Proceedings of the 1992 Winter Simulation Conference
ed. J. J. Swain, D. Goldsman, R. C. Crain, and J. R. Wilson

BUILDING CORRECT SIMULATION MODELS IS DIFFICULT

Enver Yiicesan
INSEAD
European Institute of Business Administration
Boulevard de Constance
77305 Fontainebleau Cedex
France

ABSTRACT

An application of the theory of computational
complexity to the problem of verifying certain
structural properties of discrete event simulation
models is illustrated. Such modeling questions as
accessibility of states. ordering of events, ambiguity of
model specifications, and execution stalling are
asserted to be NP-complete decision problems. These
results imply that it is highly unlikely that a
polynomial-time algorithm can be devised to verify
such properties. The consequences of these assertions
cover a wide range of modeling and analysis questions
in simulation.

1 MOTIVATION

In the study of discrcte event dynamic systems
(DEDS). the utility of analytical methods such as
Markov chains and queueing theory is limited to
relatively simple systems. Computer simulation is the
most promising experimental technique for the
analysis of complex configurations. Simulation
modeling, however, is largely an art; developing and
implementing an error-free simulation model is a
difficult task. In fact, Nance [1981] points out that
“simulation still carries the lubel of an expensive,
uncertain problem solving technique that represents
the court of last resort.” The apparent ad hoc and
complex reputation of discrete event simulation is due
to the lack of a comprehensive modeling framework
(analogous to differential equations for continuous
variable dynamic systems) that facilitates specification
and implementation of discrete event models.

A first step in improving the effectiveness of
discrete event simulation is to construct “a model
development and management environment in which
tools or procedures can he used to support modeling
and analysis” [Overstreet and Nance, 1985]. Efforts

783

Sheldon H. Jacobson
Department of Operations Research
Weatherhead School of Management
Case Western Reserve University
Cleveland. OH 44106-7235
U.S.A.

to construct such an environment abound. Henriksen
(1983], Balci [1986], Balci and Nance [1987, 1992],
and Balmer and Paul [1990] discuss the requirements
for simulation model development environments
(SMDE). On the other hand, Evans et al. [1967),
Zeigler [1976], Nance [1981], Torn [1981], Overstreet
[1982], Schruben [1983], Overstreet and Nance
[1985]. Nance [1987], Schruben and Yiicesan [1987].
Glynn and Iglehart [1988], and Som and Sargent
[1989] have introduced various formalisms for discrete
cvent simulatio.: modeling. With a narrower focus.
Simscript (Markowitz et al.. 1963]. Simula [Dahl and
Nygaard. 1967]. and GPSS [Gordon. 1961] provide a
particular language to support modeling and
simulation. Many simulation languages such as
SLAM II [Pritsker, 1986] and SIMAN [Pegden et al.,
1990] as well as simulators such as XCELL+ [Conway
et al., 1987] and WITNESS [Gilman and Billingham,
1989] have adopted this pragmatic approach.

An important feature of these modeling and analysis
platforms is the support tools they provide to detect
potential problems with model specifications and to
assist in the construction of model implementations.
For example. simulaton languages provide utilities to
detect structural errors in simulation programs, which
operate in an analogous fashion to compilers tor high-
level programming languages. Simulators eliminate
the need for programming altogether by providing a
sct of basic building blocks and allowing the
construction of a model implementation by simply
parameterizing these blocks. Various formalisms ofter
a list of guidelines in an attempt to provide diagnostic
tools to verify certain structural properties of models.

This paper asserts that the problem of verifying
certain structural properties of discrete event
simulation models is an intractable decision problem.
More specifically, four questions associated with
simulation modeling and structural analysis
(accessibility ol states. ordering of events, ambiguity

784

of model implementations, and execution stalling) are
NP-complete. hence, intractable problems under the
current theory of computational complexity [Garey
and Johnson, 1979]. An important implication of
these results is that it is unlikely that polynomial-time
algorithms can be constructed to verify certain
structural propertics of models; the diagnostic
procedures provided by various formalisms are either
heunistics that only apply to specific problem instances
or they are merely rules of thumb found to work
“when applied with care.”

To our knowledge, this paper represents the first
application of the theory of computational complexity
and NP-completeness to assess the difficulty of
various simulation modeling questions. The treatment
here is rather theoretical with little contribution to the
practice of model verification. This is, however, a first
step in formalizing -hence, gaining insight into- the
(widely known) complexity of the model verification
problem. Current research aims at identifying “easy”
instances of this problem and developing heuristic
algorithms to solve them. That effort should be of
greater interest to practitioners.

This paper is organized as follows: Section 2
defines the structural properties of interest. The
u.tractability results are discussed in Section 3 along
with their implications for simulation modeling and
analysis. Section 4 presents some concluding
comments.

2 DEFINITIONS

The development of model specifications can be
facilitated through the use of software tools designed
to identify potential problems in the model. This
paper asserts that decision problems associated with
determining certain structural properties of discrete
event simulation models are intractable. The best one
can hope to do is construct model-specific
procedures. In this section, the concepts associated
with the intractability results are carefully defined.
Some of the definitions are based on the developments
in [Overstreet, 1982] and [Schruben, 1991].

A model specification is a representation of the
system under study, reflecting the objectives of the
study and the assumptions of the analysis. A model
specification could be in a form such as Generalized
Semi-Markov Processes (GSMP) [Shedler. 1987;
Glynn and Iglehart, 1988], Condition Specifications
[Overstreet and Nance, 1985] or Simulation Graphs
[Schruben and Yicesan, 1987].

A model implementation is a translation of the
model specification into a computer executable form.
This could be a Simula [Dahl and Nygaard. 1967] or a

Yiicesan and Jacobson

high-level language (such as C or Pascal) program. To
summarize, a model specification defines whar a
model does while a model implementation defines
how the behavior is to be achieved [Overstreet and
Nance, 1985].

The state of a system is a complete description of
the system. A description of the state of a discrete
event system includes values for all of its numerical
attributes as well as any schedule it may have for the
future. A system may be represented through a
countably infinite number of states. Changes in the
states, which occur at discrete points in time, are
called events.

Within a GSMP representation, the system
undergoes a state transition when an event associated
with the occupied state occurs. Each of the several
possible events associated with a state may trigger the
next transition. Each event has its own distribution for
determining the next state. At each transition, new
events may be scheduled and clocks indicating the
time until these events are scheduled to occur are set
through an independent mechanism. If a scheduled
event does not trigger a transition, but is associated
with the next state, its clock continues to run. If such
an event is not associated with the next state, it is
canceled and its clock is turned off. More formal'y, let
S be a finite or countable set of states and E be a finite
set of events. For S € S, E(S) denotes the set of all
events that can occur when the process is in state S. In
state S, the occurrence of an event E € E(S) triggers a
transition to state S’. The probability that the
transition under event E is from state S to state S’ is
denoted by p(S™;S.E). The actual event E € E(S) that
triggers a transition in state S depends on the clocks
associated with the events in E(S). Each clock records
the remaining time until its associated event triggers a
state transition.

With these building blocks, it is now possible to
define the structural properties of interest. These
properties are defined here informally to provide some
intuition about the types of questions we are posing.
In the next section, however, the verification questions
are stated formally as decision problems and are
asserted to be NP-complete.

A state, S. is said to be accessible if there exists a
valid finite sequence of events whose execution leads
into S. Two events, A and B, are said to be order-
independent if the execution of event A followed
immediately by event B leads into the same state as
the execution of event B followed immediately by
event A, provided that the executions of both AB and
BA are valid. Two implementations of a model
specification are called ambiguous if the same
sequence of events executed on the two

Building Correct Simulation Models is Diflicult

implementations lead to two different states. A model
implementation is said to stall if there exists a finite
sequence of events whose execution leads into a state
where the termination condition is not satistied and the
events list is empty.

The theory of computational complexity provides a
well-defined framework to assess the tractability of
decision problems. Decision problems in the class NP
are those problems for which a potential solution can
be verified in polynomial time in the size of the
problem instance. The complete problems for this
class (that is. NP-complete problems) are the hardest
problems in NP such that. if one such problem could
be solved in polynomial time. then all problems in NP
could be solved in polynomial time. For a
comprehensive description of the theory of
computational complexity, see Garey and Johnson
[1979].

In the next section, the four verification questions
are asserted to be NP-complete decision problems. and
the implications for modeling are discussed. To our
knowledge, the formal treatment exhibited in this
paper has not been previously attempted. Prior work
of Overstreet [1982]. and Overstreet and Nance
[1985], within the formalism of condition
specifications, shows that certain Jczision problems
can be reduced to the Halting Problem [Hopcroft and
Ullman, 1979], and. thus. classifies them as
undecidable decision problems. Yicesan [1989]
presents analogous results within the context of
Simulation Graph Models. Similar work has been
done on Petri Nets [Peterson. 1977]. Tom [1981]
applied some of these results in the context of
simulation modeling. Fox and Landi [1968], on the
other hand. point out that. if the model can be depicted
as a finite-state Markov chain or if the model contains
a finite state imbedded Markov chain which represents
the only states of interest, it is possible to
algorithmically identify particular states. They
provide a polynomial-time algorithm to identify
ergodic subchains and transient states of a stochastic
matrix. This paper, however, adopting restricted
definitions of accessibility, ordering, ambiguity. and
stalling, classifies these decision problems as
decidable but intractable .

3 RESULTS AND IMPLICATIONS

It is necessary to distinguish between two different
causes of intractability. The first one, which is the
focus of this paper. is that the decision problem is so
difficult that a prohibitively large amount of time is
needed to find a solution. The second one is that the
solution itself is so extensive that the length of the

~1
o]
w

expression required to describe it is prohibitive. As
Garey and Johnson state (1979, p.11]: “intractability
of this sort is by no means insignificant. and it is
important to recognize it when it occurs. However, in
most cases, its existence is apparent from the problem
definition. In fact, this type of intractability can be
regarded as a signal that the problem is not defined
realistically, because we are asking for more
information than we could ever hope to use.”

It is, therefore, assumed that the space required to
represent a discrete event simulation model
implementation is of size n. This is the number of tape
cells on a Turing machine needed for the
representation of an implementation of the model and
has no (direct) relationship with the number of
possible states in the model. A model can be
represented by a program of size n, yet there can be a
countably infinite number of states. On the other
hand, the space needed to represent a particular state is
assumed to be a polynomial function of n, or simply
O(py(n)). Analogously. an event. which is assumed to
be encoded in O(p3(n)). can be executed in polynomial
time, or simply O(p,(n)).

The verification questions are now stated as decision
problems. In these definitions, the notation
“E(E|E,..E = S denotes that the execution of the

sequence of events E,, E|. E, ... E, leads to state S,
while "EE | E,..E = §" # S fori<m” implies that
the execution of these events leads to any valid state
except state S. Also note that E, the initialization

event. is assumed to establish the initial state of the
model implementation at the start of execution.

ACCESSIBILITY
Instance; A discrete event simulation model
implementation,
Aninitial event. E .
A state, S,
A non-negative, finite integer, M.
Question; Does there exist a sequence of events
E. E,..E . with m < M. such that the execution of

the sequence yields
E(E(E,..E =S,

while E(E |E,..E, = S'#S fori=12....m-1?

THEOREM 1; ACCESSIBILITY is NP-complete.
Proof: See Jacobson and Yiicesan [1992].

Theorem | asserts that the problem of determining
whether a particular state is reachable is an intractable
decision problem. Several corollaries follow.

786

Corollary 1: Verification, the process of determining
whether a model implementation performs as
intended. is an intractable decision problem.

An immediate implication of Theorem 1| is that it is
not a trivial exercise to assess whether a discrete event
simulation model implementation is “logically
connected.” that is, whether all other events are
reachable from the initialization cevent. Such a
procedure would be uscful in venifying the correctness
of the logic in a model implementation. Several
procedures have been suggested for model
verification. They range {rom manual venfication of
logic to checking against known solutions, from
modular testing to stress testing (Bratley et al., 1987;
p.9]. Whitner and Balci [1989] offer a taxonomy and
a comprehensive classification for model verification
techniques; they include informal approaches such as
desk checking and walkthrough, formal approaches
such as proof of correctness and lambda calculus,
static approaches such as syntax analysis and
consistency checking, dvnamic approaches such as
black-box testing and white-box testing as well as
symbolic approaches such as symbolic execution and
cause-effect graphing, and constraint approaches such
as assertion checking and boundary analysis. Each
technique has a varying level of formality, complexity,
and cost for both human and computer resources. The
corollary asserts that all these procedures are
heuristics, as are the diagnostics generated by
simulation languages or simulators (e.g., structural
checking and flow analysis in XCELL+ [Conway et
al., 1987]).

Corollary 2: The determination of a valid
experimental frame is an intractable decison problem.

For some input paramecter values, a model
implementation might be “logically connected™ while,
for other values, it might not be. One could use such
information to determine appropriate ranges for input
parameters over which a particular simulation can be
correctly applied. The corollary asserts that it is not
possible to devise such a polynomial-time validation
procedure. Hence, the determination of a valid
experimental frame (Zeigler, 1976] for a simulation
study is an intractable decision problem. Path
analysis, cause-effect graphing, stress testing, black-
box testing, and white-hox testing [Whitner and Balci.
1989] are useful heuristic techniques to address this
problem.

The detection of initialization bias is an important
problem in steady-state simulations. For example,
Schruben [1982] and Schruben et al. [1983] propose
tests to determine whether a set of observations is
contaminated with initialization bias. Welch [1983]

Yiicesan and Jacobson

proposes a simple technique to determine a truncation
point in the output series. All of these procedures
assume a priori that the system can reach steady state.
Theorem I, however, implies

Corollary 3: A priori determination of whether the
process will achieve steady state after m events are
executed is an intractable decision problem.

If the state of interest represents the occurrence of a
rare event, then Theorem 1 implies

Corollary 4: A priori determination of whether a rare
event will be observed during a particular execution of
the model implementation is an intractable decision
problem.

On the other hand. if the state represents the
satisfaction of run termination conditions, then
Theorem 1 implies

Corollary 5: A priori determination of whether the
execution of the model implementation will terminate
in finite time is an intractable decision problem. (See
also Theorem 4 and its implications.)

Structural analysis, data flow analysis, execution
tracing, path analysis. and cause-effect graphing
[Whitne: and Balci, 1989] are heuristic approaches
that could prove useful in addressing these problems.

ORDERING
Instance: A discrete event simulation model
implementation,

An initial event, E,,

Two distinct states. S| and S,.

A non-negative. finite integer, K.
Question; Does there exist a sequence of events
E| E,. ... E_. with k <K. such that the
execution of the sequence yields

EQE|..Ef B (E, = S| and

EoEl...Ek_zEkEk_l = Sz
while

EE,..EE, =S

EyE,..E;,|E= S fori=1.2... k-2,

with S"#S | and §"#S,?

THEOREM 2. ORDERING is NP-complete.
Proof: See Jacobson and Yiicesan [1992].

Theorem 2 asserts that it is unlikely to construct a
polynomial-time algorithm to determine the outcome
of an interchange in the execution of a sequence of
events. Such heuristic techniques as syntax analysis.
data flow analysis. execution tracing, execution
monitoring, symbolic execution, and path analysis

Building Correct Simulation Models is Difficult

[(Whitner and Balci. 1989] could be useful. An
important implication is concerned with
simultaneously scheduled events. Since it is highly
unlikely to devise a polynomial-time algorithm which
determines the outcome of arbitrary handling of
simultaneous events, it may be desirable to assign
execution priorities to ensure a logically correct model
implementation. Schruben [1983] presents rules of
thumb to detect potential problems with
simultaneously scheduled events; Sargent [1988] and
Som and Sargent [1989] develop mechanisms to
assign event execution priorities. The theorem asserts
that these are useful heuristic procedures.

A second implication of this result concerns
determining when certain variance reduction
techniques (VRT) will be successtul. For instance, the
etfectiveness of common random numbers. antithetic
variates, or control variates typically depends upon the
synchronization of events between pairs or sets of
runs. Such synchronizations ensure that correlations
with the correct sign have been induced. Thus,
“automating variance reduction within simulation
lunguages so that it is always valid and consistently
useful is a difficult and important problem”
[Schmeiser. 1990]. This theorem implies that it is
unlikely to algorithmically determine whether perfect
or satisfactory synchronization is achieved.

Another implication of this result concerns the
verification of the sufficient commuting condition,
which validates the application of infinitesimal
perturbation analysis on discrete event simulation
models [Glasserman, 1991). Very roughly, the
commuting condition requires that the state reached
from another state through the occurrence of two
events be independent of their order. Glasserman
(1991, p.53] proposes the use of an “event diagram™
(similar to state transition diagrams for Markov
chains) to verify this condition by “simply following
the arrows.” He further states that (p.54): “drawing
complete diagram is rarely feasible, but it is often
possible to identify patterns that make it sufficient (0
consider certain critical regions that reveal whether
or not [the commuting condition] is satisfied. To some
extent, this begs the question, since one must know
where the ‘critical’ region lies. Qur experience is that
it becomes quite clear where 1o look after drawing just
a few circles and arrows.” Theorem 2, however,
implies

Corollary 6: The verification of the commuting
condition that validates infinitesimal perturbation
analysis is an intractable decision problem.

AMBIGUITY
Instance: Two implementations, DES1 and DES2, of a
discrete event simulation model
specification,
An initial event, E),
Two distinct states, Sy and S,.
A non-negative, finite integer, M.
Question; Does there exist a sequence of events
El. Ez""’ E.. with m < M, such that the executions of

the sequence in the two implementations, DES1 and
DES2. yield

DESIL: EE(E...E_ =S,

DES2:EEE,..E =S,
while

DESL:E(E|..E, =S #S, and

DES2:E\E|..E, = §" #S, fori=1.2...m-1?

THEOREM 3: AMBIGUITY is NP-complete.
Proof: See Jacobson and Yiicesan [1992].

Theorem 3 asserts that it is unlikely to
algorithmically verify whether simulation model
implementations are ambiguous. Two corollaries
immediately follow.

Corollary 7: Model verification, which refers to
checking whether the model impiementation executes
as it is intended in the model specification, is an
intractable decision problem.

All the standard tools for debugging any computer
program also apply to debugging a simulation model
implementation. Further methods such as the Turing
test are described in [Law and Kelton, 1991; Chapter
S]. Such checks. however, are rarely exhaustive. In
fact, the corollary asserts that it is unlikely that a
polynomial-time algorithm can be constructed for
model verification. This is consistent with the
assertion of Whitner and Balci [1989] that “current
state-of-the-art model proving techniques are simply
not capable of being applied to even the simplest
general modeling problems. (..) However, the
advantage of realizing the proof of correctness -
complete programmed model verification- is so great
that when the capability is realized. it will
revolutionize the verification software.”

It may be desirable to know when two simulation
model implementations are, in some measurable sense,
close to one another. The motivation for seeking such
an “equivalence” hetween model implementations is
largely logistical: one implementation may execute
faster or may have more modest data requirements.
However.,

~1
o
1

788

Corollary ¥: The problem of establishing equivalences
between simulation models with respect to their
behavior is an intractable decision problem.

Hence. the definitions for model equivalence
presented in [Overstreet, 1982], [Schruben. 1983], and
[Sargent, 1988] yield intractable decision problems
since they are based on the behavior of state variables
during a particular run. In addition, the validity of the
conceptual algorithm for the development of an
efficient model implementation (event reduction)
presented in [Som and Sargent, 1989] cannot be
verified with a polynomial-time algorithm.

STALLING
Instance: A discrete event simulation model
implementation,

An initial event, E),

A state, S*,

A stopping condition, C,

A non-negative, finite integer, K.
Question: Does there exist a sequence of events
El’ E,, ..., E, with k < K, such that the execution of
the sequence yields:

E(EE,..E, = §*
while 1. C is not satisfied.

2. The events list (L) is empty?

THEOREM 4: STALLING is NP-complete.
Proof: See Jacobson and Yiicesan [1992].

Theorem 4 has both practical and theoretical
implications. The practical implication is concerned
with model verification. The result shows that it is not
possible to algorithmically assess whether or not a
simulation run will not stall and terminate in finite
time. Since the built-in diagnostic utilities cannot
detect such a problem, most commercial simulation
packages terminate a run (by default) if the events list
hbecomes empty at any instant during execution
regardless of the termination conditions. Structural
analysis, top-down testing, bottom-up testing,
execution profiling, and path analysis [Whitner and
Balci, 1989] could detect gross errors.

From a theoretical point of view, Theorem 4 implies

Corollary 9: The determination of valid stopping
conditions for simulations is an intractable decision
problem.

For example, the algorithm presented in [Duersch
and Schruben, 1986] implementing confidence interval
estimation techniques that determines how long a
simulation should be run to produce results that satisfy
apredetecrmined relative precision criterion is a

Ylcesan and Jacobson

heuristic procedure, since there is no a priori
guarantee that the simulation implementation will
achieve the desired precision criterion. This
implication also applies to the heuristic formulas
developed by Whitt [1989] to estimate the simulation
run lengths required to achieve desired statistical
precision in planning queueing simulations. Structural
analysis, white-box testing, path analysis, and cause-
effect graphing [Whitner and Balci, 1989] could
provide additional help.

4 CONCLUDING COMMENTS

Discrete event simulation is a popular problem-solving
technique which has had mixed success. It is argued
that a first step in improving the effectiveness of
simulation is to “recognize the need for a model
development and management environment in which
tools can be used to support modeling and analysis”
[Overstreet and Nance, 1985]. Such a platform should
support the production of a model specification and its
analysis in order to [Balci and Nance, 1987]:

1. detect potential problems with the model
specification (Model Analyzer within the SMDE),

2. assist in the construction of a model
implementation (Mode! Translator within the SMDE),

3. verify the executable version of the simulation
model (Model Verifier within the SMDE),

4. construct useful model documentation (Mode!
Generator within the SMDE).

The results presented in this paper assert that it is
unlikely that polynomial-time algorithms can be
devised to support the first two tasks listed above.
That is, this paper argues that the problem of verifying
certain structural properties of discrete event
simulation models is intractable. In particular,
accessibility of states, ordering of events, ambiguity of
model implementations, and execution stalling are
asserted to be NP-complete. These results are
unifying in that all the structural questions, as different
as they are, are equally as hard as each other under the
theory of NP-completeness.

The major implication of these results is that the
verification procedures, that must be provided in a
model development and management environment.
cannot be automated through appropriate polynomial-
time algoritims, unless all the decision problems in
NP are polynomially solvable. At best, one can rely
on rules of thumb or problem-specific procedures such
as the diagnostic tools provided by simulation
languages or modeling guidelines offered by different
formalisms. In other words, computable heuristics are
the best that can be found.

These theoretical results hence strongly support the

Building Correct Simulation Models is Difficult

development of heuristic procedures [Whitney and
Balci, 1989] for such intractable problems. Moreover,
identifying particular model instances (restrictions)
where the four NP-complete decision problems are
tractable (i.e., polynomially solvable) would offer
insight into the type of models for which issues such
as model validation and verification are tractable,
certain variance reduction techniques can be
guaranteed, or validating infinitesimal perturbation
analysis can be done through a polynomial-time
algorithm. Current research aims at identifying such
instances and constructing heuristic algorithms to
address these problems, which should provide
practical assistance in verifying certain structural
properties of simulation models.

ACKNOWLEDGEMENTS

The authors would like to thank Bennett Fox for his
helpful comments on an earlier version of this paper
and Osman Balci for introducing the authors to the
rich literature on programmed model verification.

The first author gratefully acknowledges financial
support from the INSEAD R&D Programme under
Project 2121R. The second author gratefully
acknowledges financial support from the
Weatherhead School of Management through the
Dean’s Research Fellowship Fund and the Center for
the Management of Science and Technology .

REFERENCES

Balci, O. (1986) Requirements for Model
Development Environments. Computers and
Operations Research. Vol.13.1 (Jan.-Feb.).
pp.53-67.

Balci, O. and R.E. Nance (1987) Simulation Model
Development Environments: A Research
Prototype. Journal of the Operational
Research Society. Vol.38.8. pp.753-763.

Balci, O. and R.E. Nance (1992) The Simulation
Model Development Environment: An
Overview. Proceedings of the 1992 Winter
Simulation Conference (Swain, Goldsman,
and Wilson, Eds.)

Balmer. D.W. and R.J. Paul (1990) Integrated Support
Environments for Simulation Modeling.
Proceedings of the 1990 Winter Simulation
Conference (Balci, Sadowski. and Nance,
Eds.). pp.243-249.

Bratley, P., B.L. Fox. and L.E. Schrage (1987) A
Guide to Simulation. Springer-Verlag. New
York, NY.

=1

Conway. R.. W. Maxwell. J. McClain, and S. Worona
(1987) User's Guide to XCELL+. The
Scientific Press. Redwood City, CA.

Dahl, O.J. and N.K. Nygaard (1967) Simula: A
Language for Programming and Description
of Discrete Event Systems. Introduction and
User's Manual. Sth Edition. Norwegian
Computing Center, Oslo.

Duersch, R.R. and L.W. Schruben (1986) An
Interactive Run Length Control for
Simulations on PCs. Proceedings of the 1986
Winter Simulation Conference (Wilson,
Henriksen, and Roberts, Eds.). pp.866-870.

Evans, J.W., J.F. Wallace. and J.L. Sutherland (1967)
Simulation Using Digital Computers. Prentice
Hall. Englewood Cliffs, NJ.

Fox, B.L. and D.M. Landi (1968) An Algorithm for
Identifying the Ergodic Subchains and
Transient States of a Stochastic Matrix.
Comm ACM. Vol.11.9. pp.619-621

Garey, M.R. and D.S. Johnson (1979) Computers and
Intractability: A Guide to the Theory of NP-
Completeness. W.H. Freeman and Company.
New York, NY.

Gilman, A.R. and C. Billingham (1989) A Tutorial on
SEE WHY and WITNESS. Proceedings ol
the 1989 Winter Simulation Conference
(MacNair, Musselman, and Heidelberger,
Eds.). pp.192-200.

Glasserman, P. (1991) Gradient Estimation via
Perturbation Analysis. Kluwer Academic
Publishers Group. Dordrecht, The
Netherlands.

Glynn, P.W. and D.L. Iglehart (1988) Simulation
Methods for Queues: An Overview. Queueing
Svstems. Vol.3.3. pp.221-256.

Gordon, G. (1961) A General Purpose System
Simulation Program. Proceedings of Eastern
Joint Simulation Conference, pp.87-1(4.

Henriksen, J.O. (1983) The Integrated Simulation
Environment (Simulation Software of the
1990s). Operations Research. Vol.31.6.
pp.1053-1073.

Hopcroft, J.E. and J.D. Ullman (1979) Introduction to
Automata Theory, Languages, and
Computation. Addison-Wesley Publishing
Company, Inc. Reading. MA.

Jacobson. S.H. and E. Yicesan (1992) On the
Intractability of Veritying Structural
Properties of Discrete Event Simulation
Models. INSEAD Working Paper Scries.
TM/92. Fontainebleau, France.

Law A.M. and W.D. Kelton (1991)
Modeling and Analysis.

Simulation
2nd Edition.

790

McGraw-Hill. New York, NY.

Markowitz, HM., H.W. Karr and B. Hausner (1963)
SIMSCRIPT: A Simulation Programming
Language. Prentice-Hall. Englewood Cliffs,
NJ.

Nance, R.E. (1981) The Time and State Relationships
in Simulation Modeling. Com ACM.
Vol.24.4. pp.173-179.

Nance, R.E. (1987) The Conical Methodology: A
Framework for Simulation Model
Development. The Proceedings of the
Conference on Methodology and Validation
(SCS). pp.38-43.

Overstreet, C.M. (1982) Model Specification and
Analysis for Discrete Event Simulations.
Unpublished PhD Dissertation. Virginia Tech.
Blacksburg, VA.

Overstreet, C.M. and R.E. Nance (1985) A
Specification Language to Assist in Analysis
of Discrete Event Simulation Models. Com
ACM. Vol.28.2, pp.190-201.

Pegden, C.D., R.E. Shannon, and R.P. Sadowski
(1990) Introduction to SIMAN. Systems
Modeling Corporation. Pittsburgh, PA.

Peterson. J.L. (1977) Petri Nets. Computing Surveys.
Vol.9.3. pp.223-252.

Pritsker. A.A.B. (1986) Introduction to Simulation
and SLAM [I. 3rd Edition. John Wiley &
Sons. New York, NY.

Sargent, R.G. (1988) Event Graph Modeling for
Simulation with an Application to Flexible
Manufacturing Systems. Management
Science. Vol.34.10. pp.1231-1251.

Schmeiser, B. (1990) Simulation Experiments in
Handbook of Operations Research and
Management Science within volume on
Stochastic Models (D. Heyman and M. Sobel,
Eds.) North Holland. New York, NY.

Schruben, L. (1982) Detecting Initialization Bias in
Simulation Output. Operations Research.
Vol.30.3. pp.569-590

Schruben., L. (1983) Simulation Modeling with Event
Graphs. Com ACM. Vol.26.11. pp.Y57-963.

Schruben. L. (1991) Sigma: A Graphical Simulation
System. The Scientific Press. San Francisco,
CA.

Schruben, L., H. Singh, and L. Tierney (1983)
Optimal Tests for Initialization Bias in
Simulation Output. Operations Research.
Vol.31.6. pp.1167-1178.

Schruben, L. and E. Yicesan (1987) On the
Generality of Simulation Graphs. Technical
Report #773. School of OR&IE. Cornell
University. Ithaca, NY.

Yiicesan and Jacobson

Shedler, G.S. (1987) Regeneration and Networks of
Queues. Springer-Verlag. New York, NY.

Som. T.K. and R.G. Sargent (1989) A Formal
Development of Event Graphs as an Aid to
Structured and Efficient Simulation Programs.
ORSA Journal on Computing. Vol.1.2.
pp.107-125.

Tom, A.A. (1981) Simulation Graphs: A General Tool
for Modeling Simulation Designs. Simulation.
Vol.37. pp.187-194.

Welch, P.D. (1983) The Statistical Analysis of
Simulation Results. The Computer
Performance Modeling Handbook (S.S.
Lavenberg, Ed.) pp.268-328. Academic
Press. New York, NY.

Whitner, R.B. and O. Balci (1989) Guidelines for
Selecting and Using Simulation Model
Verification Techniques. Proceedings of the
1989 Winter Simulation Conference
(MacNair, Musselman, and Heidelberger,
Eds.). pp.559-568.

Whitt, W. (1989) Planning Queueing Simulations.
Management Science. Vol.35.11. pp.1341-
1366.

Yiicesan, E. (1989) Simulation Graphs for the Design
and Analysis of Discccte Event Simulation
Models. Unpublished PhD Dissertation.
Comell University. Ithaca, NY.

Zeigler, B.P. (1976) Theory of Modelling and
Simulation. John Wiley. New York, NY.

AUTHOR BIOGRAPHIES

ENVER YUCESAN is an Assistant Professor of
Operations Management at the European Institute of
Business Administration (INSEAD). He received a
B.S. degree in Industrial Engineering from Purdue
University, and M.S. and Ph.D. degrees in Operations
Research from Cornell University. His research
interests include issues related to construction and
structural analysis of discrete event models, statistical
analysis of simulation output as well as analysis of
production-distribution systems.

SHELDON H. JACOBSON is an Assistant Professor
in the Department of Operations Research in the
Weatherhead School of Management at Case Western
Reserve University. He received a B.Sc. and a M.Sc. .
both in Mathematics, from McGill University, and a
M.S. and a Ph.D. in Operations Research from Cornell
University. His research interests include simulation
optimization and sensitivity analysis, frequency
domain methods of analyzing simulation outputs, and
computational complexity.

