Proceedings of the 1992 Winter Simulation Conference
ed. J. J. Swain, D. Goldsman, R. C. Crain, and J. R. Wilson

A SOFTWARE MECHANISM TO ENHANCE
SIMULATION MODEL VALIDITY

Gaynor Legge and Dana L. Wyatt

Dept. of Computer Science
University of North Texas
Denton, Texas 76203

ABSTRACT

This paper introduces a software mechanism which can
be incorporated into standard simulators, facilitating the
development of valid models. This mechanism allows
modeling of situations which might otherwise be difficult
to simulate accurately. The mechanism implements
timelines which are used to characterize problematic
situations. The object oriented simulator and the
mechanism are described and then applied to two
example models. Each model is simulated both with and
without the mechanism in order to verify that the
mechanism operates correctly. The ease with which each
version of each model is implemented provides a basis
for comparing the standard and enhanced versions of
models.

1 INTRODUCTION

There are some real world situations that are difficult or
impractical to model closely using established discrete
event simulation methods and languages. This is because
most computer simulation languages limit access to the
event list and individual transactions, thereby limiting the
range of behaviors which can be simulated. In these
cases the real world situation is modified or generalized
to allow for computer modeling language capabilities.
However, modifications and generalizations of real world
situations can adversely affect the validity of a model.

1.1 Problematic Real World Situations

This paper examines two situations which pose problems
for modelers. The first of these is the occurrence of an
independent event which affects one or more of the
objects which move through a system. The second
concerns the influence which expected future events
might have on current events.

An example of the first situation is one in which an

798

airplane has started its landing descent but is waived
away because of the arrival of another plane requiring an
emergency landing. In a discrete event simulation, the
landing event of the first plane would already be on the
event list, having been scheduled at the time the plane
started its approach. It would be necessary to remove
this event, either at the time the emergency occurs or
when the clock is moved forward to the time when the
landing was supposed to have taken place. In order to
remove the landing event at the time of the emergency,
(1) the simulation must "know’ that there is a plane on
approach to land, and (2) the event list must be searched
to find and remove the already scheduled landing event.
To cancel the landing at the time it was to have taken
place, the simulation must have a way to "remember’ the
intervening emergency and temporally connect it to the
aborted landing. It would also be necessary to schedule
a new landing approach for the first plane.

The influence of future events on current events is
even more difficult to model well. El Sheikh et al., in a
somewhat complex harbor simulaton, found that
expected future events affected their model (El Sheikh et
al. 1987). In the real world situation, a harbor master
was scheduling dock space depending on what kind of
ship was expected to arrive. For example, if a ship of
type A, needing a dock of type X, was due to arrive
shortly, the harbor master would not assign this dock to
another waiting ship of type B, even though the dock was
idle. In their simulation model, however, the dock of
type X was assigned to ship B. Then, when ship A
arrived, ship B was preempted and returned to the queue
of ships waiting for a dock. However, the preemption
method creates some complications for the modeler.
How should the waiting time for ship B be adjusted?
What if, while ship B was at dock X, another dock
became free but was assigned to ship C? Should ship B
then preempt ship C? Regardless of how these questions
are resolved, there will be some distortion of the
simulation results. Whether the distortion will be

Software Mechanism to Enhance Model Validity 799

significant or not depends on the model and the model
parameters.

1.2 Project Overview

The identification of real world situations which are
difficult to simulate evokes speculation concerning
possible improvements to current discrete event
simulation methods. The basic premise of this paper is
that real world situations can be modeled more accurately
by adding a software mechanism which is able to
recognize specific problem situations. The mechanism is
called DELIM, Discrete Event List Inference
Mechanism. It is applicable to situations which involve
the intervention of independent events or the effect of
future events on current events. DELIM provides
substance to the concept of timelines by applying them
to actual situations (Legge and Wyatt 1991).

2 TIMELINES

The event list of a simulation is a form of temporal
representation in which the temporal relationships of
before and after are implicitly defined. Because these
relationships are inherent in an event list, a more abstract
form of the event list called a timeline can be used to
delineate temporal relationships between events without
reference to specific times.

A timeline is a sequence of events ordered by their
relative time of occurrence. The events on a timeline are
ordered from left to right, and the only temporal
relationships represented are Event A < Event B
(meaning Event A precedes Event B) and Event B >
Event A (Event B takes place after Event A.) The
timeline does not show the actual time an event takes
place, only the relevant order of the events on the
timeline. Events are represented as capital letters (e.g. A,
B, C). Timelines are used to compare one sequence of
events to another. The two timelines in figure 1 are
sequences of events which can be difficult to model
using standard methodology.

Timeline | A B -
- A---Cemeemmen e

a. Intervention

A B -

Timeline I
I A ?

@

b. Anticipation

Figure 1: Two types of time sequences

The concept of specifying a timeline of events and
then matching it to a real event queue can be applied to
simplify the development of models which include these
timelines. The addition of a mechanism which does this
requires minimal adjustment to a standard simulator.
More importantly, it allows the simulation of the
intervention and anticipation timelines in a consistent and
more uniform way than could be achieved by modeling
each situation as a specific case. Both the anticipation
and intervention situations can be represented using the
same rule format, thereby reducing the amount of
specialized program code and simplifying the modeling
task (Legge 1992).

3 THE SIMULATION SYSTEM

DELIM and the basic simulator to which it is connected
are programmed in the object oriented language C++
(Stroustrup 1986). The simulator consists of seven
objects or base classes. Some of these objects may be
tailored to include characteristics unique to a given
model. There are three types of model objects:
transactions, servers and queues. A server performs a
task or service of some kind. A transaction moves
around the system visiting one or more servers; it is the
object on which a service or task is performed. A queue
is a waiting line for transactions which must wait for
service at a server.

There are four types of system objects: the simulator
object, a clock, an event list and events. The clock
maintains the system time. Events are used to mark the
times of arrivals and departures of transactions during the
simulation. The event list is a list of events ordered by
their time of occurrence. The simulator is the object
which manages the event list, processes each event,
advances the clock as each event occurs, and starts and
stops the simulation.

DELIM consists of five classes of objects. The
subframe, substitution and matchframe objects are all
constituents of the rule object. The rule objects are
contained in a mechanism object, i.e. DELIM.

3.1 Simulation Function Overview

The functioning of the simulation system without DELIM
is straightforward. A model specific simulator is derived
from the simulator base class. It includes the servers
needed for the simulation. The servers may themselves
be derived classes. Any necessary queues are also
included, either in the servers or the simulator. The user
sets the end time for the simulation, and the simulation
is initialized by invoking the appropriate method of the
simulator.

If the model has transient objects, the arrival of a

800 Legge and Wyatt

new transaction causes a new arrival event to be created
and inserted into the event list. The arriving transaction
is sent to the first server where either (1) the service time
is determined and a departure event is returned to the
simulator and inserted into the event list or, (2) the
transaction is put into the queue to wait until the server
is free. When a transaction leaves a server, it either
leaves the system or an arrival event at the next server is
created and placed in the event list. The server either
becomes idle or a waiting transaction is dequeued, its
service time computed and a new departure event is
returned to the simulator which inserts it into the event
list.

3.2 DELIM Function Overview

The main function of DELIM is to match a
representation of a timeline, or rule, to the actual events
on an event list in a model simulation. The key element
of DELIM is the rule, which is a list of abstract events
which may or may not be matched to actual events on an
event list during a simulation.

DELIM operates in a manner similar to the inference
engine of an expert system (Charniak and McDermott
1984). Using a representation of a timeline as the
condition part of a rule, DELIM takes the current event
of an event list and binds it to the ’current’ event of the
rule. It then searches the future and/or past of the event
list, as appropriate, to match events in the rule to events
on the list. If the events specified in the rule are
matched on the event list, the rule is fired, i.e. some
instruction is returned to the simulator which executes
events and manages the event list. The length of a
search along the event list is limited, when necessary, by
parameters associated with the current rule.

There is additional leeway allowed in the portion of
an event which is matched. Minimally, the type of event
is matched. Depending on the construction of the rule,
however, it is possible to match both the event type and
a specific transaction, or the event type and the
transaction type, or the event type and a specific
transaction of a designated type.

The links to the simulation system consist of a
reference to the event list and the return to the simulator
of an indication of either a successful match to a specific
rule or failure (see figure 2). Unlike an expert system,
however, DELIM does not alter the knowledge base, in
this case the event list, nor can DELIM actually be said
to perform inference, since only one rule is ever fired
when DELIM is invoked. Therefore, although the
method of its operation has been adapted from that of
expert systems, a more appropriate description of
DELIM’s function would be a timeline recognizer.

A significant characteristic of DELIM is its

generality. Although its purpose is to recognize
sequences of events represented by timelines, it is
sufficiently general to recognize any variations of
timelines also. For example, the letter A on a timeline
might represent two or three actual events. Since there
are no restrictions to the number past or future abstract
events which may be added to a rule, this sort of
variation is easily handled. Furthermore, a rule may have
both past and future abstract events in addition to the
current event, a configuration outside the purview of the
present set of timelines.

4 APPLICATION TO MODELS

In order to evaluate DELIM, it must be applied in
simulation models. To that end, one model
corresponding to each of the timelines in figure 1 has
been developed. The models were selected from
modeling literature to meet several criteria. First,
corresponding to each of the timelines in figure 1 has
each model demonstrates a single timeline in order to
allow the independent examination of DELIM’s efficacy
in each situation. Second, each model reflects plausible
situations in the real world. Since the primary reason for
simulation is to model real world situations, it would be
ineffectual to demonstrate DELIM on a timeline for
which no realistic scenario exists. Finally, each model is
of sufficient simplicity to clearly demonstrate the timeline
it models without introducing extraneous events which
could cause the effect of DELIM to become ambiguous.

User
4 N
Discrete Rule
Eycm Base
Simulator
Event Instruction /Rulcs
List \A
Discrete
Event
List
Inference
Mechanism

Figure 2: The system architecture

Two simulation models in a discrete event
scheduling conceptual framework are implemented both
with and without DELIM for purposes of comparison.

Software Mechanism to Enhance Model Validity 801

The technique employed is to start with the standard
simulation system, that is, the seven base classes of the
simulation system without DELIM, and derive the
necessary objects to implement each model using
standard discrete event simulation methodology. After
implementing each model as accurately as possible using
a standard technique, the models are implemented using
the extended system incorporating DELIM. Thus
differences between the two implementations are
examined with the expectation that they provide insight
into the evaluation of DELIM.

4.1 Intervention Model

The intervention model is comprised of a tanker fleet
which travels between two ports. It is adapted from a
GASP textbook model (Pritsker 1974). The tanker fleet
has:

* 15 tankers

* a tanker is loaded with oil in Valdez and
unloaded in Seattle

* Joad time is exponential with a mean of
amount_loaded / average_loading_rate

* unload time is 200 tb/day

* travel from Valdez to Seattle takes 3.5-6.5 days

* travel from Seattle to Valdez takes 3-5 days

* 15 docks in Valdez, 1 dock in Seattle

However, storms occur which can delay ships in transit
for as much as 2 days. Storm occurrences are normally
distributed with a mean of 30 days and a standard
deviation of 15 days. The tanker fleet is simulated for
365 days.

4.1.1 Comparison to the Intervention Timeline

Figure 3 matches the events on the intervention timeline
to the sequence of events in the intervention model.

Timeline | A B
leave port A arrive port B
| A C ?
leave port A storm delayed arrival

Figure 3: The intervention timeline and model sequence
4.1.2 Standard Implementation

The simulator for the intervention model contains a dock
server for Alaska, a dock for Seattle, and a queue.
Tanker objects are derived from the transaction class. In
the standard implementation, a storm notice is maintained

to record the times of storms as they occur. A new
method is added to compare the time of a tanker’s
departure from a port with the times of the most recent
storm. The simulator creates all fifteen tankers at the
beginning of the simulation. Arrival events at the Alaska
dock for each tanker are generated to take place at half
day intervals and all of them are inserted into the event
list. The first storm event is also created and scheduled.

The simulation proceeds as follows for each type of
event:

Arrival:
tanker arrives at port
if tanker_departure_time < storm_notice_time then
calculate delayed arrival_time
reset tanker_departure_time to current time
schedule new arrival event
else
tanker goes to dock
if dock is not busy then
schedule new departure event
else
tanker is put on the queue

Departure:
tanker leaves port

release the dock

schedule new arrival event

if tankers are waiting then
remove a tanker from the queue
schedule new departure event

Storm:
storm occurs
post time of storm in storm_notice variable
schedule new storm event

4.1.3 DELIM Implementation

The same objects are used for the DELIM
implementation as for the standard implementation, that
is, two docks and a queue object located in the simulator.
The simulator object no longer needs to have a storm
notice or the method associated with it. The tanker
departure time is changed to a flag variable to prevent a
tanker from being repeatedly delayed by the same storm.
The changes required to the event routines are minimal:

Arrival:
tanker arrives at port
if no delay_flag and
DELIM returns a rule number then
calculate delayed arrival_time
set tanker delay_flag

802 Legge and Wyatt

schedule new arrival event
else
tanker goes to dock
clear delay_flag
if dock is not busy then
schedule new departure event
else
tanker is put on the queue

Storm:
storm occurs
schedule new storm event

The departure event sequence remains the same. The
two rules needed for Model Two are displayed in figure
4. DELIM tries each of the rules in its rulebase in order
and returns the number of first rule which succeeds. If
some rules are more specific than others, they must be
attempted first.

Current
Rule Number Event
Depart Arrive

1 Alaska _% Storm % Seattle

Ship 7x Ship 7x
Depart s Arrive

2 Seatnle > torm _9 Alaska

Ship 7x Ship 7x

Figure 4: Intervention model rules
4.1.4 Intervention Model Results

The intervention model results for both the standard and
DELIM simulator systems are shown in figure 5. The
statistics reported at the end of each simulation run are
identical, which is the anticipated and correct outcome.

4.2 Anticipation Model

The anticipation model is adapted from the same source
as the intervention model (Pritsker 1974). A similar but
more complex real world model involving the same
timeline is found in the description of a harbor simulation
developed to model an unnamed port (El Sheikh et al.
1987). In this model, the scenario is similar to the
intervention model except that there are two types of
tankers, regular and super-tankers. This model has:

* 12 regular tankers
* 3 super-tankers
* super-tankers carry a larger load

Standard DELIM
Type of Statistic Model Model

Average round trip time 13.74340 13.74340
Number of storms 12 12

Alaska dock utilization 0.23492 0.23492
Number of ships at port 402 402
Average loading time 320232 3.20232

Seattle dock utilization 0.78377 0.78377
Number of ships at port 392 392

Average unloading time 0.73041 0.73041
Average wait time 091563 0.91563
Maximum queue size 5 5

Figure 5: Intervention model results

* there are 2 docks in Seattle, 1 regular
and 1 special
* regular tankers may unload at either dock
* super-tankers must use the special dock
* super-tankers take priority over regular tankers

Super-tankers never have to wait for the unloading dock
unless another super-tanker is using it. In addition, there
are no storms; variations in travel time are due to
weather conditions and other uncertainties associated with
ocean travel. The model is simulated for 365 days.

4.2.1 Comparison to the Anticipation Timeline

The sequence of events which conforms to the
anlicipation timeline begins with the arrival of a regular
tanker to the Seattle harbor. If the regular dock is busy
and the super-tanker dock (super-dock) is free, the tanker
may unload at the super-dock. However, in order o
prevent an arriving super-tanker from waiting while a
regular tanker unloads, the regular tanker should not
unload at the super-dock if a super-tanker is expected
within the time it would take the regular tanker to
unload. Figure 6 shows this event sequence and its
associated timeline.

Timeline | A ---B
tanker arrives tanker
leaves dock S

tanker arrives super-tanker arrives

Figure 6: The anticipation timeline and model sequence

Software Mechanism to Enhance Model Validity 803

4.2.2 Standard Implementation

The implementation of the anticipation model is the more
complicated of the two models and requires changes to
all of the basic objects of the simulator except the clock
and event objects. The method for modeling the
anticipation predicament with the standard simulation
system is adopted from the method used by El Sheikh et
al. in their harbor simulation model (El Sheikh et al.
1987):

Arrival of regular tanker:
if regular dock not busy then
schedule departure event from regular dock
else
if super dock not busy then
schedule departure event from super-dock
else
put tanker on queue

Arrival of super-tanker:
if super-dock not busy then
schedule departure event from super-dock
else
try to preempt super-dock
if preempt successful then
restore load data for preempted tanker
adjust some statistics
remove tanker’s scheduled departure event
if regular dock not busy then
schedule departure event for preempted tanker
else
put preempted tanker on the front of the queue
schedule departure event for super-tanker
else
put super-tanker on queue

A tanker will never be preempted twice because
after a preemption, the regular dock will be available
before the super-dock. Although the dock utilization and
count of tanker visits can be adjusted, the waiting time
statistics for the tankers are distorted whenever a
preemption occurs, as are the round trip times.

A new event list class must be derived from the
eventlist class in order to add a method which can search
for a specific event on the list and remove it. A
specialized queue class is also necessary for this model
because a method which puts a tanker onto the front of
the queue is needed for the regular tanker queue.

A subtle problem arises in connection with the
queue. It is possible, if a tanker is preempted, that it
may enter the queue twice. The first time the queue
would be entered normally at the back end when the
tanker first arrives. Then, if the tanker is sent to the

super-dock and gets preempted, it could be pushed back
onto the front of the queue. In order to keep an accurate
count of the number of ships passing through the queue,
the tanker includes a flag, queueflag, to indicate whether
or not it has already been in the queue. There are three
methods associated with the flag which set the flag,
access the flag and clear the flag.

This model has four classes of servers. The first is
the Alaska dock, which is basically the same as the
Alaska dock described in the intervention model. Next
is the dock for regular tankers in Seattle. The dock for
super-tankers is derived from the regular tanker dock
class. It has a reference to a queue for super-tankers.
Since this is the dock from which tankers are preempted,
it has some extra variables and methods. The fourth
class of server is the harbor, derived from class server.
The bharbor contains both the regular and super tanker
docks in Seattle as well as the queues for each dock.

4.2.3 DELIM Implementation

Compared to the standard implementation just described,
the DELIM implementation is relatively simple. No
special event list or queue objects are required. The two
different types of transaction objects, regular and super-
tankers are retained because each type of tanker uses
different methods to calculate the amount of oil which is
loaded and unloaded.

There are four classes of server objects, as in the
standard implementation, but no preemption methods or
additonal variables to allow preemption are necessary.
The harbor contains two docks, two queues and a
reference to DELIM. The super-dock needs no reference
to its latest departure event or service time, although it
does add a reference to DELIM. The regular tanker dock
has a reference to a non-specialized queue object. The
arrival actions are simpler:

Arrival of regular tanker:
if regular dock not busy then
schedule departure event from regular dock
else
if super-dock not busy & DELIM returns 0 then
schedule departure event from super-dock
else
put tanker on queue

Arrival of super-tanker:

if super-dock not busy then

schedule departure event from super-dock
else

put super-tanker on queue

The two rules are necessary for this model are

804 Legge and Wyatt

shown in figure 7. Each rule includes a time limit which
is set to approximately the average amount of time it
takes to unload a regular tanker, 0.8 time units. The time
limit is determined by the modeler. In this case, if a
tanker takes longer than average to unload, there is a
possibility that a super-tanker could have to wait
Adjusting the time limit could reduce the probability that
a super-tanker would wait at the expense of possibly
making a regular tanker wait unnecessarily.

Rule Number Current Event

Departure |

} Departure 2
! Part 7x Part 7x

Departure 2

Departure 1
Part 7x ; Part 7x

to

Figure 7: Anticipation model rules
4.2.4 Anticipation Model Results

Figure 8 shows that DELIM does affect the results of the
simulation. This is the anticipated result, because there
are no preemptions in the DELIM simulation. While the
fact that the results of the two versions of this model are
different is attributed to DELIM, the actual statistics
produced by each simulation run are a result of the
stochastic nature of the model. In other words, it cannot
be said that the DELIM model produces more round trips
because of the model behaves differently in the DELIM
version. The increased number of round trips in the
DELIM model is due to the lower average loading times
for both regular and super tankers. These times are not
affected by the presence or absence of preemptions in the
two versions of the model but reflect the values
generated by the random number generator used by the
simulator. The behavior of the two simulations causes
the stream of random numbers to be applied to different
events, resulting in two different sets of statistics.

S5 DISCUSSION OF RESULTS

The results from the intervention model demonstrate that
DELIM works correctly. The results are identical
because the random number stream is generated in the
same sequence every time it is used, and the random
numbers affect the time of every event in the model. If
only one event is not matched in the standard and the
DELIM versions of each model, the entire result will
change. Therefore, identical results imply that exactly

the same chain of events took place in each version of
the intervention model.

The sitation for the anticipation model is different
because it was presumed that the results of the two
versions of this model would not be the same. To verify
that DELIM works correctly in this model, it can be
shown using a trace of actual model events that DELIM
operates correctly in all possible circumstances. These
circumstances are limited in number. The first occasion
where DELIM is invoked in this model is when a regular
tanker arrives in Seattle, the regular tanker dock is
occupied and the super-tanker dock is available. DELIM
should return O if no super-tanker is expected and a rule
number otherwise.

Standard DELIM
Type of Statistic Model Model

Average round trip time:
Total 14.00928 13.78273
Regular tankers 13.47393 13.22002

Super tankers 16.72920 16.64987
Alaska dock utilization 0.23866 0.22733
Number of ships visiting port:

Regular tankers 327 333

Super tankers 65 66
Average loading time:

Regular tankers 3.05850 2.85608

Super tankers 4.71806 4.45865
Seatte regular dock

utilization 0.53327 0.51237
Number of tankers

visiting dock 267 255
Average unloading time 0.72908 0.73381

Average wait time 0.49929 (.55783

Maximum queue size 3 4
Seattle super-dock

utilization 0.53701 0.57879
Number of tankers visiting dock:

Regular 53 70

Super 64 65
Average unloading time:

Regular 0.72764 0.73101

Super 246042 246473
Number of preemptions 11 N/A

Average wait time 1.25828 1.23983

Maximum queue size 2 1

Figure 8: Anticipation model results

Software Mechanism to Enhance Model Validity 805

Figure 9 shows the event sequences from the
simulation program which confirm the correct operation
of DELIM for these two cases. When no super-tanker is
expected, tanker T2 proceeds to the super-tanker dock
because the regular dock is occupied. The other
sequence of events shows that tanker T6 enters the queue
on arrival when the regular dock is busy because DELIM
indicates that a super-tanker is expected. The super-
tanker arrival takes place 0.5 time units after the arrival
of tanker T6.

No super-tanker expected Super-tanker expected

Ship Event Time Ship Event Time
ﬁ‘l departs 20.0| |ST1 departs 20.0|

(super-dock free) (super-dock free)

|71 armives 22.4|

(regular dock busy)

[T7 arrives 26.7]
(regular dock busy)

T2 amves 225

(DELIM called - returns 0
T2 occupies super-dock)

T6 amves 27.1J

(DELIM called - returns |
T6 enters queue)

-
|Tl deparis 23.1 T7 depants 27.4

(T6 occupies regular dock)

,’1‘2 departs 23.2

[STZ armives 27.6]

| T6 departs 28.1]

lsrz departs 30.0'

Figure 9: Trace of arrival event sequence

DELIM is also invoked whenever a ship, either a
regular or a super-tanker, leaves the super-dock. As
shown by the event trace in figure 10, if no super-tanker
arrival is expected when super-tanker ST2 departs, a
regular tanker, T3, is dequeued and unloads at the super-
tanker dock. Conversely, when tanker T10 leaves the
super-dock, DELIM returns rule number 2, and the super-
dock remains free. Super-tanker ST2 arrives 0.1 time
units after T10 departs.

These event traces not only demonstrate that
DELIM works correctly; they also show that the
sequences of events in the DELIM version of this model
occur as they would have occurred in the real world. So,
for the anticipation model, the DELIM version is a more
accurate representation of the real world and therefore
results in a more valid simulation than the standard
version.

No super-tanker expected Super-tanker expected

Ship Event Time Ship Event Time
[sn arnves 30ﬂ |T9 amives 85.9

ST2 amves 314

(enters queue)

Iﬁl departs 33.3—|

(ST2 occupies super-dock)

B arnves 35.7'
Ii? armves 35.3 I

(enters queue)

IT4 armves 35.4—|

(enters queue)

(regular dock busy)

|T10 amves 86.1 I

(DELIM called - returns O
T10 occupies super-dock)

| T9 depans 86.6

ITIO departs 86.8

(DELIM called - returns 2)

|S'I‘2 armives 86.9

ST2 depans 35.7

(DELIM called - returns 0
T3 occupies super-dock)

| T2 departs 36.0 I
(T4 occupies regular dock)

T3 deparnts 36.3

(DELIM called - returns 0
super-dock free)

T2 departs 36.8
(both docks empty)

Figure 10: Trace of departure event sequence
6 FUTURE RESEARCH

The next logical step in the investigation of DELIM is to
compare the standard and DELIM implementations in a
wider variety of models. The models should test
variations of the timelines and different scenarios as well
as combining two timelines in the same model. The
application of DELIM in some simulation models of real
world situations would be a practical test of DELIM’s
contribution to enhancing model validity. Actual
measurements taken from real systems would provide an
empirical basis for further conclusions regarding
DELIM’s efficacy.

Currenty, DELIM is applied exclusively to discrete
models of the event scheduling world view. A useful
extension of DELIM research would be to investigate
whether DELIM is applicable to simulations with other
world views, such as activity scanning or process
interaction. DELIM might also be employed in models
which combine continuous and discrete modeling
methods such as DMOD (Narain and Rothenberg 1989,
1990).

806 Legge and Wyalt

7 CONCLUSION

This research demonstrates that DELIM expands the
capability of discrete event simulation without increasing
the complexity of the models. The use of DELIM for
the model in which the anticipation timeline occurs
increases the validity of the model by permitting behavior
which more closely resembles real world system
behavior. By producing a more valid model, DELIM has
expanded the capability of standard discrete event
simulation.

DELIM is feasible. It is not difficult to incorporate
DELIM into simulation programs, and the model objects
within a simulation remain more general because the
objects do not need specialized methods to handle the
sequences of events depicted in the timelines.

DELIM’s rules are easy to formulate. The correct
formation or adjustment of a rule can be accomplished
quickly, because a series of events which a rule
represents are a natural way to express temporal
relationships.

Finally, the complexity of simulation with DELIM
is not increased vis-a-vis standard simulation models for
the example models in this project. Although the models
used to demonstrate DELIM are to some extent
’laboratory’ models, DELIM offers practical and
interesting possibilities for alternative discrete event
simulation methodology. Further research into the use of
DELIM in more complicated and realistic models which
exhibit multiple timelines is certainly warranted.

REFERENCES

Chamniak, E. and D. McDermott. 1984. Introduction
to Antificial Intelligence. Reading, MA: Addison-
Wesley Publishing Company.

El Sheikh, A.AR., R.J. Paul, A.S. Harding, and D.W.
Balmer. 1987. A microcomputer-based simulation
study of a port. J. Opl. Res Soc. 38:673-81.

Legge. G. 1992. A Mechanism for Facilitating Temporal
Reasoning in Discrete Event Simulation. Ph.D.
Dissertation, Department of Computer Sciences, The
University of North Texas, Denton, Texas.

Legge, G. and D.L. Wyatt. 1991. A role for artificial
intelligence in discrete event simulation. In
Proceedings of the 1991 Summer Computer Simulation
Conference, Baltimore, July 22-24, 400-404.

Narain, S. and J. Rothenberg. 1990. Proving temporal
properties of hybrid systems. In Proceedings of the
1989 Winter Simulation Conference, New Orleans,
December 9-12, 250-256.

Narain, S. and J. Rothenberg. 1989. A logic for
simulating discontinuous systems. In Proceedings of

the 1989 Winter Simulation Conference, Washington,
D.C., December 4-6, 692-701.
Pritsker, A.A.B. 1974. The GASP IV Simulation
Language. New York: John Wiley & Sons.
Stroustrup, B. 1986. The C++ Programming Language.
Reading, MA: Addison-Wesley Publishing Company.

AUTHOR BIOGRAPHIES

GAYNOR LEGGE is a recent graduate of the
University of North Texas where she received M.S. and
Ph.D. degrees in Computer Science. Her research
interests include simulation, artificial intelligence and
object oriented systems.

DANA L. WYATT is currently an Assistant Professor of
Computer Science at the University of North Texas. She
received a B.A.S.S. in 1978 and an M.S. in 1979 from
Stephen F. Austin State University and a Ph.D. from
Texas A&M University in 1986. Her research interests
include simulation and database systems.

