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Fresco’s Discovery: If you knew what you were do-
ing you’d probably be bored.

1 INTRODUCTION

This panel considers some of the important unre-
solved topics (“Grand Challenges”?) in discrete event
modeling and simulation that need to be addressed
in the '90s. In a panel like this, there are uncom-
promising tradeoffs in the breadth versus depth of
the topics that can be covered. We have opted to
cover more depth and yet not overly compromise on
breadth with the assumption that there is little ben-
efit from a “watered-down” panel and with the hope
that future panels will cover the topics not consid-
ered here. Our approach for striking a good balance
has been to ask each of the five panelists to describe
one or two topics of his own choice which are dif-
ferent from others and to require that the topics be
directly related to his research or expertise. The de-
scription of each topic essentially contains motivation,
brief introduction, major research issues, and refer-
ences for those who desire to explore the topic fur-
ther. As expected, all the issues within a particular
topic and their interrelationships have not been com-
pletely identified. Hopefully through the interaction
among panelists and audience participation, a better
understanding of the topics will emerge.

The panel may seem to be a cacophony because
each panelist is independently playing his own little
favorite tune. Surprisingly, there has been consider-
able commonality in the issues which gives the panel
its own melody. Some of the common issues are (1)
integration with other fields including artificial intel-
ligence, software engineering, distributed computing
and real-time systems, (2) representational issues —
multilevel abstractions, symbolic knowledge represen-
tation, and formalization of temporal and causal re-
lationships, and (3) reasoning issues — more ways to
reason with models than just by predictive queries
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which are answered by simulation. These and other
issues such as dialogue driven model specification,
multimodeling, and automated discovery of discrete
event models are considered in detail by the panel.
Many other important topics such as stochastic as-
pects of modeling and simulation, parallel and dis-
tributed simulation, and graphical/visual approaches
to modeling are only briefly touched upon, if at all,
and can be a part of the future panels.

In the following, topics are listed in the alphabeti-
cal order of the panelists’ names.

2 INTEGRATING MODELING IN SIMU-
LATION, SOFTWARE ENGINEERING
AND AI by PAUL A. FISHWICK

All of a sudden, everyone is doing simulation! This
quote may be a slight exaggeration; however, there
are a number of system modeling efforts underway in
other disciplines that closely resemble efforts in sim-
ulation. These other areas can benefit greatly from
the simulation literature, and conversely, the simula-
tion discipline can benefit from increased interaction
with these other disciplines. Consider software en-
gineering as an example. One of the key thrusts of
the next decade is toward object-oriented design and
programming. The object approach stresses the cre-
ation and reuse of objects containing both code and
data. In this approach, one creates an object model
and proceeds to capture the semantics through the
use of state transition and data flow diagrams. Soft-
ware engineers realize that it is not enough to sim-
ply “dive into the code” when constructing large pro-
grams; one must proceed more gradually through the
practice of “modeling” [Nance 1988, Balci and Nance
1988]. Why are software engineers suddenly inter-
ested in modeling? A brief scan of some recent soft-
ware engineering texts [Rumbaugh, et al 1991, Booch
1991] shows that many of the examples given are real
world examples such as automated teller machines,
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air conditioners and digital watches. Isn’t this the
very stuff of simulation? There are, perhaps, several
reasons why this convergence has taken place; how-
ever, one reason stands out in the form of a general
area — distributed computing and real-time systems.
Computers are no longer in the form of huge main-
frames; instead, computing elements are scattered lit-
erally everywhere, and this means that software must
be designed, tested and executed in many different
locations. The world of software is gradually becom-
ing a mirror for the physical world. Also, it has be-
come clear in software engineering that more effort
must be placed in the early phases of the software
process where one takes elements from the problem
domain and matches them to the world of software.
This is where the emphasis on object oriented tech-
niques comes into play — objects in the real world
(and object interactions) are most naturally mapped
to software that incorporates “object-like” constructs
[Zeigler 1990].

Artificial intelligence (AI) can be defined as “for-
malizing common sense knowledge.” From a simula-
tion perspective, Al comes into play when our sim-
ulation models include autonomous agents or “intel-
ligent objects.” While discrete event simulations are
processing agents in queues, we must use Al methods
to formulate mental models of how these agents will
reason about their environments and react to exter-
nal stimuli. It is not always sufficient to model hu-
mans using simple statistical approximations; often
the success of a complex model incorporating human
interaction will be predicated on the validation of the
mental (not physical) models. Intelligent objects not
only carry out preordained sequences, they also dy-
namically formulate plans and maintain knowledge
bases of their beliefs. It may not be necessary for fu-
ture simulations to include detailed, unique models of
every individual; however, generic mental models for
a class of intelligent object (teams, groups, crowds)
will be useful.

A common thread between the work of software
engineering and Al, in terms of modeling, is the dis-
tinction between declarative models and functional
models. In AI, there has been considerable work
in declarative representations —especially with re-
gard to knowledge representations using logic— while
functional approaches using actors have also been ex-
plored. In software engineering, the object oriented
approach involves two fundamentally different types
of model technique: functional (data flow) and declar-
ative (state transition). We believe that a similar
dichotomy of models can be expressed within simula-
tion [Fishwick 1992]. That is, many simulation mod-
eling methods fall into one of two basic categories:

functional or declarative. In the past, there has been
much emphasis in simulation on model execution and
analysis of simulation results. These two activities
are essential to any good simulation task; however, we
must not forget the creative act of “modeling.” When
the literature of systems theory/science and simula-
tion is studied, we find that simulation has much to
offer with regard to modeling techniques —especially
with regard to clear, formal specifications for dynam-
ical systems. However, if simulation modeling is to
progress substantially, we will need to better inte-

grate with modeling approaches in software engineer-
ing and Al
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3 MULTIMODELING: PROVIDING AN-
SWERS TO MORE QUESTIONS by
PAUL A. FISHWICK

When we create a model, we are interested in an-
swering a class or set of questions at some level of
abstraction. For instance, the classic discrete event
simulation of a barbershop queuing model (along with
the associated probability distributions describing ar-
rival and service rates) exists to answer questions such
as “How frequently is the barber busy cutting hair?”
This model, however, is inadequate for answering the
question “How long does it take the chair to fall back
to the ground position when the barber activates the
chair control?” Even though these two questions are
quite different, and may be asked by different sorts of
people, there is a growing need to simulate large, com-
plex systems for use by lots of people. Just as prod-
uct design and manufacturing phases are becoming
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better integrated in CAD/CAM technology, system
models of physical scenarios must also become more
integrated. If a model answers a very select group of
questions, then it is brittle in the same sense that a
physical tool is limited if it performs only one func-
tion. Analysts and users of future simulation mod-
els want to be able to ask more types of questions
of their systems. Not only do models need to an-
swer questions at different abstraction levels, but fu-
ture simulation models should be able to answer more
than simply predictive questions [Rothenberg 1989a].
Specifically, diagnostic inquiries and sophisticated ex-
planation facilities must also be supported. For ex-
ample, it should be possible to answer barbershop
system questions such as “What was the reason for
Joe (the 5th customer) to take so long in the barber
chair?” whose answer might be “Because he was pre-
empted by a phone call to the barber which occurs,
on average, once every 30 minutes.”

When considering models that require discrete
event simulation, we are choosing a fairly high level
of abstraction at which to simulate a model. The
use of the term “discrete event” implies that there
1s an underlying, more complex process whose state
space is continuous — whether or not we choose to
explicitly represent this lower level model. Models
that are explicit about having discrete and continuous
sub-models have been traditionally called “combined
models” in the literature [Pritsker 1974, Kreutzer
1986]. Combined modeling is the process of taking
two different model types and combining them to-
gether to form a more comprehensive model. Most
often, combined models have referred to a combi-
nation of discrete event and continuous models to
form a hybrid model where two distinct forms of
simulation are necessary. For instance, consider a
grocery store cashier (the discrete event part) com-
bined with a block model of the grocery package belt
dynamics (the continuous part). Some recent work
[Fishwick 1991, Fishwick and Zeigler 1992] suggests
that traditional combined models are just one type
of a larger class of model which we term a “mul-
timodel” (after Oren’s [Oren 1987] definition of the
term). Specifically, we specify that a multimodel is a
tightly coupled network of models that are connected
together via behavior-preserving homomorphic map-
pings. The key to successful multimodeling is to par-
tition system components (such as state, event and
input spaces) and then to create higher level models
by labeling these partitions as new, lumped compo-
nents at a more abstract level. The resulting hierar-
chy of models is available for simulation at each level,
making it possible to “reason” about system behav-
ior from a variety of abstraction perspectives. More-

over, greater quantities and types of questions may
be asked of a system when a multimodel is employed.
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4 DIALOG DRIVEN MODEL SPECIFICA-
TION by RICHARD E. NANCE

An Introductory Lament

The challenge of expressing concepts in some repre-
sentational form has attracted the attention of scien-
tists from many different disciplinary domains (e.g.
philosophy, linguistics, computer science) and for
many years. Conceptual expression or transforma-
tion is the central issue in programming languages.
Within discrete event simulation, the early recogni-
tion of the importance of “world view” differences
[Kiviat 1969] contributed to the concern for easing
the task of the modeler, who strived to represent
the system of study in conformance with language
constraints both of semantic and syntactic forms.
Clearly, the modeler holds, or should hold, the “ex-
pert knowledge” about the system and the objectives
in simulating it. But, how can this expert knowledge
be extracted without error and efficiently?

For over nine years, the correct, efficient represen-
tation of simulation models has been a nagging, if not
consuming, problem for me, Osman Balci, Mike Over-
street, Joe Derrick and others in the MDE Research
Project at Virginia Tech (see [Balci and Nance, 1992]
for a complete bibliography). Thus, [ must tell you
that the problem is difficult; else, I admit not only
to my inadequacies but to those of valued colleagues
and friends. Why is the problem so difficult? An-
swers to this question consume the remainder of this
short narrative.
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A quick and dirty answer is that representing a
three or more dimensional problem with two dimen-
sional media is not possible. The complexities of
capturing the behavior of objects, both spatially and
temporally, especially in their mutual interactions is
simply not achievable. That answer must be rejected
because it: (1) admits defeat, (2) ignores technologi-
cal leaps experienced in the past, (3) casts doubt on
the claims of many vendors, or (4) spells the end of
my research project. Nevertheless, we must keep be-
fore us a constant image of what we are trying to do
— represent temporal relationships in a simple, clearly
understood manner irrespective of the:

(1) number of objects being described,

(2) degree of interaction among objects,

(3) differences in timing granularity (e.g. one object’s
clock works in days, another in microseconds).

Most importantly, the criteria of “simple” and
“clearly understood” are applied by different persons,
with different backgrounds and from vastly different
technical cultures.

An Inviting Approach

Years ago I described something called the Simu-
lation Model Specification and Documentation Lan-
guage (SMSDL) [Nance 1977], noting some of the
characteristics of such a language. Almost a decade
later, our research group examined the SMSDLs of-
fered as potential candidates and found them all
wanting (including the Condition Specification of
our own creation [Overstreet and Nance 1985]). At
this point we assumed a very objective posture and
reached two conclusions:

(1) Loud claims to the contrary, Al techniques were
not going to solve the model specification problem in
the foreseeable future; after all, knowledge acquisition
was the most challenging hurdle for expert systems
development.

(2) While the support environment could employ
the simulation technique “expert” knowledge, a gen-
eral modeling task, as opposed to a specific problem
domain, must rely on the modeler for the application
domain knowledge.

We then phrased our problem as extracting the ap-
plication domain knowledge required in the modeling
task from the modeler. Continuing with our prag-
matic approach, we proposed an IA (Intelligence Am-
plification) approach that was characterized as “dia-
logue driven specification” [Barger 1986, 36-46).

Dialogue driven specification recognizes five lev-
els of dialogue for model specification, shown in Ta-
ble 1 [Barger 1986, p. 38]. Note that the lev-

els represent progressively less abstract representa-
tions, as the model description moves from level 1
to level 5. An internal model is used in a compara-
tive fashion so that the dialogue-based specification
proceeds through resolution of abstraction to incor-
porate domain-dependent representation and replace
that which is devoid of application information. Fig-
ure 1 illustrates this process as it is utilized in a pro-
totype model generator.

Dialogue Funcoon

Expected form of Model
level

USET § Tesponse representanon

1 Direcuon e One key response 10 -
amenu

e or Text with some
limited synuacuc
rule enforcement

2 Descripdon English text. no syntacac MRI
rule enforcement

Text with some MR2
limuted syntacac rule
enforcement

4 Typung o One key response MR3
10 a meny

e or Text in a precise
syntax if a response
is needed

5 Condidons Text n a precise syntax Condigon
and Acoons | 1f a response ts needed

Table 1. Dialogue Levels

A Realistic Quasi-Conclusion

While the dialogue driven specification offers the
attractive feature of responding to the modeler’s per-
ceptions of important characteristics, it has uncov-
ered, or perhaps emphasized, difficulties that cannot
be ignored:

(1) Humans differ so much in their approach to
describing a system representation that the dialogue-
driven model generator must be prepared to add de-
scription at any of the five levels and with little con-
sistency in order. The same modeler could bounce
from level 5 to level 3 then back to level 4.

(2) While a major emphasis lies in representational
capability for describing the system under study, of-
ten more difficulty is found in characterizing the influ-
ence of the objectives of the study, which are crucial
in the abstraction resolution process.

(3) The properties needed for model specification
remain to be adequately or successfully embodied in
an SMSDL. Some are there, e.g. object-oriented with
inheritance, but some are not, e.g. identification of
data collection techniques.

Consequently, we are left with a half-hearted
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(quasi-) conclusion that dialogue driven specification
looks “neat” but, as yet, we lack the understanding to
demonstrate its utility. Perhaps some breakthrough
awaits. Maybe this conference and even this panel
session can identify it.
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5 A LOGIC-BASED SYSTEM FOR SPEC-
IFYING, EXPRESSING, AND VERIFY-
ING DISCRETE EVENT MODELS by
ASHVIN RADIYA

The methodology of Discrete Event Modeling and
Simulation (DEMS) can be successfully applied in
reasoning about systems only if models correctly rep-
resent the intended systems. Currently, intuitive ar-
guments are used to verify that a model correctly
represents the intended system. However, there are
many critical systems such as nuclear reactors for
which it must be “almost” guaranteed that a sys-
tem is accurately modeled. Hence, it is essential to
develop a verification system for proving model prop-
erties, e.g., (i) the order of the occurrences of events
satisfies certain condition and (ii) certain scenario de-
fined by the values of state variables and event oc-
currences over an interval lead to an occurrence or
nonoccurrence of an event. It is also desirable to
prove or disprove a vendor’s claim of superior expres-
sivity of a new language, to prove the equivalence of
two simulation procedures of the same language, or
to ensure that a customer and a simulationist have

the same understanding of a system being modeled.
Such assertions can be proven in a logic-based sys-
tem for specifying, expressing, and verifying discrete
event models.

The elements of such a logic-based system and
their interrelationships as defined in [Radiya 1990)
are shown in Figure 2. A DEMS language is formally
defined, independent of its simulation procedures, by
relating the expressions of the language to abstract
structures. Abstract structures represent of behav-
lors of a system over time intervals. A model is an
ezpression in a DEMS language. A simulation pro-
cedure simulates a model. A verification system con-
sists of a language, called an assertion language, for
specifying properties of models/systems and a set of
proof rules. Properties of a model expressed in the
assertion language are to be proven (verified) by ap-
plying proof rules. The correctness and scope of the
verification system and simulation procedures are es-
tablished with respect to the definition of the DEMS
language.

A logic-based system has been partially developed
in [Radiya 1990] by defining the Propositional Dis-
crete Event Logic Lppg [Radiya and Sargent 1992
and Generalized Temporal Logic Lgr for expressing
models and properties, respectively. Lppg and Lgr
contain a vast variety of temporal operators (pro-
gram connectives) including next, if, when, when-
ever, until, while, and at; many of which are either
not available in the existing languages or the existing
languages permit their usage in a restricted manner.
These operators allow one to express temporal and
causal relationships and laws of a system in a direct,
succinct, and accurate way.

For the logic Lppg, some of the possible re-
search directions are the design, implementation, and
computational efficiency of simulation procedures for
larger sublogics, and proof systems for proving prop-
erties of models. Lppg can also be extended to de-
velop a first order discrete event logic. The logic-
based approach can be applied to design DEMS lan-
guages based upon other conceptual entities such as
objects, inheritance, and rules. It would be mutually
beneficial to the field of DEMS and other fields such
as artificial intelligence [Galton 1987] and real-time
systems [Ostroff 1989, Proceeding of IEEE 1989 to
relate Lppg and Lgr to other relevant logics. The
similarities and differences among these logics and
eventual synergism may lead to more expressive lan-
guages for DEMS as well as for other fields.
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6 AUTOMATED DISCOVERY OF DIS-
CRETE EVENT MODELS by ASHVIN
RADIYA

Autonomous agents are playing an increasing impor-
tant role in many critical activities in space explo-
rations, manufacturing systems, dangerous civilian
and defense missions, and traffic control systems. In
order for an autonomous agent to function effectively,
it is necessary for the agent to discover causality and
models of its environments. One important method-
ology for representing and reasoning with temporal
and causal knowledge is Discrete Event (DE) mod-
eling and simulation which allows one to represent
certain kind of temporal and causal knowledge of a
system - usually as a model - and to reason with
this knowledge — usually by performing simulations.
Hence, a theory and a system for discovering DE
models will (1) make autonomous agents more pow-
erful, (2) create a new testbed for demonstrating the
versatility of the methodology of DE modeling, and
(3) take us one step closer to making a science of DE
modeling by enhancing our understanding of the ways
in which DE models are developed.

There are two basic approaches for automated dis-
covery of models. One is a “database discovery
method (DDM)” and another is “experimentative dis-
covery method (EDM)”. In DDM, the discovery pro-
cess utilizes a given database of representative histo-
ries denoting behaviors of a system over time inter-
vals. In EDM, a model is discovered by performing
experiments on a system. Each experiment consists
of observing a system for some finite time interval [¢;,
ty] and requires the system to be in a specific state
at ¢; and some events to occur in [¢;, tf].

A framework has been developed in [Radiya and
Zytkow 1992] for discovering DE models. This in-
cludes specification of histories of a system necessary
for discovery process, the form of causal and tem-
poral rules that define DE models, and a DDM for

discovering a DE model. A history is a record of
events, state-changes, and activities that occur over a
time interval. The causal and temporal rules of a DE
model specify the effects of event occurrences. The
effect of an event occurrence at an instant tis to cause
state-changes at ¢ and other future event occurrences.
The relationship among event occurrences and their
effects are expressed in terms of three temporal op-
erators whenever, after, and unless [Radiya 1990].
The formulae to fit these operators are the task of the
discovery mechanism of the theory. These temporal
relationships suggests a gradual way of partitioning
histories. The discovery process utilizes the capabil-
ities of FAHRENHEIT - an empirical discovery sys-
tem [Zytkow 1987] - to find a set of partial functional
relationships among state variables and events, sepa-
rated by boundaries. The above DDM can be easily
modified into an EDM.

With respect to the above framework, some fu-
ture research directions are methods for discovering
more complex temporal relationships, handling sym-
bolic variables, scope and complexity of the proposed
methods, introduction of theoretical terms to gener-
ate new events and variables, abstractions of propo-
sitions, and devices for making observations. Much
remains to be done for discovering DE models in the
alternative frameworks of flow of entities, progress of
processes and activities, and interaction among ob-
jects in a system. ([Kodatroff and Michalski 1990] is
a good collection of papers on machine learning.)
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7 CAUSAL MODELING TO ANSWER BE-
YOND “WHAT IF...?7” QUESTIONS by
JEFF ROTHENBERG

Simulationists often view modeling quite narrowly: as
a way of making predictions by running an encoded
behavioral model. This “toy duck” approach to mod-
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eling (“wind it up and let it run”) can only answer
“What if...?” questions (i.e., “What would happen
if...?”). Yet in order to understand and improve real-
world systems, it is necessary to do more than simply
predict how they will behave: it is equally necessary
to understand why things happen the way they do,
when (i.e., under what conditions) certain things may
happen, and how to produce desired results [Davis
et al. 1982, Erickson 1985, Rothenberg 1986]. This
requires models that can answer questions such as
“Can some result ever occur?”, “Under what con-
ditions will some result occur?”, “Why would some
result occur in a certain situation?”, or “How can a
desired result be achieved?” Such questions go far
beyond the capabilities of traditional simulation. For
a number of years, I have referred to these as Beyond
“What if...?” questions [Kameny et al 1987, Rothen-
berg 1988, 1989a, 1989b]. In order to answer such
questions, a model must be able to reason (i.e., per-
form inferences) about itself; this is all but impossible
using traditional techniques.

To answer Beyond “What if...?” questions, a model
must have a semantics that is rich enough to support
the required kinds of inferences [Rothenberg 1989a,
1992, Klahr 1986]. In particular, it is not enough for
a model to represent sequences or times of events or
activities, as most simulations do; it must represent
relationships among occurrences (beyond their tem-
poral order), to support inferences about how and
when certain occurrences lead to other occurrences.
Furthermore, it is not enough to represent just any re-
lationships among occurrences: the relationships that
are represented must be meaningful in ways that sup-
port the inferencing necessary to answer questions
such as “why”, “when”, and “how” things happen
in the real world (beyond simply answering “what”
happens).

Of the possible relationships that can satisfy this
requirement, causality has a number of theoretical
and pragmatic advantages [Rothenberg 1992]. The
implications of causal modeling are subtle but pro-
found. Building models based on causality improves
their design, use and interpretation, by: (1) provid-
ing a valuable decision criterion for making modeling
choices and eliminating artifacts; (2) facilitating the
inferencing necessary to answer Beyond “What if...?”
questions; and (3) endowing a model with a unique
combination of transparency and intuitive cogency.
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8 REQUIREMENTS OF A MODELLING
PARADIGM by ROBERT G. SARGENT

Discrete event simulation modelling is an intellectu-
ally intensive and time consuming task and is primar-
ily a creative technical art. There has been modest re-
search to move modelling towards a science; however,
considerable research is yet needed. The purpose of
this paper is to identify a set of requirements that
this author believes a modeling paradigm for discrete
event simulation should have.

Prior to presenting the requirements, a few com-
ments will be made. There has been only limited
work on theoretical foundations for discrete event
simulation modelling. Zeigler, e.g., has developed
DEVS based on systems theory. Limited research
has been done on modelling environments. There
is almost no hierarchical modelling capability. We
note that to discrete event simulations on parallel and
distributed computers, the models usually have to
be specifically developed to include specific inform
tion, e.g. “lookahead” information. Visual/graphic
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modelling has only received limited attention. Mod-
elling using object-oriented languages has started to
receive attention which will perhaps lead to a different
world view than the classical world views of process-
interaction, activity-scanning, and event-scheduling.
We also note that computing cost is rapidly decreas-
ing while people cost is increasing. Perhaps the com-
puter should be doing part of what people are doing
even if from the computation point of view it is not
efficient.

The requirements that we believe a discrete event
simulation model paradigm should have are the fol-
lowing:

GENERAL PURPOSE:
the modelling paradigm should allow the modeller to
model a wide variety of problem types and domains;
it should not be primarily for one type of system, e.g.
queueing systems or transaction oriented systems.

THEORETICAL FOUNDATION: A theoret-
ical foundation should underlie a model paradigm if
modelling is to be moved towards a science.

HIERARCHICAL CAPABILITY: A mod-
elling paradigm should allow hierarchical modelling
so that complex systems can be more easily modelled.

COMPUTER ARCHITECTURE INDE-
PENDENCE: The model paradigm should be such
that a model can be executed on different computer
architectures (e.g. sequential, distributed, or paral-
lel, and be able to take advantage of the architecture
that it is executing on) and be transparent to the
modeller. This requires that such items as “looka-
head” information be available from the model itself
and not have to be specially added by the modeller.

STRUCTURED: A structured approach that
guides the user in model development, including hi-
erarchical modelling, should be part of the model
paradigm.

MODEL REUSE: the model paradigm should
allow models and submodels to be easily reused and
support a model database.

SEPARATION OF MODEL AND EXPER-
IMENTAL FRAME: Both the model’s input and
the model’s output should be able to be separated
from the model itself in the model paradigm.

GRAPHICAL/VISUAL MODELLING: The
model paradigm should allow the capability to have
graphical/visual modelling.

EASE OF MODELLING: The model paradigm
should allow a world view(s) of modelling to be used
that is easy to model with.

EASE OF COMMUNICATION: The concep-
tual model(s) allowed by the model paradigm should
be easy to communicate to other parties.

EASE OF MODEL VALIDATION: The

model paradigm should support both conceptual and
operational validity.

ANIMATION: The model paradigm should al-
low animation to be accomplished without difficulty.

MODEL DEVELOPMENT
ENVIRONMENT: A model development environ-
ment can aid in the steps of model development and
a model paradigm should allow the use of such an
environment.

EFFICIENT TRANSLATION TO EXE-
CUTABLE FORM: The model paradigm should
be capable of allowing efficient model translation to
executable code. The paradigm should allow the
model to automatically be converted to computer
code or allow ease of program verification if it does
not.

This author believes that some form of encapsula-
tion is required (whether as in object oriented lan-
guages or as proposed by Cota and Sargent), that
some type of model representation (which allows anal-
ysis to be performed on the representation) will be
required to provide the information needed for algo-
rithms to execute on different computer architectures
(such as in Control Flow Graphs developed by Cota
and Sargent), that a modelling language is desirable,
and that the implementation will probably be best
done in some object-oriented language. No “artificial
intelligent” capability was stated as a requirement,
although this may be useful, it is not believed by
this author to be a requirement for the type of model
paradigm he visualizes.
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