Proceedings of the 1992 Winter Simulation Conference

ed. J. J. Swain, D. Goldsman, R. C. Crain, and J. R. Wilson

An Investigation of a Standard Simulation-Knowledge Interface

Carol S. Russell
Adel S. Elmaghraby
James H. Graham

Computer Science and Engineering Program
University of Louisville
Louisville, Kentucky 40292, U.S.A.

Abstract

The benefits of separating the simulation of a
physical system from the decision-making process
are discussed. A formal model for the interface
between such a simulation and a knowledge-based
manager is presented. The model is then applied
to a case study involving a scheduling and planning
problem from manufacturing.

1 Introduction

Simulations are conducted for the purpose of
illustrating, defining and/or analyzing the behavior
of complex systems. The system itself is often a
collection of subsystems. While the subsystems
may be well-defined, it is possible that the
interaction among the subsystems is not
well-defined. When this is the case, the usual
procedure is to provide some a priori rule to
regulate the interactions and then run the
simulation. After successive runs, the data from the
simulation are analyzed and necessary
modifications are made in the simulation.

While this run-analyze-modify procedure is
appropriate for some simulations, it is not
necessarily the most efficient or the most productive
method. This is especially true if the modifications
are applied to the rules of interaction among
modules within a system which is sensitive to
rapidly changing conditions. In systems of this
type, it may be desirable to provide a mechanism
by which decisions concerning the interaction of the
subsystems can respond to current simulation
conditions by modifying the rules of interaction
while the simulation is still in progress.

807

This work will show that by separating the
physical characteristics of the system from the rules
of interaction, a more efficient and effective
simulation will result. This will allow:

1. dynamic allocation of resources and processes;

2. selection of best interactive rule based on
current and changing conditions; and
3. decoupling into a modular simulation which can

accommodate changes in either the physical
description and/or the management objectives.
Section 2 provides a brief overview of the
incorporation of intelligent decision-making into
simulations and a rationale for the proposed
approach. Section 3 presents a formal model for
an interface between a simulation and an intelligent
decision-maker. Section 4 discusses an application
of the formalism to a problem from manufacturing.

2 Overview of Al and Simulation
2.1 Artificial Intelligence in Simulation

Since the mid-70's [Oren 1977], many attempts to
use artificial intelligence to benefit simulation have
been made. Much of this work has been devoted
to helping investigate the problem, develop the
simulation and analyze the results. These attempts
are well documented as in Floss and Talavage
[1988], Fishwick [1988], Rozenblit and Zeigler
[1985], and Widman [1988], among others.

“Cognizant simulation® [Oren and Zeigler, 1987],
which implies the existence of a knowledge base
about the system being simulated, also provides the
ability to explore various levels of abstraction within
a single simulation or to explore various viewpoints
or goals [Fishwick 1989].

808 Russell, Elmaghraby, and Graham

Some implementations of these concepts have
taken the form of the simulations, the knowledge
base and the inference engine for decision-making
all written entirely in procedural languages such as
FORTRAN. Others have written all the requisite
parts of the intelligent simulation in a traditionally Al
language such as PROLOG [O’'Keefe 1989]. Still
another approach has been the development of
hybrid languages that provide simulation constructs
and statistic-gathering properties with
pattern-matching abilities and reasoning capabilities
[Ruiz-Meir and Talavage 1989].

Unfortunately, there seem to be almost as many
solutions to the problem of integrating simulation
and artificial intelligence as there are investigators
into the problem. However, there is one point of
agreement among all the previously cited works -
the need for some intelligent agent to control the
behavior of the simulation. This paper presents an
alternative solution to the problem which provides
a means to utilize the strengths of existing
simulation and Al languages and provide greater
flexibility than either one alone.

2.2 Al and Simulation Languages

The use of a single language to provide intelligent
control for a simulation has some desirable aspects.
This approach also has two distinct drawbacks:

1. It presupposes that the language can handle all
the requirements of both the intelligent
decision-maker and the simulation; and

2. It presupposes that the programmer has
expertise in both simulation and Al.

Simulation languages provide elements that are
specific to the construction of simulations: means to
describe physical entities, attributes and relations to
other entities; mechanisms for specifying the
passage of time; functions and procedures to
gather and compute statistical measures; and
means to provide for random events. Queuing
structures and event scheduling are well-defined
and the typical simulation language is capable of
complex numeric computations.

In contrast, the strengths of the Al languages lie
in the ability to extract patterns from a complex set
of facts, to reason on incomplete information, and
to resolve conflicting goals. Al languages have the
power of symbolic computing but are not suited for
complex numeric computation.

Therefore, an ideal solution to intelligent
simulation would take advantage of these language
traits and strengths by keeping the physical
simulation separate from the Al engine that makes

the decisions. This separation also addresses the

second point above.

The use of separate languages allows for
separate development, testing and debugging of
the individual components by programmers with
expertise in the specified field. It also allows for
modular development of a complex system and for
interchangeability among compatible components.

These issues lead us to consider the alternative
of writing the physical simulation in a simulation
language and the decision-maker in an Al language
and then providing an interface between them.
Therefore we propose a “Standard Simulation-
Knowledge Interface" (SSKI) as a formal model.
Elements in the development of SSKI include:

1. How will an expert system/rule-based manager
for a simulation be invoked? Will it be invoked
as needed, by monitoring a variable or group of
variables in the simulation? Or will it be invoked
on a regular basis using the simulation timing
mechanism and/or event scheduler?

2. What information is needed in order for the
decision-maker (the Manager) to reach a
decision? Should specific information
pertaining to a particular goal or all information
about the system be available to the Manager?

3. What information from the Manager needs to be
returned? Will the Manager alter attributes of
the simulation directly, or will it be necessary for
the Manager to pass the desired values and
have the simulation alter the attributes?

4. What device or system should be used for the
passing of information back and forth between
the simulation and the Manager? A system of
shared files, a common knowledge base, or a
blackboard environment?

These issues, as well as many others, must be

addressed in order to design a successful interface

between the simulation and its decision-maker.

3 The SSKI Formalism
3.1 General Considerations

A simulation S of a real system can be defined as
S = {A R, O, T} consisting of a set of observable
attributes A and a relation R defined on A which
results in a set of outputs O at some simulation time
t, where t € T. This definition holds for all
simulations of real systems and is independent of
the formal model or definition.

Similarly, a knowledge-based manager M can
be defined as M = {K, C, T} consisting of
predicates K along with an inference engine which

Investigation of Standard Simulation-Knowledge Interface 809

acts on K at time t and yields a result ¢ as a

conclusion, where ¢ € C.

If a manager M is to make decisions concerning
simulation S, then the following must hold:

a. There exists a subset V < A u O in S which is
necessary and sufficient for such decisions.

b. M can assert predicates based on V consistent
with K and can derive conclusion c.

¢. Conclusion ¢ can be used as input to S in order
to affect some changes in S.

Given a simulation S and manager M as outlined

above, an interface | can be described thus:

I={V,K ¢cTf g}
where

VcAuOinS§ as defined above;

K = {predicates} in M as defined above;

¢ € C = {conclusions} in M;

T c{reals} st €T =t > 0 denoting time in S;
Define P(V) and P(K) as the power sets of V and K,
respectively. Then:

f = function mapping a set of variables of S at
time t, into the predicate set of M:

(:P(V) x t, = P(K);

g = function mapping a set of predicates in M

at time t, into the set of conclusions C:
(@:P(K) x t,~ C 3 g(P(K).L,) = c).

In order for the interface to be generic, t, and t,

may assume any values in T such that t, < t.

However, for the purposes of this paper, the

following assumption will be made:

1. t,=t_ : thatis, the simulation will assume the
responsibility for calling the manager at time t;
and will suspend all activity until a response is
made by the manager. Since t, represents
simulation time, not computational time, no
simulation time will be recorded during the
call-and-wait procedure.

Although the general model could support a

manager which could interrupt the simulation at any

time with the results of the original call, the above
restriction provides for the following to hold:

2. The function g:P(K) x t, -~ C, P(K) is defined by
P(K) = f(P(A), t,): the subset of the predicates
mapped back as a conclusion is precisely that
result of the function f. The changes made in
simulation S as a result of conclusion c at time
t, are a direct result of the invocation of the
manager by the simulation at time t..

The above assumptions define the relationship

between the simulation and the manager as a

call-and-wait system with the manager in the role of

a knowledge server to the calling simulation.

Thus the simulation itself must be defined so as
to provide a means to call the manager and

respond from the output of the manager even as

the manager must be defined to respond to

appropriate input from the simulation.

It is possible to use Hoare's [1985] description
for subordinate processes to describe the relation
between S and M. However this does not address
the issues of what information must be
communicated between these processes and what
effects M may have upon S.

Within the general definition of interface |, some
further observations and restrictions are made:

3. V (the set of variables in S communicated to M)
can be partitioned into V, and V, where V,
represents the static, unchangeable attributes of
S whereas V, represents the dynamic,
changeable ones. Clearly, if V, is known to M
att = 0, thenitis also knownto M forallt > 0
as well. Thus there is no need to communicate
this subset of V to M for t,,, provided it has
already been communicated at t. Conversely,
since V, at t,, , is likely to differ from V, at t, then
V4 must be communicated to M on each call.

4. In order to simplify an implementation, it will be
assumed that V, can only be affected within the
simulation itself. Thus the actual mechanism for
altering attributes will be provided within the
simulation program. This eliminates the need to
provide the manager direct access to those
attributes and maintains the knowledge-server
position of the manager. In other words, the
manager will make the recommendations for
changes in the simulation variables, but it is up
to the simulation to implement these changes.
This recommendation is embodied in the
predicate value c as described above.

4. Application Problem
4.1 Overview of Recent Work

A flexible manufacturing system (FMS) was chosen
as a case study for several reasons. Foremost is
the inherent complexity of planning and scheduling
in an FMS. Even well documented scheduling
rules, as summarized in Gupta, Gupta, and Bector
[1989] and Montazeri and Wassenhove [1990], are
inadequate for solving every scheduling problem.

Many recent attempts to solve scheduling
problems have been made ranging from an
algorithmic approach [Chan and Bedworth 1990]
and knowledge-based interactive systems [Sarin
and Salgame 1990] to simulation approaches [Wu
and Wysk 1989]. Despite these varied approaches,
an ideal solution has yet to be found.

810 Russell, Elmaghraby, and Graham

4.2 Problem Description

in a traditional FMS scheduling problem certain

assumptions are made:

1. The jobs to be processed are independent;

2. Jobs enter the system simultaneously; and

3. Jobs leave the system after completion.
With these assumptions, the goals of the scheduler
are generally related to minimum makespan
(minimum time to complete all jobs). These
assumptions and goals generally lead to the use of
a few static rules such as SPT (shortest processing
time) to select the next job for processing when
several jobs await service at the same machine.

In the problem chosen for this work, these three
assumptions concerning jobs are not valid. Instead,
the following relationships must be satisfied:

1. Parts may enter the system at any time and
must follow the processing schedule as given in
Table 1 below;

2. On entry, parts become work-in-progress (WIP)
and remain WIP until exiting the system;

3. A part may not exit the system until it is
assembled with other required parts;

4. WIP must be limited to a total of 500 parts;

5. The three types of machines (A, B and C) have
unlimited queuing capacity and require a set-up
time of 60 minutes whenever switched from one
operation mode to another; and

6. Transportation time between machines and
assembly time of completed parts is negligible.

The goal of this Table 1: Order of operations for

FMS is not to each part

minimize the

makespan of the Pt.# Op.# Mch.iD Time
individual parts | 10 A 5
but to devise a 20 B 3
schedule which jg é g
will maximize the o 10 c 5
number of 20 A 3
assembled 30 A 8
items able to 40 B 15
exit the system 3 10 C 3
in a fixed 20 A 5
amount of time. 30 B 2
Therefore, the 4 10 c 20
application of 20 A 1
traditional 30 B 3
scheduling rules gg ?; 151
may not be

appropriate
since there must
be a balance among the parts of various types in
order to provide an assembled item at the exit

point.

The aspects of this problem making it a suitable
case study for the proposed interface are threefold:
1. The problem contains various levels of

decision-making, from simple deterministic

conditional branches to multi-criteria,
multi-conditional branches.

2. The problem is small enough to be able to
investigate several possible alternative designs
yet complex enough to provide interesting
insights into the proposed formalism.

3. The problem has a dynamic structure in that
entities can be introduced into the system,
manipulated and removed from the system
according to different conditions allowing for the
investigation of various strategies.

Therefore the use of this factory problem will

provide a means for discussing and clarifying the

interface model.

4.3 SSKI for the Case Study Simulation

While many models are possible for the illustrative
problem, let us consider the following structure.

Variables -

1. Parts and Machines are described as entities
having the following attributes:

A. Parts:

a part number (PT.NUMBER)

a batch size (PT.BATCH.SIZE)

an imminent operation number (PT.OP)

a per/item processing time (PT.OP.TIME)
B. Machines:

an identification/name (MCH.ID)

a current operation number (MCH.OP)

a busy/idle status (MCH.BUSY)

2. Machines have queues of batches of parts and
the length of a machine’s queue is stored in the
variable N.MCH.QUE(MACHINE) indicating the
number of batches waiting service at MACHINE.

3. The accumulations of various part-types in the
system are stored in the variables
P.COMPLETE(TYPE) indicating the number of
completed parts of each TYPE waiting for
assembly and P.WIP(TYPE) indicating the
number of each TYPE currently being
processed in the system.

The above variables constitute the set V, as
discussed in a previous section. There are other
dynamic variables tracked by the system but these
are used primarily for the reporting of statistics on
the plant operation and are not necessary for the
purpose of decision-making.

Investigation of Standard Simulation-Knowledge Interface 811

V, consists of such information as the number
of machines (N.MACHINES), the number of part
types (N.PARTS) and the number of parts allowed
in the system at any one time (MAX.PARTS).

Processes -

1. OBSERVE.MACHINES: This is the heart of this
decision-oriented simulation model. At every
minute of simulation time an observation is
made of each of the machines. It has been
assumed, for this implementation, that if a
machine has become idle and has only one
batch of parts in its queue, it will immediately
begin working on that batch.

This could be replaced by a global,
look-ahead scheme that would survey the
system for batches of parts that would be
joining the machine queue and, perhaps,
override the one-batch default mechanism.
While this option could be readily implemented,
it will not be considered in this discussion.

If a machine is busy, nothing happens until
the next observation period with respect to the
observed machine.

If the machine is idle and either has no
batches in its queue or has more than one
batch, then a decision must be made as to what
the machine should do next. There are three
basic options:

1. Wait and do nothing.
2. Process a new batch of parts.
3. Process a batch from the queue.

2. MACHINE.WORK: When a decision is made to
process a batch of parts on a given machine,
the status of the machine is set to "busy" and
the machine operation number is compared to
the part operation number. If these operation
numbers are different, the machine operation
number is changed to match the part operation
number and the total processing time for the
batch is incremented by one hour. Once the
batch has been processed, the PT.OP is
increased by 10, the batch is filed in a
temporary set and the MOVE.PART routine is
called which routes the batch to the next
machine and establishes the per/item operation
time. The machine status is returned to "idle."

3. ASSEMBLE: When the part-operation number
indicates that all machining has been
accomplished, the batch of parts is available to
be assembled. Although, for this particular
example, the assembly process consumes no
simulation time, it is advantageous to schedule
ASSEMBLE as an event so that it can be given

priority over starting new batches into the

system.
Figure 1 shows the logical relations among these
events and processes. The initialization routines
and reporting processes have been omitted for
simplicity. A nonstandard flow-chart symbol, the
circle, has been used to denote a multiple value,
complex decision block.

OBSERVE .MACHINES

busy? on

wes

MACHINE . HORK

mart
comolete? MOVE .PART

ASSEMBLE

Figure 1: Process flowchart for application
problem

While Figure 1 shows the logical connections
among the major event and processes in the
simulation model of the factory, it does not show
the complexity of the logic involved. Figure 2
shows the flow of batches of parts through the
three machining centers as a network model. The
conditional branches are based on the fixed
routings of the various part types. In this figure, the
multiple branches into the machines indicate the
complexity in the decision as to what should
happen next at a given machine.

Let us refer to these entry points as Decision
Points. A given decision point corresponds to the
logical questions of Figure 1 as to whether to start
a part, process a part or have that machine wait
and do nothing until the next observation period.
Although the logical diagram asks the same
questions as the decision points in the network
diagram, it is not obvious from Figure 1 how
complex these decisions might be. For example,
the decision point at machine C not only concerns
whether to start a batch of parts at that machine
but which part type to start.

Whichever diagrammatic model is used, it can
be seen that the number of complex decisions to

812 Russell, Elmaghraby, and Graham

HIGKNN" 1d

")
=
2
=
3
>
n
=

IVIod
uoysyoag
CI)dO"HOH
TIYXYTS
wvod
woysToeg
C8)d0 HOW
WITAYISY
utod
voTsTo8Q
C(YIdO HIH
TITAYYSE

d0° 1d
40" 1d
do* 1d
d0°1d
18Y9d " 3IA0W
1
1
1
1
*IAOW

[

£

z

T
ivd

<

<

<

[4

TITT
$ITIY
$I5YY

TIOY

CPII1INdHOd‘d
CI)3ILINdHOD “d
CE2313NM0O°d
CZIILINMHOD"d

Iew3IsSsy
TIVOTOIS]

l

Figure 2: A network model of the application
problem

be made is constrained by:

1. the number of processes and events in the
simulation, and

2. the number of physical interactions in the
system being modeled.

In the given model, only one process

(OBSERVE.MACHINES) requires some higher-level

decision-making and it can be invoked for each of

the three machines. Therefore, there are at most

three distinct decision points to be considered in

this model.

In general, if there are p processes that require
some high level decision-making and each process
can be invoked for d, distinct cases, then there are
atmostD =X d,i=1,2, .. p, decision points.

Now since each decision point requires the
intervention of the intelligent manager, the function
f: P(V) X T - P(K) can be restricted to at most D
distinct subsets of V, each subset consisting of
those variables necessary to make the decision in
question.

4.4 Variable Selection

In the design of the interface, one must be
cognizant not only of the physical attributes of the
system modeled by the simulation but also of the
decision-making criteria demanded by the
knowledge-server.

In the worst-case scenario, under the
circumstances that the interface designer either
does not know the decision criteria or wishes to
give the knowledge-server as much flexibility as
possible, then each of the D subsets mapped by
the function f can be equivalent to the entire set V.
In other words, on each call to the
knowledge-server, all the variables concerning the
simulation can be communicated to the manager.

One restriction that could reduce
communication costs would be to make V, (the
static variables) available to the knowledge-server at
some point during the simulation before a decision
point is reached and enable the knowledge-server
to retain this information for the duration of the run.
This could be accomplished in two ways:

1. encode the static information into the data base
of the knowledge-server; or

2. pass the information to the knowledge-server as
part of the initialization or set-up routine of the

simulation at simulation time t = 0.

For the illustrative problem, it was deemed more
efficient to include the static information as facts in
the manager's data base. The benefits of this
approach can be disputed, especially if a purpose
of the simulation is to investigate the behavior of a
system given different static parameters for
separate runs (for example, changing the number
of machines).

If this restriction is made, then even in the worst
case, the amount of information to be
communicated at each of the D decision points is
less than the entire set of variables. Indeed, each
of the D subsets will now be a subset of V,, the
dynamic variables.

Toillustrate the different subset requirements for

Investigation of Standard Simulation-Knowledge Interface 813

the different decision points, consider the following:

Example 1.
‘If the machine’s queue is empty and
if the Machine ID = A and

if the total number of parts in the system is less

than the maximum allowed,

then start a batch of Part 1.
The amount of information needed to reach a
conclusion for Machine A is quite different from a
similar situation regarding Machine B:

"If the machine’s queue is empty and

if the Machine ID = B,

then wait."

Performing some preliminary screening of
variables before the manager is invoked can help to
reduce the number of variables necessary. If no
such screening is done, then it may be necessary
to pass all the variables in each case.

In the factory example, if the decision to be
made concerning a particular machine is based on
some local property (information concerning that
machine only as opposed to information from all the
machines), then the set of variables can be
restricted accordingly. In this case, pre-screening
by MCH.ID restricted the information being passed
to that which concerns only the batches of parts in
the machine’s queue.

Additional restrictions on the amount of data
communicated can be made if more is known about
the nature of the decision-making process. For a
comparison as to the varying amount of data
needed, consider the two following decision criteria
for a given machine having three batches in its
queue (B1, B2, B3).

Example 2.

1. 'If the queue length > 1
then process the batch having the shortest
imminent processing time."

2. 'If the queue length > 1
then process the batch whose part type has the
fewest items completed.”

Quite clearly the two different selection
strategies require not only different information, but
different amounts of information. In case (1), the
manager must know the batch size and the per/item
processing time for each batch in the queue in
order to reach a decision. Therefore the minimal
subset would be: {BATCH.SIZE(B1), OP.TIME(B1),
BATCH.SIZE(B2), OP.TIME(B2), BATCH.SIZE(B3),
OP.TIME(B3)}.

In case (2) however, each part type must be known
as well as how many parts have been completed.
Therefore the minimal subset would be:
{PART.NUMBER(B1), PART.NUMBER(B2),
PART.NUMBER(B3), P.COMPLETE(1),
P.COMPLETE(2), P.COMPLETE(3),
P.COMPLETE(4)}. More complicated
decision-making, involving perhaps multi-level
comparisons, would require more information. An
example of such a multi-level process, requiring the
union of the above sets could be:

"If queue > 1,

then process the batch having the shortest

imminent processing time.

If there is a tie among batches,

break the tie by processing the batch whose

part type has the fewest number of completed

parts."

If the goal of the interface designer is to
minimize the variable subsets to be communicated
from the simulation to the manager, then the
interface designer must know both what
pre-screening has been done in the simulation
(Example 1) and what decision-criteria is necessary
in the manager (Example 2).

Figure 3 llustrates the variable-selection
process that leads to minimal subsets for each
decision point.

Statlc Vartables

Dwnamic Varlsbles

Reduction Based on Declsion Points

Q Reduction Gased on Pre-screening

Reduction besed on Decision Criterls

where V=, ¢ V', € Vy &€ VyCV for i =1,2,..., D and

where Vyn V, = 2 and Vgu Vv, =V,

Figure 3: Reduction of variable subsets

4.5 Restricting the f-Function

In the general description of the interface, F is
defined on the power set of V (simulation variables)
together with the set T (simulation time). Once we

814 Russell, Elmaghraby, and Graham

have isolated D decision points, each with its own
specified properties and restrictions, we can now
restrict the f-function accordingly. Therefore we can
now define f as follows:

f(V,0)
P(V)xT={ [(Vt) for i=1.2,...,D; t=0
o otherwise

The size of set V, may vary depending on
whether entities are created and/or destroyed
during the simulation run. It is possible to partition
V, into those variables which are always present,
V,, and those which are temporary, V,. To illustrate
these two concepts, consider the variables of
interest in the example problem:

V, = {MCH.ID(MACHINE)), MCH.OP(MACHINE),
MCH.BUSY(MACHINE), N.MCH.QUE(MACHINE),
P.COMPLETE(TYPE), P.WIP(TYPE) | MACHINE =
1,2,3 and TYPE = 1,2,3,4} and

V, = {PT.NUMBER(PART), PT.BATCH.SIZE(PART),
PT.BATCH.NUMBER(PART), PT.OP(PART),
PT.OP.TIME(PART) | PART =1, 2, ... }.

In order to relay information to the manager
concerning subsets of V,, it will be necessary to
ascertain the number of PARTS in question and be
able to identify which PARTS are needed.

In most cases, temporary entities such as
PARTS are moved through the system by being
removed from one queue and placed in another.
Therefore it is possible to isolate these entities by
examining the various queues in the system. In this
factory problem, all PARTS reside in a MACHINE
queue from the moment of creation until they exit
from the system via the ASSEMBLE event and are
destroyed. PARTS are moved from one MACHINE
queue to another by the MOVE.PARTS routine
which places them in the system-owned set called
TEMP. However, MOVE.PARTS consumes no
simulation time. So the PARTS are considered as
residing in the TEMP set for no simulation time and
can be viewed as belonging to MACHINE queues
only.

Since the number of PARTS in a given
MACHINE queue can vary widely, the transmission
of any subset of V, relating to these PARTS is
dependent on the state of the simulation at the time
of the communication.

4.6 Restricting the g-Function

This implementation assumes that only the
simulation can change values of the variables.

Thus, it is assumed that the set of conclusions C is
of a form which can be used as input into the
simulation in the same way that information from the
simulation is used as input to the manager. In
general, there will be less variability in the amount
of information needed to be passed from the
managed to the simulation. It is possible that this
information will be restricted to a simple logical
value, but it is likely that the conclusion will contain
some specific instructions to the simulation. In the
factory problem, if the conclusion is made to start a
batch of parts on Machine C, then information
concerning which of the possible parts must be
communicated to the simulation.

5 Conclusions

In order for simulation to benefit from the advances
in artificial intelligence, it is necessary to provide a
mechanism for them to interact. Rather than merge
the two distinct activities of simulation and control
into a single, continuous process, this work
proposes to decouple the functions, allowing
information to flow between them as needed. This
decoupling will enable the development of the
separate functions individually and within the
framework of the language of best fit. It will also
enable incremental, modular changes to be made
which will not affect the behavior of the other
function.

To this end, this paper describes a formal model
for a standard simulation-knowledge interface
(S8SKl) and shows how it may be applied to a
scheduling and planning problem in the
manufacturing area. A simulation of the physical
plant, the machines and the parts was written in
SIMSCRIPT I1.5 [1987] and a manager was written
in NASA's C-based language CLIPS [1988]. Subset
reduction was achieved through partitioning the set
V and encoding V, directly into the rule-based
manager. V, was reduced by using decision-point
restrictions and pre-screening of certain variables,
namely MCH.ID and N.MCH.QUE. Preliminary work
has shown that this interface model can achieve the
desired results for modularity and flexibility by
providing for interchangeability among managers
and/or simulations and allowing for incremental
modifications in both.

ACKNOWLEDGMENTS

This material is based upon work supported by a
National Science Foundation Graduate Fellowship.

Investigation of Standard Simulation-Knowledge Interface 815

REFERENCES

Chan, Ding-Yu, and David D. Bedworth. 1990.
Design of a scheduling system for flexible
manufacturing cells. International Journal of
Production Research 28:11, 2037-2049.

CLIPS reference manual. 1988. Artificial Intelligence
Section. Lyndon B. Johnson Space Center.

Fishwick, Paul A. 1988. Qualitative simulation:
fundamental concepts and issues. In Al and
simulation: the diversity of applications, ed. Troy
Henson, 25-31. San Diego: Society for Computer
Simulation.

Fishwick, Paul A. 1989. Process abstraction in
simulation modeling. In Atrtificial intelligence,
simulation and modeling, ed. Lawrence Widman,
Kenneth Loparo and Norman Nielsen, 93-131.
New York: John Wiley & Sons, Inc.

Floss, Peter, and Joseph J. Talavage. 1988. A
knowledge-based design procedure for flexible
manufacturing systems. In Al and simulation: the
diversity of applications, ed Troy Henson, 251-
255. San Diego: Society for Computer
Simulation.

Gupta, Yash P., Mahesh C. Gupta, and C. R.
Bector. 1989. A review of scheduling rules in
flexible manufacturing systems. International
Journal of Computer Integrated Manufacturing
2:6, 356-377.

Hoare, C. A. R. 1985. Communicating sequential
processes. Englewood Cliffs, New Jersey:
Prentice-Hall International.

Montazeri, M., and L. N. Van Wassenhove. 1990.
Analysis of scheduling rules for an FMS.
International Journal of Production Research 28:4,
785-802.

O’Keefe, Robert M. 1989. The role of artificial
intelligence in discrete-event simulation. In
Artificial intelligence, simulation and modeling,
ed. Lawrence Widman, Kenneth Loparo and
Norman Nielsen, 359-379. New York: John Wiley
& Sons.

Oren, Tuncer . 1977. Simulation - as it has been,
and should be. Simulation 29:5, 182-183.

Oren, Tuncer I, and Bernard P. Zeigler. 1987.
Artificial intelligence in modeling and simulation:
directions to explore. Simulation 48:4, 131-134.

Rozenblit, Jerzy W., and Bernard P. Zeigler. 1985.
Concepts for knowledge-based system design
environments. In Proceedings of the 1985 Winter
Simulation Conference, ed. D. T. Gantz, G. C.
Blais, and S. L. Solomon, 223-231. Institute of
Electrical and Electronics Engineers, San
Francisco, California.

Ruiz-Meir, Sergio, and Joseph Talavage. 1989. A
hybrid paradigm for modeling of complex
systems. In Artificial intelligence, simulation and
modeling, ed. Lawrence Widman, Kenneth
Loparo and Norman Nielsen, 381-395. New York:
John Wiley & Sons, Inc.

Sarin, S. C., and R. R. Salgame. 1990. Development
of a knowledge-based system for dynamic
scheduling. International Journal of Production
Research 28:8, 1499-1512.

SIMSCRIPT 1.5 programming language. 1987. La
Jolla, California: CACI Products Company.

Widman, Lawrence E. 1988. Knowledge-based fault
identification and 'what if’ simulation in symbolic
dynamic systems models. In Al and simulation:
the diversity of applications, ed. Troy Henson, 89-
94. San Diego: Society for Computer Simulation.

Wu, Szu-Yung David, and Richard A. Wysk. 19809.
An application of discrete-event simulation to
on-line control and scheduling in flexible
manufacturing. International Journal of Production
Research 27:9, 1603-1623.

AUTHOR BIOGRAPHIES

CAROL S. RUSSELL is a doctoral student in the
Computer Science and Engineering Department at
the University of Louisville. She is currently
employed as a lecturer in mathematics at Indiana
University Southeast, New Albany, Indiana.

Adel Said Elmaghraby is an Associate Professor of
Engineering Mathematics And Computer Science at
the University of Louisville. His research areas
include Simulation and Artificial Intelligence,
Robotics and Automation. He is the founding editor
of the ACM/IEEE joint Simulation Newsletter and
chairman of the IEEE Computer Society Technical
Committee on Simulation (TCSIM).

James H.Graham is currently Henry Vogt Professor
of Computer Science and Engineering at the
University of Louisville. His research interests
include robotics, artificial intelligence and distributed
computing. He is the editor of Safety, Reliability
and Human Factors in Robotic Systems, published
by Van Nostrand Reinhold in 1991.

