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ABSTRACT

Conventional, hierarchical, and optimizing approaches to
real-time decision support using simulation are developed
and compared. Issues related to the use of simulation for
real time decision support are considered. The decision
support systems are tested using an emulation of a
continuous flow manufacturing system.

1 INTRODUCTION

The dynamic control of manufacturing systems is an
issue of concern to both the manufacturing and the
academic communities (Harmonosky and Robohn 1991).
Without an effective means of control, a manufacturing
system will not survive in the long term, especially as
markets become more competitive.

One idea for the effective control of manufacturing
systems is to make control decisions in real timc by
using simulation.  Real-time control by simulation
involves initializing a simulation model with the current
status of the system, and using the non-steady state
results of the model to aid in making an immediate
decision. Real-time control by simulation is a relatively
new idea, made possible by the introduction of computers
on the factory floor, advances in computer memory
capacity and processing speed, and improvements in
simulation software.

Figure 1 illustrates the use of real-time simulation for
factory floor decision making. Any discrete change in a
manufacturing system’s status should be detected by
sensors feeding information to a control system. The
control system will determine if therc is a
pre-programmed response to this change of state. If
there is, the control system retrieves the responsc and
feeds it back to the physical system. If there is not, an
external decision is required. The real-time simulation
model provides some form of decision support when an
external decision is required. The model is initialized
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with the manufacturing system’s current status, and used
to either evaluate a decision or (o generate a decision.
The decision is fed back to the control system, then in
turn to the physical system.

For real-time decisions, the correct decision depends
not only on the results of the computation, but also on
the time it takes to produce the decision. A real-time
decision is not necessarily instantaneous; instead, a
decision is considered a real-time decision as long as it
is made within a certain ume increment. That time
increment is defined by a later event which will
invalidate or at least degrade the decision (Stankovic
1988). Decpending on the nature of the system, a
decision madc in, for example, five minutcs may stll be
considered rcal-time.

2 MANUFACTURING APPLICATIONS OF REAL-
TIME SIMULATION

Currently, there is no consistent perspective on how a
decision tool based on real-time simulation should be
developed and used. Proposed methods include:
- Using a sct of stand-alonc models on the shop
floor,
« Using one model as a real-time process monitoring
tool with look-ahead systcm assessment capabilities,
+ Using a simplex optimization algorithm such as the
Nelder-Mead method in the simulation model, or,
« Using the rcal-time simulation with an expert
system.

Gaafer and Cochran (1989) perccive a real-time
simulation model as a shop f{loor tool that consists of a
sct of models, any one of which can be invoked by the
user. The uscr enters changes to the experimental
framework of the chosen model, and selects a purpose,
either estimation or optimization. The advantage of using
a set of models is that only those factors relative 10 a
specific decision need be in a model, thereby decreasing
run ume.
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Figure 1: Real Time Simulauon for Decision Support

Rather than using a set of models, Harmonosky (1990)
proposes linking the computer simulation with the
physical system, and having the simulation logic
controlled by the actual system communication signals.
When a decision is required, the model switches from a
monitoring mode to a look-ahead mode.  Some
knowledge of the possible decisions that will be
evaluated should exist; therefore, the user need not spend
time making model modifications and re-compiling code
when evaluating possible decisions. Having a priori
knowledge of decisions and having the simulation always
initialized with the current status of the real system
speeds the process of evaluating a decision. However,
switching the system from a look-ahead mode back (o a
monitoring mode may be difficult. Also, if different
alternatives are to be compared using the real-time
simulation, or if multiple replications of the simulation
are required, then the initial system status must be saved
and re-initialized for each alternative, thereby eliminating
any savings in run time due to having the model already

mnitialized.

In both thesc approaches, the user may have to
evaluatc an extensive serics of decisions, or may simply
evaluate poor decisions. If so, then the tool has lost both
its real-ume characteristics and its effectiveness. Using
either an optimization method or an expert system shell
is onc possible way to alleviate these problems.

The combination of simulation and optimization can
yicld an cffcctive decision support system. Bevendge
and Schechter (1970) observe that the Box Complex
Method and Nelder-Mead Mecthod perform best over a
wide range of problems. Pegden and Gately (1980) note
that an opumizaton technique should attempt (o
minimizc the number of simulation runs rather than the
computational effort involved in the optimization
algorithm. The number of iterations to optimal will
dircctly effect the ability to maintain a real-ime decision
environment.  Filip, Neagu, and Donciulescu (1983)
present  an  optimization algorithm for recal-time
production control in a job shop. The algorithm is a two
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level hierarchical optimization method based on
parametric decomposition.

When using an expert system shcll with a real-time
simulation model, Moorc (1985) states that there arc
three basic considcrations to be addressed in any attempt
1o apply expert system technology (o real-time processces.
First, an efficient means of rcal-time data access must be
established.  Second, the inference engine must be
designed to operate in a real-umc context -- its
computational efficiency must be enhanced by cvery
means possible. Finally, a simple and easy to use mcans
of knowledge acquisition must be devised.

Wu and Wysk (1989) use a discrete event simulation
to evaluate a set of dispatching rules for a short planning
horizon. The rule with the best simulated performance
for the time period is applied to the physical system. Wu
and Wysk found that in most cases, their system
performed better when compared to a single pass, static
scheduling mechanism.

In conclusion, the literature presents a number of very
different approaches to developing a real-time simulation
tool for decision making. Possibly different types of
applications, or even the specific characteristics of a
system, will dictate which approach to use when
constructing a real-time simulation model.

3 OBJECTIVE AND SYSTEM DESCRIPTION

The objective of this paper is 10 demonstratc the
feasibility and utility of a real-time simulation model
used for factory floor decision-support.

Simulation based decision support will be demonstrated
for a continuous flow manufacturing system. A
continuous flow manufacturing system is arguably better
suited for control with a real-time simulation than a
discrete part manufacturing system because significantly
fewer events occur in a continuous manufacturing systcm.
Real-time simulation has been successfully used (o
control the flow of gas through a pipecline system (Sjoen
1987).

In this paper, a simplified system that sull contains the
fundamental characteristics of continuous flow coating or
pumping systems is used to evaluate simulation-bascd
decision support. This type of system is used in
industries as diverse as the food industry, paper industry,
photographic industry, and the chemical industry.

The simplified system involves coating a flexible base
with three perishable solutions, as shown in the schematic
of Figure 2. There are two lanks for each solution; when
a tank is empty, the flow switches to the other tank. The
solutions are prepared in the tank; this task requires a
significant amount of time. The solution flows out of a
tank, past the tank switch, through a filter, into a surge
tank, and into a hopper. Flow control meters before the

filter and between the surge tank and the hopper control
the rate of flow of the solution. The base is conveyed
continuously, without interruption, o the hopper. The
solutions flow out of thc hopper onto the basc, and the
basc 1s conveyed to a finishing scction. The basc can
run at variable speeds.

4 MODELING ISSUES

To build a real-time simulation modcl for decision
support in a continuous flow manufacturing sysiem, a
number of issucs related o the construction and use of
the real-time simulation model had to be resolved. They
arc:

» Type of dccision (open or predefined).

« Modeling approach.

 Treatment of random events.

+ Treatment of discrete operations in process at the

decision point.

- Number of replications of the simulation.

« Horizon length.

+ Initalizing the system.

4.1 Type of Decision

The first issue is choosing between a model designed (o

analyze specific decisions or a flexible model which can

handle any systcm decision that may arisc. The latter

approach is difficult to implement as it requires both a

very flexible model (or family of modcls) and a wecll-

designed user interface. We utilize the former approach,
and characterize the decisions required as follows:
1. When should the refilling of an empty tank begin?
A solution should be prepared soon cnough so it is
always available when needed, yct not so soon that
it may perish if the system is uncxpectedly
interrupted.

. What is the optimal specd for the base?

The objective is to maximize throughput, while
avoiding stopping the production line (stopping
usually results in a large amount of waste for thesc
kinds of systems). If a solution will soon perish,
running faster may be in order. If a tank is not
ready, and thc paired tank will soon run out,
running slower may be in order.

3. Al what time should a product change occur?
Usually in continuous {low systems there is a goal
production level, but actual production need only be
within somc range around this goal. Therefore,
production of a certain product is terminated at
some point in the range where the quantity of
solutions left in the tanks (which will be scrapped)
1S al a minimum.

o
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Figure 2: Three Solution Coating Process

4. When should a filter change occur?
A sensor will detect when a filter is nearing its
limit. Ideally, if a downtime event will occur, the
filter will be changed during this event.

4.2 Modeling Approach

Several modeling approaches can be used including:

+ A conventional simulation modecl.

+ A set of simulation models, each using different
bounds and depth of the system. (The set of
models will be called a hierarchical model.)

* A simulation model using an optimization
algorithm.

+ A simulation model with a knowledge-based shell.

* A simulation model that serves as a process
monitoring tool with look-ahead capabilities.

Simulation models with knowledge-based shells appear
to be slow to yield a decision, and expensive to develop.
A simulation model that functions as a process
monitoring tool with look-ahead capabilities offers no
advantage over a conventional simulation model for
continuous manufacturing systems.

A conventional simulation model, a hierarchical model,
and zn optimization model were implemented. Thesc
simulation models include differential equations
describing the solution flow and the flow of the basc.
The filter life is modeled based on time (in reality, filter
life is a function of the amount and quality of solution
flowing through the filter). Logic for detecting filters
requiring change and being changed is included. Logic
for detecting when a tank is empty, switching tanks, and

refilling a tank if appropriate is included. Likewise, logic
is included for testing the quality due to age of a solution
and scrapping that solution if appropriatc. Each model
is imtialized with the current status of the system, which
is availablce from the process control system.

4.2.1 Conventional Model

The conventional simulation model serves as a decision
evaluation tool for the decisions regarding when to refill
a tank, at what speed to run the basc, and when 10
change filters. The conventional simulation model serves
as a step-wisc optimization tool for evaluating when a
product change should occur (that is, it evalualtcs all
possibilitics and provides the user with the best
changeover point based on current system status).

The criterion for evaluating the decisions of when to
refill a tank, when to change a filter, and at what speed
to run the base is maximum output (i.c., decisions arc
madc by the user based on obtaining the maximum
production over time). The criterion for cvaluating when
to end a production run is to mininize the sum of the
solutions left in the tanks subject to production being
within the acceptable range (this ending time is reported
to the user for his considcration when making a
decision).

4.2.2 Hierarchical Model

The hierarchical model is really a set of three models,
each evaluating different decisions. One model evaluates
the optimal base spced, another model evaluates when o
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refill a tank, and a third model cvaluates when o change
a filter and when to terminate production for a specific
product.

Each model simulates only the aspects of the system
critical for the particular decision, thereby cither
decreasing model execution time or improving the quality
of the decision. The modcl to evaluate speed assumes
infinite filter life. The model to evaluate when to refill
a tank also assumes infinite filter lifc, and uses stochastic
values for critical refill parameters. The model to
evaluate when to change a filter and when to terminate
a production run is identical to the conventional model.

4.2.3 Optimization Model

The optimization model uses an objective function of
maximizing throughput for the decisions of when to refill
a tank, when to change a filter, and at what speed to run.
The objective function for when to change products is the
same as for the previous models. This model differs in
that the optimal solution is computed and applied to the
system without user intervention.

The Nelder-Mead Simplex method for simulation
opumization was used because of its generality,
efficiency, and robustness (Barton and Ivey 1991).

4.3 Treatment of Random Events

Examination of recent literature reveals that the authors
often assume that the simulated systems are deterministic
during the look-ahead horizon. Although the assumption
of a deterministic look-ahead horizon will allow the use
of data from a single replication of the real-time
simulation model, the results of the simulation may not
present an accurate representation of the physical system.

Goldsman, Swain, and Withers (1990) discuss the
specialized problem of analyzing simulations in a short,
single replication. Our treatment of random variables is
based on their work.

Table 1 gives a summary of random variables of the
manufacturing system, and how they are handled in each
real-tme simulation model. In the conventional model,
all stochastic characteristics of the system are described
with deterministic values. The filter change time and the
time to refill a tank are replaced by a deterministic value
describing the time when eighty percent of all refills or
filter changes will have occurred. The quantity in a full
tank, the filter life, and the solutions’ life are described
by a deterministic value equal to the mean of the
respective distribution.

In the hierarchical model used to evaluate speed, all
operation times are constant. The model used to evaluate
when to refill a tank assumes constant operation times
except for a truncated distribution used for time to refill

the tank; thus multiple replications must be run.

The optimization model uscs the sample distributions
for the time to refill a tank and (he time to change a
filier.  All other random cvents arc replaced by a
deterministic value equal to the mean of the distribution.

4.4 In-process Operations

This issue occurs when the system contains random
events, and thus may have an operation with a random
delay time in process at the decision point. In this study,
for opcrations already in process, all models use a
deterministic evaluation of time remaining for the
operation. If the actual time of an operation exceeds this
deterministic value, then the model assumes that
completion of the operation will require one additional
standard deviation of time (based on the sample
distribution).

4.5 Number of Replications

If the real-time simulation is deterministic, as in the
conventional model, then obviously only one replication
is required for each decision alternative that is being
evaluated. For simulations that include randomness, the
number of replications is sct to allow for acceptable
estimates of the parameters of interest.  Setting the
number of replications in advance is possible because the
decisions to be made are known in advance. For the
hierarchical model, six replications were used for each
alternative evaluated. The optimization model used one
replication for each combination of parameters, with a
maximum of 30 replications allowed to converge on an
optimal solution.

4.6 Horizon Length

The horizon length will depend on the decision that is to
be made. The look-ahead period should end when an
expected event in the system will change the status of the
paramcter of concern. For example, when the real-time
simulation model is used to detcrmine when to schedule
a filter change, the look-ahcad horizon will ecnd
(automatically) when either the filter fails or the system
gocs down for some other reason allowing the filter to be
changed.

4.7 Initializing the System

Initialization issues include what data to pass to the
real-time simulation model, how to pass the data, and
when 1o pass the data. For this manufacturing system,
only the state of continuous variables (a relatively small
amount of data compared to the amount that would be
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Variable Conventional Hicrarchical Hicrarchical Optimizing
(spced) (refill)
Speed of base constant constant constant constant
Acceleration of base constant constant constant constant
Solution flow rates constant constant constant constant
Solution life constant constant constant constant
Solution remaining in constant constant constant constant
"empty"” tank
Refill time constant constant truncated distribution
distribution

Refill level constant constant constant constant
Filter life constant constant constant constant
Filter change time constant constant constant distribution
System downtime eliminated eliminated eliminated eliminated
Time between failures eliminated eliminated eliminated eliminated

required for a discrete-parts system), and the status of
discrete events in process, if any, nced to be passed.
Therefore, data is passed to the real-time simulation
models only when a decision is required. This data basc
is also temporarily stored so the model can be accurately
re-initialized for each replication.

S IMPLEMENTATION

An actual manufacturing system was not available for
evaluating the feasibility and utility of real-ume
stmulation. Instead, a real-time emulation of this system
has been constructed on an engineering workstation. The
emulation generates data representing the dynamic
behavior of the system and also models the process
control system. Since information about the actual
system comes not from observation of the system, but
from data from the process sensors, we concluded that an
emulation would be an acceptable alternative to using an
actual manufacturing system. An advantage of using an
emulation is that the emulation produces pseudorandom
sequences that are dynamic but repeatable. Different
real-time simulation models can be tested against known,
repeatable scenarios.

The emulation was constructed using the combined
discrete-continuous simulation modeling capability of
SIMAN; it runs on a VAXStation 3100. The emulation

was run in real-ime by fixing the step size of the
continuous simulation and suspending execution of the
modcl on the computer until the specified increment of
rcal-time has passed.

Some discrete events can occur between steps. These
cvents are generated by the process monitoring system
detecting conditions such as a tank reaching a minimum
level or a filter nearing its imit. Discrete events could
be handled in a similar manner by suspending the process
until the event ume. However, since the step size is
small relative 1o the frequency of decisions (15 second
step size verses several minutes between decisions) the
difference is insignificant and was ignored in this study.

The emulation differs significantly from the simulation
running on the control machine. All system variables
that can possibly be random are trcated as such in the
emulation. The cmulation also includes functions
generating natural variation, whereas the control system
describes  this behavior as it would commonly be
simulated. For example, filter life is primarily a function
of the quality and quantity of the solution flowing
through the system. In thc emulation, filter life is
described by a differential cquation that models the
number of particles that the filter has trapped; cach batch
of each solution has a randomly generated number of
particles per unit volume. In contrast, the decision
support simulation models calculate filter life based on
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the time since the filter was installed.

The emulation runs as a single process on the
engincering workstation.  The workstation 1s networked
to another workstation which runs the decision-support
simulation. This provides an idcal environment for
testing decision-support systems. The emulation is an
independent system which sends data similar to real
process data via thc nctwork to the decision support
system. After an appropralc configuration for the
decision support system has been determined, the
emulation can be discarded and code can be writien on
the process control computer to transfer the required
information to the decision-support system.

6 RESULTS

The real-ime simulation models were tested on two
different production runs of the system, each producing
100,000 linear feet of coated base. The maximum
production speed was set to 400 linear feet per minute.
Production could be terminated anywhere between 90,000
and 110,000 linear feet.

Table 2 summarizes the decisions made using the real-
time simulation models for the first production run, as
well as the simulated production and waste solution
remaining in the tanks. The second production run gave
similar results for the speed, refill, and filter decisions
and so is not included in the table. For each controllable
production event shown in Table 2, the clock time to
make the decision and the decision itself is listed. Some
of these decisions are discussed further below.

6.1 Refill Decision

All models were capable of quickly making a decision
related o when to refill the raw matenals. Because the
hierarchical model required both operator input and
multiple replications, it took longer than the other two
models to evaluate an alternative.  However, the
hierarchical model’s performance was acceptable because
the shortest recommended delay unul refill was 5 minutes
and the longest time for running the hierarchical model
was 4.5 minutes.

In one case (cvent 11), the optimization model
recommended no delay; clearly this is infeasible. Since
time to execute the optimization model does not vary
significantly, a lower bound could be placed on dclay
time to avoid this problem.

The conventional model used a deterministic value for
refill time equal to the upper limit of the truncated
sample distribution for refill time. Using this upper limit
provided a safety margin. The other two models used a
distribution to represent refill time. The optimization
model produced results that were generally consistent

with those from the conventional modcel. In 7 out of 12
decisions, the hicrarchical model suggested the same or
a longer delay unul refill than the other two models; in
all except onc of these (cvent 17), the longer delay was
appropriate. In cvent 17, the hicrarchical model caused
2 minutes of unscheduled downtime.

All refill decisions (except the two noted above) were
good dccisions. It is difficult o determine which of the
modcls is gencrating the best delay responsc because
system conditions arc not identical duc to differences in
previous decisions.

6.2 Filter Decision

All three models quickly generated a filter change
decision. The models yielded the same response for
filters 1 and 3. For filter 2 (event 13), the conventional
and hierarchical models recommended against a filter
change while the optimization model scheduled a change.
Thus, the optimization model caused two shutdowns for
filter changes while the other models accomplished this
in one shutdown. Again, because of differences in
previous decisions, there is insufficient information to
conclude that the optimization model made an incorrect
decision, although the other runs suggest that two
shutdowns were unnecessary.

6.3 End Production Decision

Neither the conventional nor the hierarchical model
performed consistently well in advising when o cnd
production. In the first production run, both models
suggested the best of the three reasonable production end
times. (Production should end when both tanks of a pair
arc empty within the allowable range of linear fect
produced). In the second run, however, both models
adviscd the worst of three reasonable end umes. The
optimization model advised the best end time in both
production runs.

To illustrate this, the hierarchical model’s end time
decisions are described. Table 3 contains the three
reasonable production end points for each of the two
runs. For the first run, the hierarchical model advised
ending production at 94,709 feet, which minimizes
solution waste. For the second run, the model advised
ending at 99,943 fect, which maximizcs waste, and did
not recognize the third point as a possible solution.

7 CONCLUSION

Simulation models can be effectlive real-time decision
support tools for controlling manufacturing systems
similar o0 the one described in this paper. The
conventional, hierarchical, and optimization models
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Conventional Hicrarchical Optimization
Event Time Decision Time Decision Time Dccision
nceded nceded nceded
(min.) (min.) (min.)

1. Increase speed 5 full speed 5 full speed 1. full speed
2. Tank 1 empty 1.25 delay 5 min 3.25 delay 10 min 1.25 delay 5 min
3. Tank 3 empty 2. delay 12 min 2.5 delay 12 min 1.25 delay 12 min
4. Increase speed 1. full speed 5 full speed 1.25 full speed
5. Tank 5 empty 1.5 delay 26 min 2.25 delay 26 min 1.25 | delay 17 min
6. Tank 2 empty 1.75 delay 5 min 4.5 delay 10 min 1.25 delay 3 min
7. Tank 4 empty 1.25 delay 17 min 2.5 delay 12 min 1.5 delay 10 min
8. Increase speed 1.25 full speed 75 full speed 1.25 full speed
9. Tank 6 empty 2. delay 31 min 1.75 delay 21 min 1.25 | delay 30 min
10. Tank 1 empty 3. delay 10 min 3.5 delay 5 min 1.5 delay 14 min
11. Tank 3 empty 2. delay 12 min 2.5 delay 17 min 1. delay 0 min
12. Filter 3 warning 1.5 do not change 1. do not change 1. do not change
13. Filter 2 warning 1. do not change .75 | do not change 1. change now
14. Tank 2 empty 1.75 delay 10 min 2.25 delay 10 min 1.5 delay 7 min
15. Filter 1 warning 75 change now 1. changc now 1. change now
16. Tank 5 empty 2. delay 26 min 2.25 delay 12 min 1.25 | dclay 26 min
17. Tank 4 empty 2.5 delay 7 min 2.5 delay 26 min 1. delay 7 min
18. Tank 1 empty 1.5 delay S min 2.25 delay 10 min 1.25 | dclay 13 min
19. Production can 2. do not refill 2. do not refill 2.5 do not refill

end any tanks any tanks any tanks
Total produced 96,326 fL. 94,709 f. 96,316 ft.
Production time 311 minutes 307 minutcs 310 minutes
Production rate 309.4 {t/min 308.5 ft/min 310.7 fymin
(average)
End Waste 642 L 794 L 550 L

generated good results for most decision alternatives, but
the optimization model was more successful in evaluating

the production end time decision.

All models operatc

quickly enough 1o bc used in a real time mode for the
samplc production system, although timing may become

critical with more complex systems.
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Tablc 3: Production End Times for Hierarchical Model

Total lincar fect Total waste (L)

Run 1 94,709 794

99,109 (estimatcd) 1034 (cstimated)

105,709 (estimated) 896 (estimated)

Run 2 | 95,741 946

99,943 1233

108,609 (estimated) 768 (estimated)

The average time to make a decision was shortest for
the optimization model and longest for the hierarchical
model. Timing for the optimization model was consistent
because iterations were not stopped when the system
converged.  Timing for the other models varied
depending on the number of alternatives considered. In
more complex systems, it may be necessary to restrict the
number of alternatives or iterations to achieve a solution
in an acceptable time. Choice of model type, model
execution time, and need to implement restrictions on run
time depend on the characteristics of the manufacturing
system.
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