Proceedings of the 1992 Winter Simulation Conference
ed. J. J. Swain, D. Goldsman, R. C. Crain, and J. R. Wilson

A FRAMEWORK FOR DESIGNING AN ANIMATED SIMULATION SYSTEM
BASED ON MODEL-ANIMATOR-SCHEDULER PARADIGM

James T. Lin
Kuang-Chau Yeh
Liang-Chyau Sheu

Department of Industrial Engineering
National Tsing Hua University
Hsinchu, Taiwan 30043
Republic of China

ABSTRACT

A methodology for designing animated simulation
(AS) system has been presented. A Model-Animator-
Scheduler paradigm was proposed for unifying different
approaches of AS systems into a single structure and
serving as a foundation for implementation and further
research. A framework which identifies the
specification and organization of AS systems was also
proposed on the basis of such a methodology. An
experimental AS system, SIMGRAPH, has finally been
presented here under such a framework.

1 INTRODUCTION

Visual simulation is a powerful tool for system analysts.
Proper usage of visual simulation can enhance
verification, validation and testing of large or complex
dynamic models. Two general families of model data
visualization have been previously proposed by Rooks
(Rooks 1991), which are: abstract and representative
displays. While abstract displays are only simply visual
tools used for data interpretation, representative
displays provide a pictorial view of the modeled system
in some simplified form(s) of its real appearance.
Animation is one of the major representative display
forms. It refers to graphic displays of information where
the information to be imported to the viewer is
conveyed through image change. Many simulation tools
and packages have provided an animation facility such
as SEE-WHY, CINEMA which comes with SIMAN
simulation language, and SLAMSYSTEM which is
integrated with SLAM II language.

756

Tools for animation are the most difficult
components of visual simulation for design and
implementation. They can determine the effectiveness
of an entire visual simulation interface. Current
literature does not, however, provide a generic view of
simulation animation. This is restricted by practical
considerations of computer resources or product
marketing. Proposing a methodology for developing or
realizing animated simulation (AS) systems is therefore
the objective of this paper.

Different methodologies have been previously
addressed toward design and implementation of an AS
system (Bishop and Balci 1990, Brunner 1986, Cox
1987). Three distinct approaches identified by O'Keefe
(O'Keefe 1987) for portraying the dynamic behavior of
the modeled system are:

Embedded Programming: The simulation
programmer codes visual output statements into model
directly. It provides great flexibility. The extra
development effort can, however, be time consuming. It
also refers to the term “simulation-concurrent
animation" for the dynamic display being generated
through the state of the simulation model.

Automatic Display: A standard type of display is
provided, which can be used with little or no effort on
the part of the developers. It is very easy to construct.
Developers can, however, be constrained by a lack of
flexibility.

Post Animation: The simulation automatically
produces formatted output which is then decoded by an
animator through use of a separately produced static
background and rules for icon movement.

These three approaches cover a range of model
implementation difficulty and flexibility levels. A
developer does not have to choose only one approach to

Simulation Based on Model-Animator-Scheduler Paradigm 757

be the principle one. Developing a structure unifying
these three approaches is, however, helpful so that the
most proper animation scheme for specific application
can be easily identified under this general scheme. It
will then serve as a foundation for implementation and
further research which recognizes and encompasses the
broader methodology.

This paper is organized as follows. A fundamental
paradigm for representing the structure of AS is first
described in Section 2. The specification and
organization of the software for implementation of an
AS system are described in Section 3. The experimental
AS system itself proposed in this paper is described in
Section 4. A brief discussion is finally given in Section
5.

2 MODEL-ANIMATOR-SCHEDULER
PARADIGM

A paradigm is proposed in this section for representing
the unified structure of AS. Characteristics of such a
paradigm are also described. Elements of such a
structure should first be discussed.

The visual display is composed of two basic parts:
(1) a static background picture which is written to the
screen once prior to the simulation run, and (2) a
dynamic display which moves over the static picture.
Two distinct primitives of operating the dynamic
display, furthermore, exist. They have been previously
referred by Brunner (Brunner 1991) as the simple
primitive - moving an image block or changing colors,
and the complex primitive - sophisticated moving on a
path. Two modes of animation also provided by
GPSS/PC (Cox 1987) are: Direct Mode and Collision
Prevention Model . While simple animation primitives
are performed in Direct Mode, some implicit "Move
Events" are scheduled to occur when an entity is going
to move in later mode to carry out proper moving and
collision testing.

Additional animation events should be calculated
and scheduled for performing complex operations, i.e.
an automated guided vehicle (AGV) or a moving belt
conveyor. The dynamic display is to be updated either
within an event (direct animating without changing
time), or following a time beat (where one or more
animation events will be executed). The animation
operations and associated events should be managed by
a certain coordination mechanism.

In summary, three basic divisions are proposed on
the basis of the interactions within an animated
simulation system:

eModel: This term here is specific to a combination
of data and programs on a computer representing a
target system. It includes description of processes or
entities in which analysts are interested.

eAnimator: It contains all facilities which perform
animation on a computer display and associated tasks,
like moving objects and drawing static background, etc.

oScheduler: It coordinates the time-varying
operations occurring between the model and animator.
Some operations similar to moving entities or
monitoring variables of a model whose timing need to
be pre-calculated and vary at every time beat cannot be
directly assigned to the animator. They should be
scheduled by the scheduler before they are actually
performed.

These three divisions interact with each other as
model execution progresses. Each division needs
certain information in serving their proper tasks. The
three divisions and their relationships are shown in
Figure 1. The information occurring among these three
divisions are classified as follows:

Static Background

D ic

Real-time
i Forcground

Infarming

Filgure 1 Model-Animator-Scheduler paradigm

Model-Animator:

Animator requires two families of description from
simulation model, which are:

eStatic Background: Static background is the image
of the target system without changing over the
simulation duration. It shows the geometric or abstract
outlook of the target system, e.g., the layout of a
factory.

eStatic Elements: Static clements are the static
objects of the target system. They are similar to static
background. They can, however, be used to reflect the
differences between experiments, €.g., the locations of
machines under the same layout.

758 Lin, Yeh, and Sheu

Many systems do not distinguish between these two
families of description. A similar concept applied in
Proof system (Brunner 1991) is, however, the
information definition in a layout file.

Model-Scheduler:

Two classes of information should be designated to
the scheduler by the model for the time-varying
propertics:

eDynamic Actors: Dynamic actors are those movable
objects or entitics of the target system. Since their
locations may change at every time instance according
to the form of events, these events should be sent to the
scheduler in association with specific actors.

eDynamic Foreground: Dynamic foreground is the
summary of time-varying system status or variables.
Their locations are fixed, but the containing values are
to be updated by certain events.

Similar ~ components are also found in
CINEMA/SIMAN, SLAMSYSTEM and GPSS/PC. The
prior is referred to as entities or transactions, and the
later is referred to as the summary of resources, quetes
and variables.

Scheduler-Animator:

Two different forms of event notices exist from
scheduler to animator:

eReal-time Informing: The Scheduler directly sends
notices at the time of occurrence to the animator. They
are usually in the form of function calls.

eTrace Files: The scheduler stores these notices in
some specific formatted storage, e.g., a data file. It then
transfers this storage to the animator in performing
animation after the simulation has been completed.

The concurrent animation is, for example, provided
by TESS through interacting with SLAM II user-written
FORTRAN code. The trace files are also interacted
with through usage of the data collection procedures.

The Model-Animator-Scheduler paradigm can fully
represent the structure of an AS scheme. First,
embedded programming is the case which occurs where
the model and the animator are tightly coupled. They
share the saume copy of program code and data as a
means of communication with each other. The
scheduler is combined with the time advancing
mechanism of simulator, since the animated events and
model events arc not separable. The diagram under the
integration of model and animator is shown in Figure 2.

Second, automatic display is the case which occurs
where the model passes the animated notices (o the
animator through a dummy scheduler. Restated, the
notices produced by the model are directly sent to the

animator. The image update, e.g., movement of an
AGV, is irreverent to the simulator clock. The diagram
under automatic display is shown in Figure 3.

Third, post animation is the case which occurs where
the scheduler is simply an event filer. It receives all
events being produced by the model and stores them in
a formatted data file through the order of time
scquence. The diagram under post animation is shown
in Figure 4.

Figure 2 Embedded Programming

Figure 3 Automatic Display

Figure 4 Post Animation

3 A MODEL SPECIFICATION AND
ORGANIZATION

A specification and a software organization for
implementation are required for accomplishing the
previous framework. Several design environments
should be discussed in advance before designing such
an AS system. These environments are to determine the
implementation architecture of the system, which are:

eComputer/hardware environment: What kind of
computer and associated display hardware is to be
used?

Simulation Based on Model-Animator-Scheduler Paradigm 759

eSimulation environment. Which general purpose
simulation language (e.g. SLAM II or SIMAN) or high-
level programming language (e.g., FORTRAN or C) is
to be chosen?

eDisplay type: What kind of display scheme should
be applied on a given specific hardware? Possible types
include bitmap-based, pixel-oriented, geometric-based,
and vector-oriented display.

eAnimation type: What kind of animation scheme is
to be applied under such an AS system? It may be
block-based which uses local bit-block-transfer method,
or frame-based which updates the whole screen on each
time change.

Given particular factors of these environments, the
basic essence of an AS system specification under the
framework is based on a model organization
specification of an animated simulation model.
Additionally, two specific modules are necessary in
manipulating and maintaining the elements in such a
model organization, which are: (1) function modules
corresponding to model-animator-scheduler and (2)
utility modules with respect to model organization. The
elements and requirements of these three components
are discussed below.

Model organization specification

Summarizing the previous information and forms of
animated events, a formal model organization
specification of an animated simulation model is
derived. It includes a simulation model, a static
background, static elements, a dynamic foreground,
dynamic actors and the trace file structure. These are
the five basic elements of the model organization
specification. Figure 5 shows the diagram of such a
specification. The generation and maintenance of data
containing this organization are discussed in more
detail later.

Simulation
Model

Dynamic
Fore-
ground

Static
Background

Animated
Simulation
Model

Static
Layout

Figure 5 Specification of an animated simulation model

Function modules

Corresponding to the threc basic divisions mentioned
previously, function modules can be classified as
follows:

eGraphic and animation commands: Under a certain
simulation environment, (he graphic and animation
commands should properly collaborate with model
description statements. For instance, these animation
commands under an event-scheduling simulation
system can be in the form of a procedure-call or
function-call placed in event handling routines. These
functions are to parse command, assign graphic tasks to
graphic display functions and send animation events to
the scheduler. These functions should be grouped as an
independent module.

oStatic and dynamic graphic display functions: The
tasks of an animator include two major function groups:
graphic drawing and animation performing. The design
of these two function groups is dependent types of
display, type of animation and graphic hardware.

eScheduler: Two approaches in implementing a
scheduler are: (1) It combines a time-advancing
mechanism with the animation events for updating the
simulator clock as well as other events, and (2) It is
independent from the simulator and the animation
events do not affect the simulator clock. These two
approaches are, however, not exclusive. A hybrid
design is possible.

Utility modules

In addition to function modules, utilities for
generating and maintaining image outlooks of an
animation model are necessary. These utilities
correspond to the five elements of the formal model
organization of an AS model, which are:

sStatic background generator: This generator should
provide functions of drawing and editing a background
outlook, or provide utilities to transfer the output of
other graphic packages or CAD programs into a
specific formatted file that the animator can display.

sStatic elements editor: This editor should provide
functions of defining clements like static texts output,
static icons display, or color assignment, etc.

sActorficon editor. This cditor should provide
editing functions and libraries to maintain associated
actor images.

eDynamic foreground generator: This generator
should provide functions to define elements like the
paths of actors moving, display of resources/queues and
associated icons, or type and location of statistical
charts display, etc.

760 Lin, Yeh, and Sheu

eTrace file player: The player should be able to
interpret outputs from the scheduler and perform
animation.

These generators and editors generate data or files as
the front inputs of an executable AS model. Trace file
player, which is an option for post animation, receives
the outputs from AS model. Figure 6 shows the
construction and execution cycle of a model, and the
total organization of such an AS system.

User simulation el

Static

ackarot F
Model elerm ent Backaround orearound

Irput editor editor editor

Actor/icor

editor

Model Static Static Dyramric
- Elements backaround Forearound

Arnmration
comm and
TurclIons

Ararr ated
simulation
model

Trace (ile
plaver

Siurulation
Ernarenr ent

Dravaing ard
aram ating

| funcions I

Figure 6 Specitication and organization of an AS system

4 PASIMT/SIMGRAPH: AN ANIMATED
SIMULATION MODEL CONSTRUCTION

A construction of an AS model, SIMGRAPH, is
illustrated in order to have more concrete idea of a
proposed AS system. It has been previously developed
by the Industrial Engineering Department at National
Tsing-Hua University (NTHU), Taiwan R.O.C.
SIMGRAPH is an animator which is cooperative with
PASIMT (Lin 1990), a discrete-event simulation
package also developed by NTHU. It is bitmap-based
and designed for IBM PC or compatible with a
VGA/EGA display. PASIMT is a collection of
procedures and functions that allow discrete event
simulation programs to be easily developed in TURBO
PASCAL. The package, which implements the event
view, has procedures for creating and deleting entities,

managing lists or queues, event scheduling and
sequencing, system tracing and data collection.
PASIMT makes it easy to add animation functions on
the basis of Model-Animator-Scheduler paradigm,
Since PASIMT has unique data structures and a time
advancing mechanism.

Consider a tanker-port example (Pritsker 1986). The
model is formulated through a group of event handling
routines, since PASIMT is event-oriented. Animation
commands are in a form of callable Pascal procedures
mixed with PASIMT codes.

SIMGRAPH uses the block-based animation type on
a bit map display for considerations of animation
performance. The utilities include:

eBackground generator: SIMGRAPH provides a
utility, SCRNDUMP.EXE, to capture screen image and
save into a binary data file as the input of
SIMFILM.EXE to generate background file. The
background image can be produced by graphic
packages or CAD programs whose screen output will be
captured by SCRNDUMP. The screens on operating
SIMFILM are shown in Figure 7.

oStatic elements / layout editor: SIMGRAPH
generates a static element file from a formatted text file
that the user can directly input and edit on a text editor.
The definitions of static elements include static text
string location, string output, and color assignment.

sActors/icon editor: 1CED.EXE provides the
functions of editing and the libraries for the
maintenance of actor outlooks. The screens on editing
the image of a tanker under ICED are shown in Figure
8.

eForeground generator: SIMBUILD.EXE provides
an interactive foreground generating facility. The
definitions of dynamic foregrounds includes: (1) paths
of actors through specification of a path line on screen,
(2) displays of system status through specification of the
locations of queues, resources and icons, and (3)
statistics display through specification of locations of
bar-charts, pie-charts, and trace plots. The screens on
adding paths under SIMBUILD are shown in Figure 9.
The output of the tanker-port system example is shown
in Figure 10.

The total software organization of
SIMGRAPH/PASIMT is summarized in Figure 11. Itis
a typical implementation under the previously proposed
specification. Users construct basic elements of an
animated simulation model through usage of SIMFILM,
SIMBUILD, ICED and a text editor. PASIMT and
SIMGRAPH libraries are linked to the executable
simulation program after the user model program

Simulation Based on Model-Animator-Scheduler Paradigm 761

T OPERATION

radiclled with PASINY /SINGRF

Figure 7 SIMFILM operation

Current file:
BCRT.ICH

10: a3

Wdtre 51 Meighn 28

Drowing o T
\ Poinr

Color
Lina Style

EIV/N

Figure 9 SIMBUILD operation

C PATH)

PATH. 43,
€ 30,3000, € 30,2603, ¢ 40,260), (30,240),
€ 50,200y, ¢ 30.180>, ¢ 50,1460). ¢ %0, 140>, ¢ SO,
¢ W00, ¢ 5, 0): .

. €7,
(200,200), (400,319);

a1,
€100,300). €J30. G5):

42z,
CW0,300), (A0, BI);

a3

¢100,300), ¢330, €3):

. 14,
€330, BS), 100,00

Flgure 10 Dynamic foreground output from SIMBUILD

762 Lin, Yeh, and Sheu

Graphics, CAD QUEUE LENGTH:]
Software

N

OPFRATION

SCRMOUMP

nadellcd uith PASIAT /S (HGHF
User Model
Text Text
Eattor Edltor | [smnuj
éema oas(6’"0 lay C

PASIMT
Library

SIMBUILD

Figure 12.a E stion of tanker-port P

Dema.exe

T OPERATION

Figure 11 PASIMT/SIMGRF software organization nodelled with PASIAT /S TRGHE
.

SIMGRAPH
Library

QUEUE LENGTH:

1

Figure 12.b E flon of tanker-port I

(UEUE LENGTH:

VFION

€d urth PASINT/SINGHE

Figure 12.c Executlon of tanker-port example

Simulation Based on Model-Animator-Scheduler Paradigm 763

compiled. The simulation program reads those data
files provided by each utility and first performs
initialization tasks. It then proceeds on to the model
execution and animation. The cxecution sequences of
the tanker-port system example are shown in Figure 12.

S CONCLUSION

A design framework has been proposed on the basis of
a Model-Animator-Scheduler paradigm. Several
different approaches have been unified into a single
methodology during this research. Advantages of such a
design framework have included:

eModularization: From the modularized nature of
the structure, such an AS system would inherent the
benefit of modularization and extendibility. Since each
module is functionally independent, different computer
display types and animation technology, e.g., geometric
display and frame-based animation, could be applied
without changing other modules.

eFlexibility: Applications of such an AS system
could have both flexible and easy-to-use properties.
This design framework has fallen into a spectrum
bounded by these two levels of flexibility. A developer
could easily choose a proper scheme from the
framework.

eApplicability: An AS system of this framework
could provide a wide range of applications for different
specific domains. Different applications could possibly
require different variant schemes of AS. This structure
has become adaptive for them.

An experimental AS system, SIMGRAPH, has also
been presented here under such a framework. It can
fully represent a typical implementation of a general
purpose AS system, eventhough it is simply an
experimental work which demonstrates the framework.
Further research of the detailed development and
organization of SIMGRAPH has still been underway.

REFERENCES

Bishop, J. L. and O. Balci. 1990. General Purpose
Visual Simulation System: A Functional Description.
Proceedings of the 1990 Winter Simulation
Conference. 504-512.

Brunner, D. T. and J. O. Henriksen. 1986. A General
Purpose Animator. Proceedings of the 1986 Winter
Simulation Conference. 155-163.

Brunner, D. T. and J. O. Henriksen. 1991. Proof
Animation: A General Purpose Animator.
Proceedings of the 1991 Winter Simulation
Conference. 90-94.

Cox, S. 1987. Interactive graphics in GPSS/PC.
Simulation 49:3 117-122.

Lin, J. T. 1990. PASIMT: A Discrete Event Simulation
Tool Kit in PASCAL. Journal of Management
Science (Chinese Management Association), Vol 7,
No. 2, Dec. 213-231.

O'Keefe, R. M. 1987. What is Visual Interactive
Simulation ? (And Is There a Methodology for Doing
It Right ?). Proceedings of the 1987 Winter
Simulation Conference. 461-464.

Pritsker, A. A. B. 1986. Introduction to Simulation and
SLAMII. System Publishing Corporation.

Rooks, M. 1991. A Unified Framework for Visual
Interactive Simulation. Proceedings of the 1991
Winter Simulation Conference. 1146-1155.

AUTHOR BIOGRAPHIES

JAMES T. LIN is an Associate Professor in the
Department of Industrial Engineering at National
Tsing-Hua University (NTHU), Taiwan R.O.C. He
received his Ph.D. degree in Industrial Engineering at
Lehigh University in 1986. His current research
interests include simulation modeling methodology,
performance evaluation of manufacturing systems, and
modeling of Automated Guided Vehicle System. He is
a member of IIE, SCS, and IEEE.

KUANG-CHAU YEH is a Ph.D. student at the
Industrial Engineering Department at National Tsing-
Iua University (NTHU), Taiwan R.O.C. He received
his M.S. degree in Industrial Engineering from NTHU
in 1989. His research interests include the application
of Al and simulation.

LIANG-CHYAU SHEU is a Ph.D. student at the
Industrial Engineering Department at National Tsing-
Hua University (NTHU), Taiwan R.O.C. He received
B.S. and M.S. degrees in Industrial Engineering from
NTHU in 1988 and 1990. His research interests are
focused on feature-based design, and simulation
modcling.

