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ABSTRACT

This paper outlines the use of simulation as an
extension of the basic methodology of medical decision
analysis. The motivation for medical decision analysis
1s described, and the differences between the standard
decision analysis methodologies and those of discrete
event simulation are discussed. The technique of Monte
Carlo evaluation of Markov process-based models is
introduced, its similarity to logical network simulation is
noted, and the advantages and characteristics of these
models are discussed. Preliminary work on one such
model being developed to evaluate the optimal timing of
a surgical therapy (liver transplantation) in the declining
course of a chronic disease (end-stage liver disease) is
presented.

1 INTRODUCTION

Understanding the optimal diagnostic or therapeutic
strategy in particular clinical situations is becoming
significantly more complicated. As investigators find
new relationships between risk factors and disease, the
possible combinations of treatment choices and sequences
become quite large. Randomized controlled tnals, the
"gold standard” methodology for determining the "best"
treatment, are often not appropriate for evaluating
decisions among multiple treatment options given diverse
clinical presentations, as they would require too many
patients to fill multiple treatment arms with multiple
strata.  Therefore, decision analysis and other non-
experimental methodologies have been used to combine
data that currently exists concerning a specific clinical
problem, and through multiple "what if" questions, make
predictions about likely outcomes and optimal strategies.
Initially used to analyze relatively specific problems,
medical decision analysis has been increasingly used to
address larger and more complicated problems, and
several investigators have strained the practical limits of
standard decision analysis techniques in their attempts to
model clinically complicated situations. This paper will

1034

discuss the basic methodologies of medical decision
analysis, describe how some of the limits arise, and
illustrate how casting these problems as simulation
models facilitates their construction and solution.

2 MEDICAL DECISION ANALYSIS
2.1 Introduction to Medical Decision Analysis

Simulation modeling in medical decision analysis
developed from somewhat different origins than the
simulation modeling of engineering or manufacturing.
The basic structure of medical decision analysis arises
from the need to make decisions between diagnostic or
therapeutic decisions when knowledge concerning
outcomes is uncertain, rather than understand the
performance of deterministic systems such as production
lines, ques, etc., under the influence of some stochastic
process such as arrival times, failure rates, etc.

The most common methodology used to solve
decision analysis problems is the standard decision tree;
a simple version of which is described in Figure 1. The
description of choices emanate from a DECISION node;
all relevant outcomes follow as branches of CHANCE
nodes; the various possible outcomes are described in
TERMINAL NODES which must be valued in the same
units (usually life expectancy, utility, etc.) The standard
solution to these problems is calculated by "averaging
out and folding back”, which produces the expected
value of a particular decision; that branch with the
highest expected value of the outcome variable is the
clinically "optimal" choice.

2.2 Markov Processes to Describe Disease States

However, standard decision trees have serious
limitations in their ability to model complex situations,
especially when outcomes or events occur (or may re-
occur) over time. To help solve this problem, Beck and
Pauker (1983) introduced the use of Markov processes
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Figure 1: Basic Decision Tree

to model recurrent health states and future events.
Because of the ease with which time is incorporated into
such models, Markov processes have become quite
common in the modeling of several chronic diseases.
Standard Markov processes (illustrated in Figure 2)
assume that the problem can be fully described as a
series of mutually exclusive and all encompassing
"states” (WELL, SICK, DEAD); movement between
states is controlled by a "transition matrix” (see Table
1), which denotes what portion of the cohort will move
from state i to state j in any time period. Evaluation is
typically carried out by cohort analysis, where the
portion of patients in each state is multiplied by the value
of being in that state. These values are summed over all
time periods and states, and produce an expected
outcome (utility, survival, etc) for the cohort who
started the model.

2.3 Limits of Standard Markov Processes, the "Lack
of Memory"

Although  Markov  processes  facilitate  the
construction of models in which components vary over
time, they are handicapped by the strict Markovian
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Figure 2: Standard Markov Process

assumption that transition probabilities are “path
independent”. In their purest form (Markov chains),
probabilities may vary only by state, and cannot use
information about how or when a particular member of
the cohort arrived in that state.  Straightforward
extensions (Markov cycle trees) use cohort analysis to
solve the models, rather than analytic solutions based on
the state-to-state transition matrix. This allows for the
simple incorporation of time-varying but state-specific
variables, such that transition probabilities can be
modeled as a function of time (proxied by the cycle
number) and the state (Hollenberg, 1984).

Table 1: Transition Matrix for Markov Model in Fig. 2

Time t+1
Time t WELL SICK DEAD
WELL P1 P4 P2
SICK P3 PS5 P6
DEAD - - 1

3 MARKOV PROCESS BASED SIMULATION
MODELS

It follows from the above discussion that the major
impediment to increasing the complexity of state-based
Markov models is the requirement that all of the
members of a state be treated the same, regardless of
how or when they arrived in a particular state. Since
cohort analysis is the most common method for solving
Markov processes, each state is in fact composed of a
heterogeneous portion of the cohort at any given time.
Members of any given state will have arrived there at
different times, and may have arrived having followed
different paths through the other states. Since standard
cohort analysis of a Markov process requires that all
members of a state be treated the same (have the same
transition probabilities) the heterogenous nature of the
portion of the cohort is lost, and all members of the
cohort are treated the same, regardless of history.
However, if the Markov process is analyzed by Monte
Carlo methods (one member of the cohort at a time), the
constraint of path independence is removed, and the
heterogeneity of members of the cohort arriving at
different times is preserved. This form of analysis
converts the standard Markov Process into a model of
similar genre to traditional simulation modelling.
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3.1 Monte-Carlo Analysis of Markov Processes

The evaluation of a Markov Process by Monte Carlo
analysis eliminates the "cohort” approach to the solution
of a Markov process, and releases the model from the
strict assumption of path independence. By simulating
each individual member of a the cohort separately, and
sending them though the model one at a time in
succession; there is only one particular member of the
cohort in exactly one state at every point in time. By
keeping track of the relevant model occurrences in a
global vector, transition probabilities can become
functions of those variables, and therefore, functions of
the past history and/or path through the process.

When only categorical variables are used, the Monte
Carlo evaluated Markov Process may be considered to
be "simulating” a larger, fully structurally specified
Markov process with essentially 2V states (for
dichotomous variables). Figure 3 illustrates a simple
example. The left side of the figure describes a simple
standard Markov process in which the probability of
dying from a disease depends upon whether or not the
patient had been previously vaccinated or not. This
model requires 5 states, including the all-absorbing
DEAD state. The right hand side illustrates the
simplicity of structure gained by Monte carlo analysis.
Since there is only one member of the cohort in the
model at a time, a simple flag can keep track of whether
vaccination has occurred or not.  The transition
probability is then made a function of whether or not the
vaccination flag is O or 1, rather than be a constant
attached to the SICK state. It can be easily shown
empirically that the two models give exactly the same
results, provided sufficient iterations of the Monte Carlo
model are performed.

In essence, there is little if any technical difference

Vacclnate

Well

(no vaccine)

Sick

(no vaccine)

p(Die) = 11(timo)

Well
(with vaccine)
Sick
(with vaccine)

p(Dle) = fz(ﬂmo)
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between this type of model and the simulation of logical
networks introduced by Roberts in the early 1980’s
(Roberts and Klein, 1984) and summarized by Dittus and
Roberts (1989). The conceptual difference is that the
technique described in this paper starts from a
methodology (Markov processes) that is now familiar to
many medical decision analysts, and with straightforward
simulation extensions, creates a state-based, time-varying
model that contains all of the advantages of simulation,
yet retains the basic Markov cycle tree structure.

3.2 Comparison To Discrete Event Simulation

The major difference between Monte Carlo
evaluation of Markov processes and standard discrete
event simulation models is that there is no competition
for resources, membership in states, or transitions
between states as there may be in discrete event
simulation modeling. This eliminates the need for
structures that represent queues, and limits the need to
keep tract of multiple, simultaneous and/or synchronized
events. A major strength of discrete simulation
modeling for most industrial purposes (that it can
incorporated resource constraints, bottlenecks, etc) is
rarely used in standard medical decision analyses.
Simply stated, the general purpose of medical decision
analysis is to examine what the optimal diagnosis or
treatment of a specific disease process is, not whether
any two given patients could undergo that treatment at
the same time. The advantage of using simulation
modeling in the current example is that it allows for the
construction of a problem that would otherwise be
significantly more complicated (if not impossible) to
create in a standard decision analysis framework. Many
of the large, complicated models that have been created
have required a substantial amount of development work,

Vaccinate flag = 0

Prior to this
@ Vacclnate
Y/

accinate flag = 1
After to this

p(Die) = fa(tlme,vaeclnate)

Figure 3: Standard vs Monte-Carlo Markov Process
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and their complexity limits the ability of outside
reviewers to assess the model’s machinery. For
example, the coronary heart disease policy model
(Weinstein e al, 1987) is a state-transition model with
over 5000 separate states, and required multiple
programmer-years of development time.

There are, of course a large number of problems in
health care delivery that fit the standard simulation mold
more completely. For example, estimating the optimal
staffing of an emergency room yet assuring it could
handle it’s peak loads (Vassilacopolos, 1985);
determining the appropriate number and location of
ambulances for a city’s Emergency Medical System (Liu
and Lee, 1988), modelling the physical and personnel
characteristics of an outpatient facility (Levy, Watford
and Owen, 1989) and several other similar problems lie
in the purview of standard discrete event simulation.

3.3 Model Performance and Validity

Because the Monte Carlo models described above
are stochastic representations of a larger, basically
deterministic Markov process, one can (for simple
models) test the validity of the Monte Carlo construction
by comparing the results of the Monte Carlo version of
a model to the complete standard Markov Process that it
simulates. Figure 4 illustrates the relationship between
the number of states being simulated and the variance in
the estimate of the "true” value (the answer given by the
full Markov process) as a function of the number of
iterations used to evaluate the model. As shown in the
figure, preliminary results indicate that relatively few
iterations are required to produce results sufficient to
carry out sensitivity analyses, debug models, etc.
Furthermore, although the variance in the estimate from
the "true” model decreases rapidly as the number of
iterations increases, the accuracy of the model does not
degrade as the number of states being represented
increases. In fact, the early emperical results from our
work indicate that the more states being represented, the
smaller the error for any given number of iterations. It
is possible that this occurs because as models grow more
complex, there are more chances in any given iteration
for the specific member of the cohort to "regress to the
mean". Since the final life expectancy for any given
member of the cohort is the result of multiple draws
from several different underlying distributions, a member
of the cohort would have to draw outliers on several
different distributions to move very far away from the
mean.

Like many discrete event simulations, standard
decision analysis models are often difficult to validate.
In addition to the use of content experts to assess face

validity (to assure that all possible clinical outcomes have
been modelled, that the factors effecting success/failure
are well described, etc) the most common method of
validating decision analysis models is comparing the
answer of the model under a set of conditions for which
the answer is either known from empirical work or can
be presumed from inspection. For example, in a
decision between medical and surgical therapy for a
disease, if one therapy is set to be both more effective
and less risky, it should dominate the other. Repetitive
sensitivity analyses, where various parameters are set to
their extremes, (and the implied answer is known)
provide confidence that the model behaves as clinically
expected.
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Figure 4: Model performance. Mean and 95%
confidence limits on the results of Monte Carlo
simulation compared to the "true" model resluts
(baseline) as a function of the number of iterations.

One substantial advantage of the Monte Carlo
method is that it allows for a more direct inclusion of
continuous risk prediction variables than standard
Markov processes. In standard processes, any risk
stratification that is incorporated directly into the
structure of the model must be accomplished by creating
separate states, as in Figure 3. This requires breaking
up continuous variables into dichotomous or
polychotomous categories, and the relevant parts of the
model replicated by a separate set of states.

4 EXAMPLE: END-STAGE LIVER DISEASE
(ESLD)

At the Deaconess Hospital, we are developing a
simulation model of end-stage liver disease to evaluate
the optimal timing of transplantation. The model is an
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example of an analysis designed to understand the
optimal timing of a technologic intervention in a chronic
disease. In general, these "timing” problems are large,
complicated, are unlikely to be solved by randomized
controlled trials, and may rely on other observational
methods to evaluate therapeutic strategies. Therefore,
we created a decision analysis to evaluate the
transplant/no transplant decision and search over a set of
selection criteria to find the optimal timing of
transplantation. Previous work at the Deaconess had
shown that survival at and after transplantation was
dependent upon several different clinical pre-operative
factors (see Table 2, from Roberts, 1989). Because the
level of these predictors changes over the course of
disease, multiple different states were needed to define
various possible combinations of pre-operative clinical
conditions under which a transplantation might occur.
Initial efforts to create a standard Markov process model
of the problem resulted in a model with over 2000 states,
even after many of the risk prediction strata were
reduced from polychotomous to dichotomous categories.

Table 2: Predictors of post-transplant survival by stage

24-Hour 30-Day Long-Term
® Creatinine ® Creatinine ®Re-transplant
®Prior RUQ  eLife Support ® Crossmatch
surgery reaction
®[nfection
®Bilirubin

®Malnutrition

4.1 State Based Simulation Model

The basic model is illustrated in Figure 5. The
model was created using SMLTREE’, a standard
decision analysis package (Hollenberg, 1990). Patients
begin the model clinically stable with end-stage liver
disease (STABLE WITH ESLD). At the beginning of
each cycle, a boolean statement is evaluated to determine
if any event in the prior cycle makes the patient a
candidate for emergent transplantation. If so; the patient
is listed for transplant and enters the transplant queue
(AWAIT TRANSPLANT). If the patient fails the
emergent transplant selection criteria, a similar boolean
statement is evaluated to determine if the patient passes
the elective transplant criteria currently being evaluated.
If the patient does not pass the elective transplant
criteria, control passes to a standard decision tree that
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determines whether events that may develop while the
disease progresses occur during that cycle. In addition
to specific events (generally complications) the model
"ages” the value of the clinical predictors that are
necessary to calculate future operative risk when and if
the patient comes to transplantation, as well as allow for
other specific events to occur. The patient may die of
natural causes (DEATH).

Once the patient enters the waiting queue, he may
receive an organ or have a complication while waiting.
Complications are similar to the complication tree
attached to the STABLE WITH ESLD state, but specific
complications occur at different rates, and are a function
of the current value of several clinical variables. The
complication may be fatal (DEATH), or may simply
change the value of the varnables that predict transplant
survival. If the patient is transplanted, he may die from
the operation (DEATH) or survive (STABLE AFTER
TRANSPLANT). The probability of operative death and
first 30-day death are calculated as the result of two
logistic regression equations which have been estimated
on the transplantation experience at the Deaconess
Hospital. The actual probability is calculated from the
current value of the clinical predictor variables at the
time of transplantation. If the patient survives the
perioperative period, they then may live out their life
post transplant.  During this time they may die
(DEATH), or have graft failure and either die (DEATH)
or require a re-transplantation (AWAIT
TRANSPLANTATION).

The evaluation of the model is carried out by
thousands of iterations; the result is an average life
expectancy for patients proceeding through the model
given the specific elective selection criteria specified. As
the critenia are changed, the average life expectancy
changes; a large set of criteria is searched over, that
criteria with the longest life expectancy is deemed the
optimal selection criteria.

4.2 Model Calibration

One of the reasons that decision analysis was used to
evaluate this problem is that there is no single, complete
set of data available to answer the timing question.
Current published reports of the effectiveness of liver
transplantation have been somewhat more simplistic,
comparing the actual survival of patients with
transplantation to the expected survival of a clinically
similar group of patients based on Cox proportional
hazards models. The difficulty with this modelling
approach is that it only compares one specific selection
strategy (that used by the transplant center) to estimate
if transplantation increases survival over the natural
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history of disease at the time transplantation occurred.
1t tells us nothing about whether or not the patients who
were transplanted could have survived longer if they had
been transplanted earlier or later in the course of their
disease. It is the ability to predict changes in outcomes
based on changes in the selection criteria that gives
decision analytic approaches to this problem their
potential.

However, modelling the relationship between
selection criteria and outcome requires not only the
ability to predict survival based on clinical variables, it
also requires quantitative knowledge of how those
predictor variables change during the natural course of
disease. Consequently, data must come from very
disparate sources, and be integrated by the structure of
the model. The model requires data to calibrate risk
prediction equations (logistic regression and Cox
proportional hazards models) that create estimates of the
survival time with and without transplantation given the
set of clinical characteristics that exist at the time of

transplantation survival section came from our own
experience at the Deaconess Hospital, but small sample
sizes limited the number of clinically relevant variables
that could be accurately estimated. Recent acquisition of
the United Network Organ Sharing (UNOS) database of
over 12,000 transplants with several years of follow-up
will allow for more precise calibration of the model.

Unique to this modelling effort is the requirement of
a quantitative description of the natural history of end-
stage liver disease. Unlike standard textbook
descriptions of natural history, the simulation model
requires data on how the clinical predictors of
transplantation success change over time, either as rates
of change or probabilities of a certain change in a given
period of time. In addition to literature reviews, the
time course of relevant variables will be extracted from
CLINQUERY, a large clinical database containing over
8 years of data on over 100,000 general medical patients
admitted to the Beth Israel Hospital in Boston, some 3-
4000 of whom have chronic liver disease (Shaffran,
1989).

TRANSPLANT
SELECTION

T
TRANSPLANT

transplantation. Original calibration for the
UPDATE TIME-DEPENDENT PORTIONS
OF COVARIATE VECTOR
—
NO (3) WAIT
COMPLICATION
TO STABLE
WITH ESLD
COMPLICATION LOW ALB
(SUW?G #1) es LNO
FATAL b
YES|NO NO

1

(2) ELECTIVELY (1) EMERGENTLY
p=BOOLEAN(ELECTIVE p=BOOLEAN(EMERGENT
TX CRITERIA) TX CRITERIA)

EMERGENT DUMMY SET = TO 1

p=1(COMPLICATIONS, SEVERITY, TIME IN QUE)

RECEIVE DIE 1st 24 HOURS

p=LOGIT(AGE. CREATININE, WBC
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Figure 5: Basic Markov model, end stage liver disease
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4.3 Model Caveats

The major caveat to the current version of this
model is that it is very coarsely calibrated, and the
accuracy of any currently calculated numeric results are
suspect. More fundamental, however, is the fact that it
1s very difficult to test the validity of the model as a
whole. When fully calibrated, we expect to attempt
limited prospective confirmation of the model on current
patients being evaluated for transplantation.

5 CONCLUSIONS

This paper has shown that compact, straightforward
Monte Carlo models based on Markov processes can
duplicate the results produced by a fully described
standard Markov process. There are several advantages
to the conversion of Markov Process models into
simulation models. First, the structure of the simulation
model is substantially simpler than the corresponding
Markov process it represents. This makes the basic
layout of the model easier to describe and understand
(especially to the non-quantitative clinician), and may
make the model easier to "debug”. Secondly, by
releasing the "lack of memory" constraint that limits
standard Markov processes, models with much more
clinical richness can be practically modelled. The
particular methods presented used a standard decision
analysis  software (SMLTREE) and through
characteristics of its Monte Carlo sensitivity analysis
converted standard Markov processes into simulation
models; hence the presentation and analysis of the model
occurs in the context of a software system widely used
by medical decision analysts. Finally, and perhaps more
importantly, the model allows for the direct inclusion of
continuous data to make risk or transition probabilities;
in standard Markov processes these variables must often
be broken down into di- or polychotomous categories;
each level of the vanable represented by a separate set
of states.

The model has yet to produce usable "answers" to
the problem of the optimal timing of liver transplantation
in end-stage liver disease because of the lack of adequate
data to calibrate the model. As work continues and the
calibration becomes more precise and based on datasets
of sufficient sample size, the model will be used to make
predictions concerning specific selection criteria. To
date, the main benefit of the modelling system is that it
has shown that simulation modelling is an appropriate
extension of a standard decision analysis methodology
for modeling time-varying events.

Roberts
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