Proceedings of the 1992 Winter Simulalion Conference

ed. J. J. Swain, D. Goldsman, R. C. Crain, and J. R. Wilson

THE SIMULATION MODEL DEVELOPMENT ENVIRONMENT: AN OVERVIEW

Osman Balci
Richard E. Nance

Department of Computer Science and Systems Research Center
Virginia Polytechnic Institute and State University
Blacksburg, Virginia 24061, U.S.A.

ABSTRACT

The purpose of this paper is to provide an overview of
the Simulation Model Development Environment
(SMDE) that has been under development since 1983.
The SMDE architecture is composed of four layers: (0)
Hardware and Operating System, (1) Kernel SMDE, (2)
Minimal SMDE, and (3) SMDEs. Following the in-
cremental development software engineering life cycle,
SMDE software components are identified. Guided by
the principles enunciated by the Conical Methodology,
evolutionary prototyping and rapid prototyping ap-
proaches have been used to develop the following mini-
mal SMDE tools: Premodels Manager, Assistance Man-
ager, Model Generator, Model Analyzer, Model
Translator, and Model Verifier. The Model Generator
has been the most critically important tool, and five pro-
totypes have been developed. The automation-based soft-
ware paradigm has been achieved to a large extent with
the development of the Visual Simulation Support En-
vironment based on the DOMINO (multifaceteD ¢On-
ceptual fraMework for visual simulatioN mOdeling) and
the VSMSL (Visual Simulation Model Specification
Language).

1 INTRODUCTION

The ever-increasing complexity of simulation model
(software) development is undeniable. A simulation pro-
gramming language supports only the programming pro-
cess—one of ten processes in the life cycle of a simula-
tion study (Balci 1990). There is a need for automated
support throughout the entire model development life cy-
cle. This support can be provided in the form of an en-
vironment composed of integrated software tools pro-
viding computer-aided assistance in the development of
a simulation model.

The authors have pursued research in building a dis-
crete event Simulation Model Development Environment
(SMDE) since 1983. The SMDE project has addressed a

726

complex research problem: prototyping a domain-
independent discrete-event SMDE to provide an in-
tegrated and comprehensive collection of computer-
based tools to (Balci and Nance 1987a):

® offer cost-effective, integrated and automated
support of model development throughout the
entire model life cycle;
improve the model quality by effectively assisting
in the quality assurance of the model;
significantly increase the efficiency and
productivity of the project team; and
substantially decrease the model development
time.

®

@

Guided by the fundamental requirements identified by
Balci (1986b). incremental development, evolutionary
prototyping, and rapid prototyping approaches have been
used to develop the prototypes of SMDE tools on a Sun
computer workstation. The object-oriented paradigm,
enunciated by the Conical Methodology (Nance 1981,
1987), has furnished the underpinnings of the SMDE re-
search environment (The collection of tool prototypes).

Section 2 presents the SMDE architecture. The mini-
mal SMDE tools are described in Section 3. Concluding
remarks and future research are given in Section 4.

2 SMDE ARCHITECTURE

Figure 1 depicts the architecture of the SMDE in four
layers: (0) Hardware and Operating System, (1) Kemel
SMDE, (2) Minimal SMDE, and (3) SMDE:s.

2.1 Layer 0: Hardware and Operating System

A Sun computer workstation with 8 megabytes of main
memory, 380 megabytes of disk subsystem, a 1/4-inch
cartridge tape drive, and a 19-inch color monitor with
1152x900 pixel resolution constitute the hardware of the
prototype SMDE. A laser printer and a line printer over

Simulation Model Development Environment

Model
Generator

Command
Language
Interpreter

Assistance
Manager

Premodels
Manager

Project
Manager

Minimal
SMDE

Model
Analyzer

Kernel SMDE

Hardware and
Operating System

Kernel Interface

~1
(8]
-1

Model
Translator

Model
Verifier

Source
Code
Manager

Electronic
Mail
System

SMDEs

Figure 1: Simulation Model Development Environment Architecture

the Ethernet local area network serve the SMDE for pro-
ducing high quality documents and hard copies of Sun
screens and files.

The UNIX SunOS 4.0 operating system and utilities, a
graphical human-computer interface (SunView), device
independent graphics library (SunCore), computer graph-
ics interface (SunCGI), Sun programming environment
(SunPro), and INGRES relational database management
system constitute the software environment upon which
the SMDE is built. Nance et al. (1984) evaluate the
UNIX operating system as a foundation for building a
simulation model development environment.

2.2 Layer 1: Kernel SMDE

Primarily, this layer integrates all SMDE tools into the
software environment described above. It provides

INGRES databases, communication and run-time sup-
port functions, and a kernel interface. Three INGRES da-
tabases occupy this layer, labeled project, premodels,
and assistance, each administered by a corresponding
manager in layer 2. All SMDE tools are required to com-
municate through the kernel interface. Direct com-
munication between two tools is prevented to make the
SMDE easy to maintain and expand. The kernel inter-
face provides a standard communication protocol and a
uniform set of interface definitions. Security protection
is imposed by the kernel interface to prevent any un-
authorized use of tools or data.

2.3 Layer 2: Minimal SMDE

This layer provides a “comprehensive™ set of tools
which are “minimal” for the development and execution

728 Balci and Nance

of a model. “Comprehensive” implies that the toolset is
supportive of all model development phases, processes,
and credibility assessment stages. “Minimal™ implies that
the toolset is basic and general. It is basic in the sense
that this set of tools enables modelers to work within the
bounds of the minimal SMDE without significant in-
convenience. Generality is claimed in the sense that the
toolset is generically applicable to various simulation
modeling tasks.

Minimal SMDE tools are classified into two cat-
egories. The first category contains tools specific to sim-
ulation modeling: Project Manager, Premodels Manager,
Assistance Manager, Command Language Interpreter,
Model Generator, Model Analyzer, Model Translator,
and Model Verifier. The second category tools (also
called assumed tools or library tools) are expected to be
provided by the software environment of Layer O: Source
Code Manager, Electronic Mail System, and Text Editor.
The prototypes of the minimal SMDE tools are described
in Section 3.

24 Layer 3: SMDEs

This is the highest layer of the environment, expanding
on a defined minimal SMDE. In addition to the toolset of
the minimal SMDE, it incorporates tools that support
specific applications and are needed either within a par-
ticular project or by an individual modeler. If no other
tools are added to a minimal toolset, a minimal SMDE
would be a SMDE.

The SMDE tools at layer 3 are also classified into two
categories. The first category tools include those specific
to a particular area of application. These tools might re-
quire further customizing for a specific project, or addi-
tional tools may be needed to meet special requirements.
The second category tools (also called assumed tools or
library tools) are those anticipated as available due to use
in several other areas of application. A tool for statistical
analysis of simulation output data, a tool for designing
simulation experiments, a tool for documentation and
credibility assessment (Kranowski 1988), a graphics tool,
a tool for animation, and a tool for input data modeling
are some example tools in layer 3. A Visual Simulator
tool has been developed under the Visual Simulation
Support Environment prototype based on a multifaceted
conceptual framework (Derrick 1992).

An SMDE tool at layer 3 is integrated with other
SMDE tools and with the software environment of layer
0 through the kernel interface. The provision for this in-
tegration is indicated in Figure 1 by the opening between
Project Manager and Text Editor. A new tool can easily
be added to the toolset by making the tool conform (o the
communication protocol of the kernel interface.

3 MINIMAL SMDE TOOLS

Each minimal SMDE tool is briefly described below
with references containing detailed information about
the development of the tool.

3.1 Project Manager

Project Manager software tool: (1) administers the stor-
age and retrieval of items in the Project Database; (2)
keeps a recorded history of the progress of the simula-
tion modeling project; (3) triggers messages and re-
minders (especially about due dates); and (4) responds to
queries in a prescribed form conceming project status.
Other than the preliminary design decisions, no work has
been done on the Project Manager.

3.2 Premodels Manager

The overall goal of the Premodels Manager (PM) soft-
ware tool is to enable the user to: (a) locate and reuse
components of successfully completed simulation stud-
ies, and (b) learn from past experience. The following
design objectives are identified to meet this overall goal
(Beams 1991; Beams and Balci 1992):

® Provide easy methods of installing and maintaining
documentation of successfully completed simula-
tion studies (Nance 1977, 1979) in the Premodels
Database.

@ Provide appropriate methods of access to doc-
umentation of successfully completed simulation
studies in the Premodels Database. Initiative, mech-
anisms, and complexity of access should vary ac-
cording to task and type of user.

® Provide a stratified display, capabilities for copying
and pasting, capability for storing in a user-created
file, and printing of the information located by a
user in the Premodels Database.

@ Provide a user interface that satisfies the nine us-
ability principles for interfaces: enable simple and
natural dialogue, speak the user’s language, mini-
mize the user’s memory load, promote consistency,
provide feedback, provide clearly marked exits,
provide shortcuts, supply good error messages, and
prevent errors.

® Provide context-sensitive help that is always avail-
able in a consistent manner. The system should use
all available information on the user’s state and
avoid placing the burden on the user.

The PM consists of a collection of windows, as shown
in Figure 2, which work together to allow different types
of interactions between users and the Premodels Data-

Simulation Model Development Environment

flortver control Panel

Jzlvescription Display Penel

Welcome to the Premodels Manager
FFEMULEL . HANAGEF

g
4 [erveiews Browser Control Panel

j ‘

Retrieval of information from th

E EEENILEL:
i [

: projects

4
W [l sa projects: Completed simulation studies.
: HEE 0
Nont CEE ([} : projid
System administration: Installat projid: System maintained key fleld.
ﬁ Q Table name: projects Type: KEY
Retriever Control Panel Descrilption:: projects: fo Key Fleld Type.
nELP o
Hel A
E P Premodels Manadzls cuser oispiay Panol
- i projects.projid (U]: 1
Quit e Ganaral search projects.ptitle (U]): Modsim Traffic Intersection Simulation
N projects.pcontrct [U):
projects.pinitdate: 84- Jun-1987
projects.pcompdate: 12-mar-1989
= S| Brouse informati projects.pcompest: 15-nov-1988
E projects.pcost: 8 75808.060
o projects [ETL I m p2eea.ee
— projects] Remove Do NN toc ow Simulation
Cojerts Remove Rig projmod e
Help with using P Description projorg cantacts
projects.p projcont | [CICLUES
e projects.projid [U):
Retiurh Lo theipr projects.ptitle [U]: A Simulation Study of the Traffic Inters
Fork Road & Main Street
; e T B i projects.pcontrct [U):
e et 2 projects.pinitdate: 81-dec-1988
RREMOUECEIMENARER 7| projects.pcampdate: 81-doc-1988
95. USING THE BROVSER =/ browser Range Pane)
RANGE OF VAR Is TABLE
The Browser contains 4 panels -- the control p Fiig
the RANGE panal and the QUALIFY panel. rangeiotiic 13, projects
3
The focus of the BROVSER is set via the "Table [2" uoer Queltfy Panel
control panel. Use the right mouse button to | AND/OR LEFT HAND SIDE OPER RIGHT HAND SIDE
k3 '8 1 = 1
R ———————————— 1 N =

Figure 2: Premodels Manager

base. Three types of windows are used in the PM: (1)
working windows (Browser, Searcher, Installer, and
Maintainer), (2) access windows (Driver, Retriever, and
Administrator), and (3) support windows (File Viewer,
Describer, and Helper).

The PM has been evaluated with respect to the five de-
sign objectives stated above and has been found to pro-
vide effective reusability and learning support within the
SMDE (Beams 1991; Beams and Balci 1992). The de-
sign objectives altogether contribute to enabling the user
to locate and reuse components of successfully com-
pleted simulation studies and learn from past experience.

The rapid prototyping software engineering approach
has been used in developing the PM. The first PM proto-
type, developed by Box (1984), focused on the ter-
minology problem in searching model components in the
database. Subsequent PM prototypes have been de-
veloped, evaluated, and discarded prior to the current
version described above. Knowledge gained by experi-
menting with one prototype PM has been used in de-
veloping the next improved PM prototype.

3.3 Assistance Manager
The overall goal of the Assistance Manager (AM) soft-
ware tool is to provide effective and efficient transfer of

assistance information to an SMDE user. “Effective”
means accurate information is provided that is relevant
to the user's needs. “Efficient” implies that if the user is
involved in interaction with the SMDE, it is not nec-
essary to switch tasks or modes in the process of seeking
help. The following objectives are identified to meet
this overall goal (Frankel 1987; Frankel and Balci 1989):

(1) Provide general information for beginning system
users. Such information would serve to acquaint
new users with the environment, and establish a
context for subsequent learning.

Provide detailed and specific help on the use of an
SMDE tool.

Provide definitions and example usages of technical
terms encountered in documentation and com-
munication within the environment.

Provide tutorial assistance for SMDE users. The tu-
torial should give the user a protected arena for lim-
ited experimentation with a tool's features.

Provide help that is constantly available and im-
mediately accessible. Methods should be available
to suspend temporarily interaction with the AM, or
save the current display for future reference. The
user should not be required to step through an ar-
tificial protocol or syntax to access immediate as-

@
©))

@

®)

730 Balci and Nance

sistance.

(6) Provide help that is unobtrusive; i.e., messages or
prompts that are only visible when required or
asked for.

(7) Provide a help system that is flexible enough to ac-
commodate experienced users as well as novice or
casual users.

(8) Provide context-sensitive help wherever possible.
The system should use all available information on
the user's state and avoid placing the burden on the
user.

(9) Provide appropriate methods of access to the help
information. Initiative, mechanisms, and complexity
of access should vary according to task and type of
user.

(10) Provide a straightforward and systematic method
for tool developers (application programmers) to
build help into tools which may be added to the en-
vironment.

(11) Provide help that is available in a consistent manner
from any tool within the environment.

(12) Administer the Assistance Database by serving as
an interface between the user or programmer and
the database contents.

(13) Provide easy methods for update and expansion of
the AM database. This is critical in order to ac-
commodate the tailoring and updates that are in-
evitable in a large software environment. Updates
should be enforced in a manner which helps enforce
database integrity and consistency.

The AM has four components providing: (1) in-
formation on how to use an SMDE tool; (2) a glossary of
technical terms; (3) introductory information about the
SMDE; and (4) assistance for tool developers for in-
tegrating help information. Evaluation of the AM with
respect to the 13 design objectives stated above has
found the tool able to provide effective and efficient
transfer of assistance information to an SMDE user
(Frankel 1987; Frankel and Balci 1989).

3.4 Command Language Interpreter

The Command Language Interpreter (CLI) is the lan-
guage through which a user invokes an SMDE tool. Ear-
ly in the SMDE project, the CLI was prototyped based
on the proposal of Moose (1983), and was fully de-
scribed by Humphrey (1985). Later, following the ac-
quisition of the Sun computer workstation, the CLI was
replaced by the SunView graphical user interface.

3.5 Model Generator

The Model Generator (the simulation model specifica-

tion and documentation generator) is a software tool
which assists the modeler in: (1) creating a model spec-
ification in a predetermined form which lends itself for
formal analysis; (2) creating multi-level (stratified) mod-
el documentation (Nance 1977, 1979), and (3) ac-
commodating model qualification. The Model Generator
{MG) has been the most critically important SMDE tool.
Five MG research prototypes have been developed.

3.51 Model Generator Prototype 1

The first MG prototype (Hansen 1984) implements the
definition stage of the Conical Methodology (Nance
1981, 1987) and is implemented in C programming lan-
guage on a VAX 11/780 computer system running a
Unix emulator. The paradigm assumed for this prototype
is a general tree for the purpose of simplicity. The hier-
archical tree representation of a model facilitates the top-
down definition and bottom-up specification approach of
the Conical Methodology.

3.5.2 Model Generator Prototype 2

The second MG prototype focuses on the specification
stage of the Conical Methodology and is implemented in
C programming language on a VAX 11/780 running
System V Unix (Barger 1986; Barger and Nance 1986).
The prototype: (1) provides a more structured approach
to the model development process, especially the model
specification phase; (2) utilizes, observes, and enforces
the Conical Methodology principles, and (3) creates a re-
lational database representation of a model specification
from which a Condition Specification (Overstreet and
Nance 1985, 1986; Overstreet et al. 1986) can be gener-
ated.

3.5.3 Model Generator Prototype 3

The third MG prototype builds on the capabilities of the
first two and is developed on the Sun computer worksta-
tion described in Section 2.1 (Page 1990). It supports
both the definition and specification phases of the Con-
ical Methodology. Under the conceptual framework of
the Conical Methodology, the prototype enables a mod-
eler to create a model specification in the Condition
Specification language which lends itself for formal
analysis.

3.54 Model Generator Prototype 4

The fourth is based on a conceptual framework de-
veloped by O. Balci and implemented by J. L. Bishop
(Bishop 1989; Bishop and Balci 1990). Under the title of
General Purpose Visual Simulation System (GPVSS),

Simulation Model Development Environment 731

this prototype includes the visualization/animation ca-
pability in the automatic generation of simulation mod-
els. It consists of over 11,000 lines of documented code
developed on the Sun computer workstation described in
Section 2.1. The GPVSS prototype assists a simulationist
to: (1) graphically design a simulation model and its vis-
ualization, (2) interactively specify the model’s logic,
and (3) automatically generate the executable version of
the model, while maintaining domain independence. This
prototype provided the first experience in achieving the
automation-based paradigm (Balci and Nance 1987b).

3.5.5 Model Generator Prototype 5

The fifth MG prototype builds on the fourth one and has
been a major prototype with full functionality. The proto-
type is a part of the Visual Simulation Support Environ-
ment (VSSE) containing the following software tools:
Model Generator, Model Analyzer, Model Verifier,
Model Translator, and Visual Simulator as shown in Fig-
ure 3 (Derrick 1992). The VSSE has been developed on
the Sun computer workstation described in Section 2.1
and consists of over 50,000 lines of documented code.

All VSSE tools have been developed under a new con-
ceptual framework, called DOMINO (multifaceteD cOn-
ceptual fraMework for viIsual simulatioN mOdeling).
The DOMINO has been under development since 1984
and required tremendous amount of experimentation
with many discarded undocumented prototypes. Only
through the development of a fully functional environ-
ment (i.e., VSSE) and through a lot of experimentation,
it was possible to test the feasibility and utility of the
DOMINO conceptual framework.

The VSSE MG enables a modeler to provide a graph-
ical, pictorial representation of a simulation model under
the DOMINO conceptual framework as shown in Figure
4. After the model is graphically architectured, the mod-
eler identifies the submodels and performs an object-
oriented specification. Using the VSMSL (Visual Sim-
ulation Model Specification Language), which resembles
the HyperTalk language, the modeler specifies the logic
of a submodel. Once the specification is completed, the
model can be translated automatically and fully into ex-
ecutable C code after it is successfully analyzed. By ac-
tivating the Visual Simulator, a visual execution of the
model can be obtained.

The prototyping research mentioned above, (Balci
1988; Balci and Nance 1989; Balci et al. 1990; Derrick
1988; Derrick et al. 1989; Nance 1984, 1988; Nance and
Arthur 1988; Nance and Balci 1984, 1987; Nance et al.
1981), and Derrick's Ph.D. research (Derrick 1992) have
brought significant contributions to achieving the auto-
mation-based software paradigm in the simulation mod-
eling domain (Balci and Nance 1987b).

3.6 Model Analyzer

The Model Analyzer diagnoses the model specification
created by the Model Generator and effectively assists
the modeler in communicative model verification. Over-
street and Nance (1983) identify the following as the
purposes of model analysis: (1) to assist in the identifica-
tion of conceptual errors (misperceptions) or descriptive
errors (misrepresentations) as early as possible in the
model development process, (2) to suggest altenatives
that might be less prone to errors or might offer more ef-
ficient model development and experimentation, and (3)
to provide guidance and checks on the model develop-
ment process. Four Model Analyzer prototypes have
been developed.

The first prototype (Moose and Nance 1987a,b) en-
abled the recognition of three forms of diagnostic analy-
sis: analytical, comparative, and informative diagnostic,
all using the Condition Specification form of model rep-
resentation. Attribute utilization, attribute initialization,
and attribute classification testing have been fully imple-
mented. This Model Analyzer prototype: (1) takes a
model in the Condition Specification format as input, (2)
parses the specification and displays syntax errors, (3)
compiles model diagnostic information, (4) enables the
modeler, through menu selections, to view components
of the model representation and pieces of the diagnostic
information, and (5) produces and displays an action
cluster incidence graph representation of the model. The
prototype was built using the lex and yacc tools of the
Unix operating system.

The second prototype implements a control and trans-
formation metric for measuring model complexity (Wal-
lace 1985, 1987; Wallace and Nance 1985), and provides
diagnostic assistance using digraph representations of
simulation model specifications (Nance and Overstreet
1987a.b:; Overstreet and Nance 1983, 1986).

The third Model Analyzer prototype (Puthoff 1991)
provides automated and semi-automated graph-based
model diagnostic testing for model representations in the
Condition Specification format. A file containing a Con-
dition Specification of a model is submitted to the Model
Analyzer. This Condition Specification is parsed using
lex and yacc, and all analysis information is stored in an
INGRES relational database. Based on the action cluster
incidence graph and action cluster attribute graph, di-
agnostics are performed on the model specification. The
Model Analyzer can output various aspects of the model.
graphically display four different representations of the
model, and perform the following diagnostic testing
techniques: (1) analytical techniques (attribute utiliza-
tion, attribute initialization, attribute reference, action
cluster determinacy, statement order dependency, con-
nectedness, accessibility, and out-complete), (2) compar-

732 Balci and Nance

IEL 120026 bl ICEL s st “t ———

i CLASS SPECIFICATION Trace Last N Entries
i Images: NO Analyze View Roport Trace Last N User Routines
1 Layouts: VES View Report) fI Trace Last N Attributes

Instances: NO Analyze View Report Irace Last N Statements
1 Trace Ith-to-Jth

f: LOGIC SPECIFICATION
Supervisory: YES Analyze Yiew Report
Self: YES Analyze View Report

{1 IMAGE SPECIFICATION

;4 DOynamic Objects: YES (CAnalyze) (view Report)

:[The Trace Data is owned by the model “transact".

“{DEFINITION AND INSTANTIATION
Layouts: NO Analyze View Report
Instances: NO Analyze Yiew Report
4 oocuMeNTATION N
Classes: VES Birginia Qech

Attributes: YES ?-Sng

VSSE Tools

Model Generator

Dosign

, Model Analyzer
Model Simulator Tool

Model: transact I Hodel Verifier
Simulate/Animate

Design
Transtator| Hodel Translator

1 wiRowenT o

S
’ Visual Simulator

Return

@omputer Heience

Figure 3: The Visual Simulation Support Environment

SAVE IMAGE »

A pen) ume) recr) (_text_J(Cerreee)(_arc) (Csecea) 0AD

CLEAR SUBMODEL
= STATIC OBJECT
.|| West to East | |tane 8Lane 7| Lane & " Toms Creek Rd. gf,:;':f.i,f,"é“”
) Liaht) N\ 0 - BASE DYNAMIC
et N DECOMPOSITION LAYOUT
p
) NI 2
2 %
Church N / .
J N | m—— X Prices Fork Rd.
x ~ \ “ [c |
\\‘ Y . 0

7D
Lane 9
1
S R 4 S 6
Cane 18
S T 1] 7 8 9
Cane 1T

Cas

<
x
<
N
\
/\
/
A

Prices Fork Rd. /

Nor th-South
N Light

N

~N

Joint Lane

AN

Figure 4: Graphical Model Construction under the Visual Simulation Support Environment

Simulation Model Development Environment 733

ative techniques (attribute cohesion, action cluster co-
hesion, and complexity), and (3) informative techniques
(immediate precedence structure and decomposition)
(Overstreet and Nance 1983; Nance and Overstreet
1987a,b).

The prototype also includes a rule-based expert system
component, developed in Prolog on a VAX 8600, to pro-
duce a simplified action cluster incidence graph using
knowledge generic to simulation and knowledge specific
to the application domain (Overstreet and Nance 1986).

The fourth Model Analyzer prototype has been created
under the Visual Simulation Support Environment (Der-
rick 1992). This prototype accesses a relational repre-
sentation of a simulation model in an INGRES database
and performs completeness and consistency testing on
the model specification created by the VSSE Model Gen-
erator under the DOMINO conceptual framework.

3.7 Model Translator

The Model Translator translates the model specification
into an executable code after the quality of the specifica-
tion is assured by the Model Analyzer. The first proto-
type Model Translator has been developed under the
General Purpose Visual Simulation System (Bishop
1989; Bishop and Balci 1990). The second is a tool in the
Visual Simulation Support Environment (Derrick 1992).
Both prototypes extract the model specification from an
INGRES relational database and fully convert it into a C
programming language code. The use of C and INGRES
are completely hidden from the SMDE user. If trans-
lation errors occur, those errors are mapped back to the
specification and the user is informed about the locations
of the errors within the model specification. The sim-
ulator code is created by using object-oriented pro-
gramming constructs under the Process Interaction con-
ceptual framework (Balci 1988).

3.8 Model Verifier

The Model Verifier is intended for programmed model
verification (Whitner and Balci 1989). Applied to the ex-
ecutable representations, it provides assistance in sub-
stantiating that the simulation model is programmed
from its specification with sufficient accuracy. Extensive
groundwork and earlier research (Balci 1986a, 1987a,
1987b, 1989, 1990; Balci and Nance 1985; Whitner
1988) have contributed to the development of the Model
Verifier. A prototype Model Verifier has been developed
as part of the Visual Simulation Support Environment
(Derrick 1992). This prototype performs in-
strumentation-based dynamic testing on the executable
representation of the simulation model.

3.9 Other Tools

Source Code manager, Electronic Mail System, and Text
Editor are the other tools expected to be provided by the
programming environment of the operating system used.

Source Code Manager is a software tool which con-
figures the run-time system for execution of the pro-
grammed model, providing the requisite input and output
devices, files and utilities. Its development is being de-
layed until a standard executable model representation is
adopted for the SMDE.

Electronic Mail System facilitates the necessary com-
munication among people involved in the project. Pri-
marily, it performs the task of sending and receiving
mail through (local or large) computer networks. The
Sun workstation's MailTool is currently being used as
the Electronic Mail System of the SMDE. The Sun com-
puter workstation is a node on the Internet computer net-
work with the node name of “mdesun.cs.vt.edu™.

Text Editor is used for preparing technical reports,
user manuals, system documentation, correspondence,
and personal documents. Currently, the Sun text editor
serves as the text editor of the SMDE.

4 CONCLUDING REMARKS AND FUTURE RE-
SEARCH

The SMDE described in this paper can also be labeled
“Computer-Aided Simulation Software Engineering En-
vironment” or “‘Simulation Support Environment.” We
recognize that the complete set of requirements for
building a SMDE poses a significant technical challenge
under the objective of problem domain independence
within the discrete event simulation area. Nevertheless,
we have overcome the challenge by way of an evolu-
tionary development of SMDE tool prototypes. In the
creation of the Visual Simulation Support Environment
prototype, we have not only achieved the automation-
based software paradigm to a large extent, but also pro-
vided the capability of animating the simulation model.

One of the most challenging tasks has been the de-
velopment of a conceptual framework for visual simula-
tion modeling. The DOMINO—multifaceteD cOn-
ceptual fraMework for vIsual simulatioN mOdeling—
has been developed to provide the underpinnings of the
Visual Simulation Support Environment.

The future research will deal with completing the pro-
totyping of some SMDE tools and building a production
version of the SMDE, on a hardware/software platform
to be determined, based on the experience we have
gained over the last nine years.

734 Balci and Nance

ACKNOWLEDGEMENTS

The SMDE research project has been sponsored in part
by the U.S. Navy and IBM through the Systems Re-
search Center at VPI&SU. The contributions of all those
people listed as authors in the References section below
are gratefully acknowledged.

REFERENCES

Balci, O. 1986a. Credibility assessment of simulation re-
sults. In Proceedings of the 1986 Winter Simulation
Conference, J.R. Wilson, J.O. Henriksen, and S.D.
Roberts, Eds. IEEE, Piscataway, NJ, 38-43.

Balci, O. 1986b. Requirements for model development
environments. Computers & Operations Research
13:53-67.

Balci, O., Ed. 1987a. Proceedings of the Conference on
Methodology and Validation. Published as Simulation
Series 19, 1, Jan. 1988, SCS, San Diego, CA.

Balci, O. 1987b. Credibility assessment of simulation re-
sults: the state of the art. In Proceedings of the Confer-
ence on Methodology and Validation, O. Balci, Ed.
Published as Simulation Series 19, 1, Jan. 1988, 19-25.
SCS, San Diego, CA.

Balci, O. 1988. The implementation of four conceptual
frameworks for simulation modeling in high-level lan-
guages. In Proceedings of the 1988 Winter Simulation
Conference, M.A. Abrams, P.L. Haigh, and J.C. Com-
fort, Eds. IEEE, Piscataway, NJ. 287-295.

Balci, O. 1989. How to assess the acceptability and cred-
ibility of simulation results. In Proceedings of the
1989 Winter Simulation Conference, E.A. MacNair,
K.J. Musselman, and P. Heidelberger, Eds. IEEE, Pis-
cataway, NJ, 62-71.

Balci, O. 1990. Guidelines for successful simulation
studies. In Proceedings of the 1990 Winter Simulation
Conference, O. Balci, R.P. Sadowski, and R.E. Nance,
Eds. IEEE, Piscataway, NJ, 25-32.

Balci, O. and R.E. Nance. 1985. Formulated problem
verification as an explicit requirement of model cred-
ibility. Simulation 45:76-86.

Balci, O. and R.E. Nance. 1987a. Simulation model de-
velopment environments: a research prototype. Jour-
nal of the Operational Research Society 38:753-763.

Balci, O. and R.E. Nance. 1987b. Simulation support:
prototyping the automation-based paradigm. In Pro-
ceedings of the 1987 Winter Simulation Conference,
A. Thesen, H. Grant, and W.D. Kelton, Eds. IEEE,
Piscataway, NJ, 495-502.

Balci, O. and R.E. Nance. 1989. Simulation model de-
velopment: the multidimensionality of the computing
technology pull. In Impacts of Recent Computer Ad-
vances on Operations Research, R. Sharda et al., Eds.

Elsevier Science Publishing, New York, NY, 385-395.

Balci, O., R.E. Nance, E.J. Derrick, E.H. Page, and J.L.
Bishop. 1990. Model generation issues in a simulation
support environment. In Proceedings of the 1990 Win-
ter Simulation Conference, O. Balci, R.P. Sadowski,
and R.E. Nance, Eds. IEEE, Piscataway, NJ, 257-263.

Barger, L.F. 1986. The model generator: a tool for sim-
ulation model definition, specification, and doc-
umentation. M.S. Thesis, Department of Computer
Science, VPI&SU, Blacksburg, VA, Aug.

Barger, L.F. and R.E. Nance. 1986. Simulation model
development: system specification techniques. Tech-
nical Report SRC-86-005, Systems Research Center,
VPI&SU, Blacksburg, VA, Aug.

Beams, J.D. 1991. A premodels manager for the simula-
tion model development environment. M.S. Thesis,
Department of Computer Science, VPI&SU, Black-
sburg, VA, Sept.

Beams, J.D. and O. Balci. 1992. Providing reusability
and learning support in the simulation model develop-
ment environment. Technical Report TR-92-03, De-
partment of Computer Science, VPI&SU, Blacksburg,
VA, Mar.

Bishop, J.L. 1989. General purpose visual simulation
system. M.S. Thesis, Department of Computer Sci-
ence, VPI&SU, Blacksburg, VA, June.

Bishop, J.L. and O. Balci. 1990. General purpose visual
simulation system: a functional description. In Pro-
ceedings of the 1990 Winter Simulation Conference,
O. Balci, R.P. Sadowski, and R.E. Nance, Eds. IEEE,
Piscataway, NJ, 504-512.

Box, C.W. 1984. A prototype of the premodels manager.
MDE Project Memorandum, Department of Computer
Science, VPI&SU, Blacksburg, VA.

Derrick, E.J. 1988. Conceptual frameworks for discrete
event simulation modeling. M.S. Thesis, Department
of Computer Science, VPI&SU, Blacksburg, VA.

Derrick, E.J. 1992. A visual simulation support environ-
ment based on a multifaceted conceptual framework.
Ph.D. Dissertation, Department of Computer Science,
VPI&SU, Blacksburg, VA, Apr.

Derrick, E.J., O. Balci, and R.E. Nance. 1989. A com-
parison of selected conceptual frameworks for simula-
tion modeling. In Proceedings of the 1989 Winter
Simulation Conference, E.A. MacNair, K.J. Mussel-
man, and P. Heidelberger, Eds. IEEE, Piscataway, NJ.,
711-718.

Frankel, V.L. 1987. A prototype assistance manager for
the simulation model development environment. M.S.
Thesis, Department of Computer Science, VPI&SU,
Blacksburg. VA, July.

Frankel, V.L. and O. Balci. 1989. An on-line assistance
system for the simulation model development environ-
ment. International Journal of Man-Machine Studies

Simulation Model Development Environment

31:699-716.

Hansen, R.H. 1984. The model generator: a crucial ele-
ment of the model development environment. Tech-
nical Report SRC-85-004, Systems Research Center,
VPI&SU, Blacksburg, VA, Aug.

Humphrey, M.C. 1985. The command language inter-
preter for the model development environment: design
and implementation. Technical Report SRC-85-011,
Systems Research Center, VPI&SU, Blacksburg, VA.

Kranowski, M. 1988. CADCAS: A tool for computer-
aided documentation and credibility assessment of a
simulation study. M.LS. Project Report, Department
of Computer Science, VPI&SU. Blacksburg, VA.

Moose, R.L., Jr. 1983. Proposal for a model development
environment command language interpreter. Technical
Report SRC-85-012, Systems Research Center,
VPI&SU, Blacksburg. VA, Dec.

Moose, R.L., Jr. and R.E. Nance. 1987a. Model analysis
in a model development environment. Technical Re-
port SRC-87-010, Systems Research Center, VPI&SU,
Blacksburg, VA, July.

Moose, R.L., Jr. and R.E. Nance. 1987b. The design and
development of an analyzer for discrete event model
specifications. In Impacts of Recent Computer Ad-
vances on Operations Research, R. Sharda et al., Eds.
Elsevier Science Publishing, New York, NY, 407-421.

Nance, R.E. 1977. The feasibility of and methodology
for developing federal documentation standards for
simulation models. Final Report to the National Bu-
reau of Standards. Department of Computer Science,
VPI&SU, Blacksburg, VA, June

Nance, R.E. 1979. Model representation in discrete event
simulation: prospects for developing documentation
standards. In Current Issues in Computer Simulation,
N. Adam and A. Dogramaci, Eds., Academic Press,
New York, 83-97.

Nance, R.E. 1981. Model representation in discrete event
simulation: the conical methodology. Technical Re-
port CS81003-R, Department of Computer Science,
VPI&SU, Blacksburg, VA, Mar.

Nance, R.E. 1984. Model development revisited. In Pro-
ceedings of the 1984 Winter Simulation Conference, S.
Sheppard, U.W. Pooch, and C.D. Pegden, Eds. IEEE,
Piscataway, NJ, 75-80.

Nance, R.E. 1987. The conical methodology: a frame-
work for simulation model development. In Pro-
ceedings of the Conference on Methodology and Val-
idation, O. Balci, Ed. Published as Simulation Series
19,1, Jan. 1988, 38-43. SCS, San Diego, CA.

Nance, R.E. 1988. Contemplations of a simulated navel
or recognizing the seers among the peers. Technical
Report SRC-88-004, Systems Research Center,
VPI&SU, Blacksburg, VA, Jan.

Nance, R.E. and J.D. Arthur. 1988. The methodology

=1
w
[

roles in the realization of a model development en-
vironment. In Proceedings of the 1988 Winter Simula-
tion Conference, M.A. Abrams, P.L. Haigh, and J.C.
Comfort, Eds. IEEE, Piscataway, NJ, 220-225.

Nance, R.E. and O. Balci. 1984. A model development
environment for combat systems experimentation. Fi-
nal Report for FY 84 to the Naval Sea Systems Com-
mand and the Office of Naval Research, VPI&SU,
Blacksburg. VA, Oct.

Nance, R.E. and O. Balci. 1987. Simulation model man-
agement objectives and requirements. In Systems and
Control Encyclopedia: Theory, Technology, Applica-
tions, M.G. Singh, Ed. Pergamon Press., Oxford, 4328-
4333.

Nance, R.E., O. Balci, and R.L. Moose, Jr. 1984. Evalua-
tion of the UNIX host for a model development en-
vironment. In Proceedings of the 1984 Winter Simula-
tion Conference, S. Sheppard, U.W. Pooch, and C.D.
Pegden, Eds. IEEE, Piscataway, NJ, 577-584.

Nance, R.E.. A.L. Mezaache, and C.M. Overstreet. 1981.
Simulation model management: resolving the tech-
nological gaps. In Proceedings of the 1981Winter Sim-
ulation Conference, T.I. Oren, C.M. Delfosse, and
C.M. Shub, Eds. [EEE, Piscataway, NJ, 173-180.

Nance, R.E. and C.M. Overstreet. 1987a. Diagnostic as-
sistance using digraph representations of discrete
event simulation model specifications. Transactions of
the Society for Computer Simulation 4:33-57.

Nance, R.E. and C.M. Overstreet. 1987b. Exploring the
forms of model diagnosis in a simulation support en-
vironment. In Proceedings of the 1987 Winter Simula-
tion Conference, A. Thesen, H. Grant, W.D. Kelton,
Eds. IEEE, Piscataway, NJ, 590-596.

Overstreet, C.M. and R.E. Nance. 1983. Graph-based di-
agnosis of discrete event model specifications. Tech-
nical Report TR-83-28, Department of Computer Sci-
ence, VPI&SU, Blacksburg, VA, June.

Overstreet, C.M. and R.E. Nance. 1985. A specification
language to assist in analysis of discrete event simula-
tion models. Communications of the ACM 28:190-
201.

Overstreet, C.M. and R.E. Nance. 1986. World view
based discrete event model simplification. In Mod-
elling and Simulation Methodology in the Artificial In-
telligence Era, M.S. Elzas, T.I. Oren, and B.P. Zei-
gler, Eds. North-Holland, Amsterdam, 165-179.

Overstreet, C.M., R.E. Nance, O. Balci, and L.F. Barger.
1986. Specification languages: understanding their
role in simulation model development. Technical Re-
port SRC-87-001, Systems Research Center,
VPI&SU, Blacksburg, VA, Dec.

Page, E.H.. Jr. 1990. Model generators: prototyping sim-
ulation model definition, specification, and doc-
umentation under the conical methodology. M.S.

736 Balci and Nance

Thesis, Department of Computer Science, VPI&SU,
Blacksburg. VA, Aug.

Puthoff, F.A. 1991. The model analyzer: prototyping the
diagnosis of discrete-event simulation model spec-
ifications. M.S. Thesis, Department of Computer Sci-
ence, VPI&SU, Blacksburg. VA, Sept.

Wallace, J.C. 1985. The control and transformation met-
ric: a basis for measuring model complexity. M.S.
Thesis, Department of Computer Science, VPI&SU,
Blacksburg, VA, Mar.

Wallace, J.C. 1987. The control and transformation met-
ric: toward the measurement of simulation model com-
plexity. In Proceedings of the 1987 Winter Simulation
Conference, A. Thesen, H. Grant, W.D. Kelton, Eds.
[EEE, Piscataway, NJ, 597-603.

Wallace, J.C. and R.E. Nance. 1985. The control and
transformation metric: a basis for measuring model
complexity. Technical Report SRC-85-007, Systems
Research Center, VPI&SU, Blacksburg, VA, Mar.

Whitner, R.B. 1988. A taxonomical review of software
verification techniques: an illustration using discrete-
event simulation. M.S. Thesis, Department of Com-
puter Science, VPI&SU, Blacksburg, VA, Oct.

Whitner, R.B. and O. Balci. 1989. Guidelines for se-
lecting and using simulation model verification tech-
niques. In Proceedings of the 1989 Winter Simulation
Conference, E.A. MacNair, K.J. Musselman, and P.
Heidelberger, Eds. IEEE, Piscataway, NJ, 559-568.

AUTHOR BIOGRAPHIES

OSMAN BALCI is an Associate Professor of Computer
Science at Virginia Polytechnic Institute and State
University (VPI&SU). He received B.S. and M.S.
degrees from Bogazi¢i University in Istanbul, Turkey in
1975 and 1977, and M.S. and Ph.D. degrees from
Syracuse University in 1978 and 1981. He joined the
Computer Science faculty at VPI&SU in 1981. Dr. Balci
is the Vice Chair/Chair-Elect of the ORSA Computer
Science Technical Section, Guest Editor of a yearly
volume of Annals of Operations Research journal on
Simulation and Modeling; Feature Article Co-Editor of
ORSA Journal on Computing; Quality Assurance Area
Editor of ACM Transactions on Modeling and Computer
Simulation; Simulation and Modeling Category Editor of
ACM Computing Reviews,; Credibility Assessment Track
Coordinator of the 1993 DoD Conference on Computer
Based Simulations for Military Systems; and Modeling
Methodology Track Coordinator of the 1992 WSC. He
has served as: General Chairman of the ORSA CSTS
conference “Computer Science and Operations Research:
New Developments in Their Interfaces” (Jan. 1992,
Williamsburg, VA); Proceedings Editor of the 1990
WSC; PC Program Director, 1988-89; Program

Chairman and Proceedings Editor of the SCS conference
on Simulation Methodology and Validation, 1986-87;
and Vice Chairman of ACM SIGSIM, 1985-87. Dr. Balci
received the Teaching Excellence Award in 1988, 1991,
and 1992 in his department at VPI&SU. He received a
plaque for Distinguished Service from the Board of WSC
in 1990. He has published over 30 technical articles and
edited/co-edited four books. Dr. Balci has been a
Principal Investigator, a Co-Principal Investigator, or an
Investigator on research grants and contracts sponsored
by the U.S. Navy, NSF, and IBM with a total funding of
$1.64 million. His current research interests center on
simulation and modeling, software engineering, expert
systems, and performance evaluation. Dr. Balci is a
member of Alpha Pi Mu, Sigma Xi, Upsilon Pi Epsilon,
ACM, IEEE CS, ORSA, and SCS.

RICHARD E. NANCE is the RADM John Adolphus
Dahlgren Professor of Computer Science and the
Director of the Systems Research Center at Virginia
Polytechnic Institute and State University. He received
B.S. and M.S. degrees from N.C. State University in
1962 and 1966, and the Ph.D. degree from Purdue
University in 1968. He has served on the faculties of
Southern Methodist University and Virginia Tech, where
he was Department Head of Computer Science,
1973-1979. Dr. Nance has held research appointments at
the Naval Surface Weapons Center and at the Imperial
College of Science and Technology (UK). Within ACM,
he has chaired two special interest groups: Information
Retrieval (SIGIR), 1970-71 and Simulation (SIGSIM),
1983-85. He has served as Chair of the External
Activities Board, the Outstanding Service Awards
Subcommittee, the ad hoc Conference Procedures
Committee and the ad hoc Film Committee that produced
Computers in Your Life. The author of over 80 papers on
discrete event simulation, performance modeling and
evaluation, computer networks, and software
engineering, Dr. Nance has served on the Editorial Panel
of Communications ACM for research contributions in
simulation and statistical computing, 1985-89, as Area
Editor for Computational Structures and Techniques of
Operations Research, 1978-82. and as Department Editor
for Simulation, Automation, and Information Systems of
IIE Transactions, 1976-81. He served as Area Editor for
Simulation, 1987-89 and as a member of the Advisory
Board, 1989-92, ORSA Journal on Computing. He is the
founding Editor-in-Chief of the ACM Transactions on
Modeling and Computer Simulation. He served as
Program Chair for the 1990 Winter Simulation
Conference. Dr. Nance received an Exceptional Service
Award from the TIMS College on Simulation in 1987.
He is a member of Sigma Xi, Alpha Pi Mu, Upsilon Pi
Epsilon, ACM, IIE, ORSA, and TIMS.

