probabilities. Since we
had demonstrated one-step dependence of the Markov
chains representing customer sessions, we can use
goodness of fit tests for the comparison of Markov chain
transition probabilities (Anderson and Goodman 1957,
Chatfield 1973, Bhat 1984) to determine if there are
significant differences between any two NxN matrices.
This test is an extension of the comparison of a given
probability to a specified probability. The given
probabilities, p;;, would be the Mp;; of one relative
probability matrix, and the specified probability, p';;,
would be the Mp’;; of the second matrix. This test is
planned for future work.

S CONCLUSIONS

State transition matrices allow user transaction behavior
to be characterized realistically and realistically. Their
stochastic nature creates the variance in transaction
sequences and session lengths seen in the actual system

and still provides the correct overall averages for the
system. Their ease of modification allows for testing the
effects of hypothetical changes in user behavior.

Transition matrices can also be used to simulate user
behavior in load generators for tests of actual systems,
by creating stored scripts or generating transactions
during testing.

These matrices can be used to compare the behavior
patterns of two groups of users.

ACKNOWLEDGMENTS

The authors wish to acknowledge the many useful
discussions during this work with the members of the
Systems Evolution and Modeling Department,
particularly Jack Eddington and David Withers. We also
wish to thank David Villwock for his assistance in
implementing the transition matrix into our SLAM II®
models, and Linda Showalter for editing assistance.

APPENDIX: MODIFICATION ALGORITHMS

The governing rule in the algorithms is that the row
frequency for a state must equal the column frequency
for a state, that is, the exits from the state must equal the
entries to the state. If an entity enters a state, it must
exit, or else the system eventually freezes with all the
entities in states that have exit frequencies less than entry
frequencies. As will be shown below, we must back out
as many starting and ending transitions on a path as we
add. The number of transitions being deleted in a
modification must not exceed the minimum number in
the affected cells. As listed here, this check is missing
in the algorithms.

A.1 Global Declarations
Mf -- NxN matrix of frequencies.
R -- NxN matrix of % based on row sums.
C -- NxN matrix of % based on column sums.
a,b,c -- indices corresponding to transactions A,B,C.
N -- Number of states in the matrix.
Calculate R and C:
R1J=Mfi.j/ r MfiJ'
j

C, = Mf;/ ¥ Mf,.
i

Representation of User Transaction Processing Behavior 1229

A.2 Addition Algorithms

A.2.1 Add a Totally New Transaction to the Matrix;
Both the Preceding and Subsequent States are
Known

Add a number, n, of x->D->y transitions, where D is
a totally new transaction, removing n x- >y transitions.
In this algorithm x represents the preceding transaction
types, y represents the subsequent transaction types, and
both x and y are known. This adds the x->D->y
transitions in exactly the overall proportions of the
various Xx->Yy transitions. Prior to executing these
algorithms, the matrix, Mf, must have been expanded to
(N+1)x(N+1) and the index for D assigned, as well as
the remaining indices reassigned as necessary for the
original N transactions.

Declarations:
P -- Vector of P preceding transactions;
S -- Vector of S subsequent transactions;
Rf -- NxN relative frequency matrix;
p -- index of P vector;
s -- index of S vector;
D -- the new transaction;
d -- the index of D in Mf.

Algorithm:
Calculate relative frequency of each preceding and
subsequent transaction.

Sum = 0;
FORp=1toP
FORs =1toS
Sum = Sum + Mf(P,S,) , (A1)
and
FORp =1t P
FORs =1t S
Rf(P,,S,) = MI(P,,S,) / Sum . (A2)

Calculate the row-column entries for B.

FORp=1toP
FORs =1to S
{ trm = n * Rf(P,,S,); (A3)
Mf(P,,S,) = MI(P,,S,) - trm; (A4)
Mf(P,,d) = Mf(P,,d) + trn; (AS)

Mfd,S,) = Mf(d,S) + tm; }, (A6)

where 1 < n < Sum.

Equation (A2) determines the relative ratios for each
M,, to the sum of all Mf,, determined by (Al) and
populates the R matrix, which generally is sparse (P <N
and S<N). The double loop, (A3) through (A6),
calculates the number to be changed for each Mf, (A3),
subtracts it from the Mf,,, (A4), and adds it to the
preceding, pr_d, and subsequent, Mf, ,, states, (AS5) and
(A6), respectively.

A.2.2 Both Prior and Subsequent States Are
Known

Add a number, n, of A->B->C transitions, replacing
the same number of A->C transitions. This requires
adding two state transitions where one existed before.
This is a special case of the preceding algorithm where
P and S both have a single state.

Mf,, = Mf,, + n; (A7)
Mf,. = Mf,, + n; (A8)
Mf,. = Mf,, - ; (A9)

Equation (A7) adds the transitions from A to B; (A8)
adds the transitions from B to C, and (A9) removes the
A->C transitions.

A.2.3 Prior State is Unknown

Add a number, n, of x->B->C transitions, replacing
the same npumber of x->C transitions, where x
represents all the transactions that have B as a
subsequent state. This distributes the removal and
addition proportionately across all x’s. Since B is a
subsequent state, we use the C matrix to calculate the
proportion of change for each x->B transition.

Mf,. = Mf,. + n; (A10)

FORx = 1TON

{n' =n*C, (A1)
Mf,, = Mf,, + n’; (A12)
Mf, , = Mf, -n’; }. (A13)

Equation (A10) adds the B->C transitions; (All)
calculates the proportion of change for state x; (Al2)
adds the proportion of x->B for each state x, and (A13)
removes the x-> C transitions for each state, x.

This algorithm and the following two algorithms are
not equivalent to the first. We have no knowledge of P
in this case, and no knowledge of S in the next case. In
the last addition algorithm, we know neither P or S.

1230 Keezer, Fenic, and Nelson

A.2.4 Subsequent State is Unknown

Add a number, n, of A->B->y transitions, replacing
the same number of A->y transitions, where y
represents all the transactions that have B as a preceding
state. ~ This distributes the removal and addition
proportionately across all y's. Since B is a preceding
state, we use the R matrix to calculate the proportion of
change for each B->y transition.

Mf,, = Mf,, + n; (A14)

FORy = 1TON

{0 =n*R,; (A15)
Mf,, = Mf, + n’; (A16)
Mf, = Mf, -n’; } (A17)

Equation (A14) adds the A->B transitions; (Al5)
calculates the proportion of change for state y; (A16)
adds the proportion of B->y for each state y, and (A17)
removes the A->y transitions for each state, y.

A.2.5 Both Prior and Subsequent States are Unknown

Add a number, n, of x->B->y transitions, replacing
them with the same number of x->y transitions,
retaining the same overall table structure and
proportions. This process distributes the additions
evenly over the preceding x states and over the
subsequent y states in proportion to their transitions to or
from B respectively.

FORx = 1TON

{0 =n*C, (A18)
Mf,, = Mf,, + n’; (A19)
FORy = 1TON
{(n" =n*R,; (A20)

Mf,, = Mf,, + n"; (A21)
Mf,, = Mf_ -n"; }} (A22)

The first loop handles the states that precede B.
Equation (A18) calculates the number of the transitions
to B that each preceding transaction contributes to the
total being added of all transactions that precede B.
(A19) then adds the transitions to B. For each preceding
state, the second loop then prorates the transitions to the
subsequent state based on the number of B transitions
being added, and the proportion of transactions
subsequent to B for each. Equation (A20) calculates the
proportion for each preceding/subsequent combination;
(A21) adds it to the B->y count and (A22) causes it to
be removed from the x->y transition count. The total
number of transactions does not change; but the

proportion that follow x- >y increases and the proportion
for x->B->y decreases.

A.3 Removal Algorithms

There are five algorithms that have a 1:1 correspondence
with the addition algorithms except that in the equations,
+ becomes - and - becomes +. Since they are exact
opposites they will not be discussed.

A.4 Replacement Algorithms

These algorithms are analogous to the addition
algorithms A.2.1.2-A.2.1.5. The difference is that there
1s one more transition to be maintained. In these
algorithms one is replacing a two-transition path with
another two-transition path, instead of replacing a single
transition path with a two transition path. They are
presented without discussion as the logic follows
previously explained lines.

A.4.1 Both Prior and Subsequent States are Known

Remove a number, n, of A->B->C transitions and
replace them with the same number of A->D->C
transitions.

Mf,, = Mf,, - n;
Mf, . = Mf, - n;
Mf,, = Mf,;, + n;
Mf,, = Mf,, + n;

A.4.2 Only the Subsequent State is Known

Remove a number, n, of x->B->C transitions, and
replace them with n x->D->C transitions, where x
represents all the preceding states to B. This will retain
the same relative proportions of transitions in the rest of
the table. It distributes the x-> D transitions in the same
proportions as the original x->B transitions being
replaced. This assumes that the matrix has already been
adjusted to include the replacing transaction.

Mf,. = Mf, . - n;
Mf,. = Mf,. + n;
FORx = 1TON
{0’ =n*C(x,b);
Mf , = Mf,, - n’;
Mf, = Mf,, + n’; }.

Representation of User Transaction Processing Behavior 1231

A.4.3 Only the Prior State is Known

Remove a number, n, of A->B->y transitions and
replace them with the same number of A->D->y
transitions, where y represents all transactions that have
B as a preceding state. This distributes the removal and
addition proportionately across all y’s.

Mf,, = Mf,, - n;
Mf, , = Mf,4 + n;

FORy = 1 TON

{ n" =n*Rby);
Mf,, = Mf,, - n";
Mf,, = Mf,, + n"; }

A.4.4 Both the Prior and the Subsequent States are
Unknown

Remove a number, n, of x->B->y transitions, and
replace them with the same number of x->D->y
transitions. The changes are distributed across the x’s
and y’s in the same proportion as their occurrences in
the matrix.

FORx =1TON
{n =n*C,,;
Mf,, = Mf,, - n’;

Mf 4 = Mf , + n’;

FORy = 1TON

{ 0" =n*R,;

= Mf,, - n";

Mf,, = Mf,, +n"; }}

REFERENCES

Anderson, T.W., and Goodman, L.A. 1957. Statistical
Inference about Markov Chains. Annals of
Mathematical Statistics 28: 89-110.

Bhat, U.N., 1984. Elements of Applied Stochastic
Processes, Second Edition. New York: John Wiley and
Sons.

Chatfield, C. 1973. Statistical Inference Regarding
Markov Chain Models. Applied Statistics 22: 7-20.

Eier, R., 1989. Discrete Stochastic models by means of
Markov Chains. ITG-Fachbericht 107: 167-173.

Jain, R. 1991. The Art of Computer Systems
Performance Analysis. New York: John Wiley and
Sons.

Kelton, C.M.L., and Kelton, W.D. 1985. Development

of Specific Hypothesis Tests for Estimated Markov
Chains. Journal of Statistical Computation and
Simulation 23: 15-23.

Kelton, C.M.L., and Kelton, W.D. 1987. Comparison
of Hypothesis testing techniques for Markov processes
Estimated from Micro versus Macro data. Annals of
Operations Research 8: 175-194.

Kelton, C.M.L., and Kelton, W.D 1991. A Comparison
of Micro versus Macro Point Estimators for Markov-
Process Models. Journal of Statistical Computation and
Simulation 38: 201-210

Krieger, U.R., Miiller-Clostermann, B., and Sczittnick,
M. 1990. Modeling and Analysis of Communications
Systems Based on Computational Methods for Markov
Chains. IEEE Journal on Selected Areas in
Communications 8: 1630-1648.

Vasegji, S.V. 1991. Hidden Markov Models with
Duration-Dependent State Transition Probabilities.
Electronics Letters 27: 625-626.

AUTHOR BIOGRAPHIES

WILLIAM S. KEEZER has been with Mead Data
Central (MDC) for over five years and is currently a
Staff Analyst focusing on system and communications
performance issues. Prior to coming to MDC, he was
an in-house consultant on OLTP system performance
problems for the Data Pathing Division of NCR. He
holds B.S. and Ph.D. degrees from the University of
Oklahoma, and is a member of the ACM.

ANDREW P. FENIC is a Basic Software Engineer with
MDC in the Systems Evolution and Modeling
Department. His work has included user interface
design and prototyping, system load characterization, and
performance data retrieval and analysis. He holdsa B.S.
degree in Computer Science from Sycracuse University.

BARRY L. NELSON is an Associate Professor in the
Department of Industrial and Systems Engineering at The
Ohio State University. His research interests are design
and analysis of computer simulation experiments. He is
an Associate Editor for Operations Research and
President of the TIMS College on Simulation.

