Proceedings of the 1992 Winter Simulation Conference
ed. J. J. Swain, D. Goldsman, R. C. Crain, and J. R. Wilson

PARALLEL SIMULATION USING CONSERVATIVE TIME WINDOWS

Rassul Ayani
Hassan Rajaei

Department of Telecommunication and Computer Systems
Royal Institute of Technology,
S-100 44, Stockholm, Sweden

ABSTRACT

This paper, presents a Conservative Time Window(CTW)
algorithm, for parallel simulation of discrete event
systems. The physical system to be simulated is
partitioned into n disjoint sub-systems, each of which is
represented by an object. The CTW-algorithm identifies a
time window for each object, such that events occurring
in each window are independent of events in other
windows and thus they can be processed concurrently.
The CTW-algorithm was implemented on a shared
memory multiprocessor, a Sequent Symmetry S81 with
16 processors. We measured performance of the CTW
algorithm on two types of network topologies, feed-
forward networks and networks with feedback loops. We
used three metrics to measure performance: Speedup,
Average Number of Independent Windows detected by the
algorithm, and Average Number of Events occurring in
each Window. The obtained results suggest that the
performance of the CTW algorithm is good for certain
classes of applications.

1. INTRODUCTION

Two main paradigms, so called optimistic and
conservative approach, have been proposed for distributed
discrete-event simulation. The optimistic paradigm
(Jefferson 1985) requires both time and space for saving
state variables and performing roll back (Fujimoto 1989,
Righter and Walrand 1989), while the conservative
paradigm (Chandy and Misra 1979, Misra 1986, Peacock,
Wong, and Manning 1979) is vulnerable to deadlock and
memory overflow in general (Misra 1986, Wagner,
Lazowska, and Bershad 1989).

Lubachevsky (1988) suggests a conservative approach
to parallel simulation, where an incoming (outgoing)
spherical region is defined for each node. This region is
combined with a bounded lag restriction to determine a
set of safe events which can be processed concurrently.

Nicol (1991) has proposed another conservative
protocol which is in many aspects similar to the one
proposed by Lubachevsky. In this protocol, each LP may

709

advance its time up to a global ceiling. We discuss in
more detail the relationship of the work of Lubachevsky
and Nicol to our scheme in Subsection 5.3.

Another approach to parallel simulation has been
introduced by Sokol, Bristo, and Wieland (1988), using
Moving Time Windows (MTW). In this approach, a
global time window, which is dynamically adjusted, is
assigned to the nodes. Events within the time windows
are assumed to be parallel. An anomaly occurs when a
node schedules an event earlier than the recipient node's
latest executed event. The essential point of this approach
is that the authors relax some of the precedence
constraints of the traditional sequential simulation.
Consequently, result of MTW scheme is not necessarily
identical to the results of the sequential one.

The principal contribution of our paper is to present a
parallel simulation scheme which employs Conservative
Time Windows (CTW) and to evaluate its performance.
The system to be simulated is partitioned into n disjoint
sub-systems, each of which is represented by an object.
The scheme identifies a time window for each object such
that events within these windows are independent and can
be processed concurrently. In our scheme presented in this
paper, the size of each window is calculated in each
iteration of the algorithm using feature of the system
being simulated. Thus, different windows may have
different sizes if the nodes are advancing heterogeneously
As opposed to other similar methods, e.g. Lubachevsky
(1989), Nicol (1991), the windows are not bounded from
above by a global ceiling. We will show that this feature
of the CTW-algorithm exploits more parallelism
compared to the case where a global ceiling must be kept
by all nodes. We conducted extensive experiments to
measure performance of the CTW-algorithm. Our results
show that the CTW-algorithm gives a significant speedup
over a good sequential simulator in many cases.

The rest of this paper is organized as follows: First,
some definitions are given in section 2, and then the
CTW-algorithm is presented in sections 3 and 4.
Performance measurement results are presented in section
5. Finally, some conclusions are given in section 6.

710 Ayani and Rajaei

2. PRELIMINARIES

The system to be simulated is partitioned into n disjoint
sub-systems, each of which is represented by an object.
Thus, the simulation system consists of n objects,
denoted by Oy, O», ..., Op which communicate with
each other at discrete times. Each object O; has its own
local time LT; and maintains its own event list EL;.

Definition 1: The directional distance of an object
O; to another object Oj of the system, denoted by djj, is
defined as the lower bound on the simulated time delay
between the occurrence of any possible event in O; and
its possible effect on O;.

Definition 2: Event x may affect event y, denoted by
x—y, if x schedules an event z for Oj which occurs before
y, i.e t(z) < t(y). Otherwise x cannot affect y, denoted

by x-»y.

Considering the relation between x and y, where x is
in Oj and y is in Oj, the following cases may arise:

i) 1(x) + d[j <t(y).
Event x may schedule an event z for O; with
t(z)=t(x)+d;j < 1(y). Hence, according to definition 2, x
may affect y. Thus,

t(x) +dij < t(y) => x—y 1)

i) t(x) +dij > ((y).
Suppose that execution of event x schedules an event z
for O;. Since dj; is the lower bound for the time delay
(definition 1), it follows that:
t(z) 2 t(x) + d,'j 2 1(y)
Consequently, processing x cannot cause any effect on y.
Thus,

Wx)+dij21(y) = xpy V)]

Definition 3: Two events x and y are said to be
independent if they do not affect each other, denoted by

xpyand y-px = xddy 3)

Thus,
!(x) + djj 2 1(y) and 1(y) + dji2(x) =xpy @)

Denote the first event in the event list of an object O; by
e;, i.e.,
t(e;) = min{ ¢(x) } ©®)
x € EL;
Thus,

If t(e;) + dij 2 t(ej) and (ej) + dj; > ((e;), then ejwe; (6)

These relations can be used to detect concurrent events in
a system, as is discussed later.

3. CONSERVATIVE TIME WINDOWS (CTW)

A conservative parallel simulation scheme, called three
phase algorithm (TPA), has been proposed by Ayani
(1991). The TPA, as sketched in Figure 1, identifies at
most one event per object in each of its iterations (Ayani
1991). Since the CTW-algorithm is an extension of the
TPA, we begin by discussing the TPA.

repeat
1) Nomination Phase:
Mark the first event of each object as a
candidate for concurrent evaluation.
Barrier
2) Concurrency Control Phase:
Identify independent events among the
marked ones using (6)
Barrier
3) Evaluation Phase:
Process the independent events.
Barrier
Until (End-of-Simulation)

Figure 1: The Three Phase algorithm based on distances
between objects

Definition 4: A time window is simply a time interval
[L, U]. A tume window for O; is denoted by Wi=[Lj,
Uil.

In this paper, we present an algorithm which produces »
time windows (one per object) in each of its iteration.

Definition S5: Two time windows W; and W;
belonging to two different objects O; and O; are said to
be independent if

xedy V (x,y) :{(x) € Wjand (y) € W

Definition 6: Similarly, ¥ windows W1, Wa, ..., Wi
are said to be independent if they are pairwise
independent.

Lemma 1: Assume that W; = [¢(e;), Uj] and W; = [(e;),
Uj] are two time windows for O; and O; respectively
(Figure 2). If

1) t(e)+ d[j > Uj and

i) t(ej) + dji 2 Uj
then W; and W; are independent.

Proof: For any pair (x, y): x € EL;, t(x) € Wijandy €
ELj, t(y) e Wj,i#j,i,j=1,..n,

we have: Uj 2 ((x) 2> t(e;) and Uj21(y) 2 ((e)).

Since djj20 =

Parallel Simulation Using Conservative Time Windows 711

t(x) + djj 2 t(e;) + djj 2 Uj 2 1(y)
and similarly,
1(y) +dji 2 1(ej) + dji 2 U;2 1(x)

and thus according to (4) these two events are
independent. ¢

Lemma 1 states that if Wj and W; are two time windows
for O; and Oj respectively, such that (1) processing e;
does not affect O;j (directly or indirectly) before
simulation time Uj and, (2) processing ej does not affect
O; before U;j (directly or indirectly, as illustrated in
Figure 2), then Wj and W; are two independent windows.

t(ei) Ui t(ej) + dji
. ej) + dji ol

wj > 0
t(ej) uj t(ei) + dij

Figure 2: Two Independent Time Windows

Lemma 2: Suppose that Wj = [¢(e;), Uj] is a time
window for Oj,j = 1,2, ...,k <n and

Uj = min(t(e;) + djj} M
1<i<k
i#j

then W1, Wo, ..., W are independent.

Proof: For any pair (x, y): x € EL;, ¢(x) € W; and
ye€ ELj(y)e Wi i#j,i,j=1..k,
we have: Uj 2 t(x) 2 t(e;) and Uj 2 ((y) 2 t(e;j).
Since #(x) 2 t(e;) = t(x) + djj 2 t(e;) + djj
Using (7) = #(x) + djj 2 t(e;) + djj 2 Uj
Similarly
ty) + dji 2 fej) + dj,' > U;
which (according to Lemma 1) implies that x and y are
independent.
Since x and y are arbitrary in Wj and W; respectively, it
follows that Wj and W; are independent. ¢

This Lemma states that if W1, Wa, ..., Wy are k time
windows, where Uj is the lowest timestamp that object
Oj may receive, then these windows are independent.
Based on Lemma 2, a time window Wj can be calculated
for each object O; (W; may be empty), such that any
event x € EL; with t(x) € Wj is independent of any other
event y € EL; with #(y) € Wj, fori,j=1, 2, .., nI#]
To calculate these windows, each object Oj first
nominates a window W;j = [t(e;), MAX_SIM_TIME],

where MAX_SIM_TIME is the simulation time up to

which the system will be simulated.

Second, the length of the windows is adjusted by
checking the possible effect of processing e¢; € EL; on
other objects. This can be done by computing Uj
according to (7) and then comparing it with t(e;). Thus, if
Uj < 1(¢;) for an object Oj, then an empty window W; =[]
is assigned to Oj, otherwise the window size is adjusted,
by setting W; = [«(ej), Uj).

Finally, events in different windows are processed
concurrently and new events (if any) are inserted in the
event list of the objects. A formal description of this
algorithm is given in Figure 3.

Figure 4 illustrates some iterations of the CTW-
algorithm for a system containing 3 objects, where Wj;
denotes a time window belonging to O; at iteration
number j. As can be seen, the size of the windows may
change radically and the local times of the objects move
forward asynchronously.

The CTW-algorithm has the following properties:

a) Events within a window are processed sequentially,
but, events within different Windows are independent
and can be processed concurrently.

b) The size of each window is dynamically determined.
Different windows, even those belonging to the same
iteration of the algorithm, may have different sizes (as
shown in Figure 4).

¢) Each of the three phases of the algorithm may be
executed by several processors in parallel. However,
synchronization is required between any two
consecutive phases.

Initialization stage : initialize the event lists and
other system variables
repeat
1) Nomination Phase:
for i =1 ton do
begin
W; = [t(ey), MAX_SIM_TIME];
end
Barrier

2) Adjustment Phase:
Identify independent windows as follows:
for j =1 ton do

begin
Uj= min{min({(¢;) + djj), MAX_SIM_TIME)
1<i<n
i)
IfU; < U(e;j) then Wj = []; else Wj = [l(ej),Uj];
end
Barrier

3) Evaluation Phase:
Process the events within these windows and insert
new events (if any).
Barrier
Until (End-of-Simulation)

Figure 3: The CTW-algorithm

712 Ayani and Rajaei

Space
wi
w12 w13

o 1) [

w21 / w22 /—"_—/ w23 /
02] \
o w3t w32 w33

fteration 1 | yoration 2 Rteration 3

I Time

Figure 4: Results of performing 3 iterations of of the
CTW-algorithm

4. IMPROVING THE CTW-ALGORITHM

Up to now it was assumed that each object, Oj,
maintains its directional distances to all other objects of
the system. The CTW-algorithm based on this
assumption suffers from the following drawbacks:

i) It restricts scalability of the model, since it is difficult
to calculate all the directional distances in a large
network, possibly with several hundreds of nodes.

ii) The adjustment phase of the algorithm (Figure 3)
requires an order of n2 comparisons to adjust the
upper bounds of the windows.

Therefore, it is desirable to replace this rather impractical
constraint by a more realistic one.

4.1 The Immediate Successor Constraint

Assume that each object maintains its directional
distances to its immediate successors only. Suppose that
01, O3, and O3 are three objects such that O3 is a second
order successor of O1, as illustrated in Figure 5.

Figure 5: A tandem network

Further, suppose that ¢}, €2, and e3 are events occurring
in O1, O3, and O3 respectively. Consider the effect that
processing e; may have on e3:

casel: t(ej) + dj2 2 t(ez). This means e; cannot affect
03.

case2: t(ej) + dj2 < t(ez). This implies that processing
e] may schedule an event, with time t(e}) + dj2,
in EL7, which in turn may schedule an event in
EL3 prior to e3. However this may happen only
if

tey)+djo+drz <tfe3).

Thus in the latter case, processing e; raises the
possibility that an event is inserted in ELy prior to €,
the effect of which on e3 must be checked.
Generalization of this observation leads to a modified
CTW-algorithm as illustrated in Figures 6 and 7. The
implementation details of this algorithm, such as how to
access shared data structures, are not given in this paper.

5. PERFORMANCE EVALUATION

The purpose of this section is to investigate behavior of
the CTW algorithm under various conditions. Some
researchers, e. g.,Fujimoto (1989), Nicol (1988), Reed,
Malony, and McCredie (1988), Wagner, Lazowska, and
Bershad (1989), have shown that network topology,
message population, timestamp increment, routing
policy, and network size are among the most important
factors affecting performance of parallel simulation
schemes. We followed a similar approach and measured
the result of changing these parameters on the
performance of the CTW-algorithm. We conducted
extensive experimental measurements on two main types
of topologies: feed-forward networks and networks with
feedback loops. The experiments were performed on a
Sequent Symmetry S81 shared memory computer with
16 processors. The simulation tasks were specified and
executed in the SIMA parallel simulation environment
(Rajaei 1992).

repeat
1) Nomination Phase:
fori=1tondo
begin
min_time; = t(e;); U; = MAX_SIM_TIME;
Wi = [(e;), Uj); cand[{] = true;
/* cand[i] = true if Wj is non-empty and false
otherwise. */
end
Barrier
2) Adjustment Phase
fori=1tondo
begin
if cand[i] = true then
begin
[*Check the effect of processing e; on Oj's
immediate successors by calling: */
control_event(i, t(e;))
end
end
Barrier
3) Evaluation Phase:
/* Events within different windows are independent
and can be processed concurrently. */
Process the parallel events and insert new events (if
any).
Barrier
Until (End-of-Simulation)

Figure 6: A generalized version of the CTW-algorithm

Parallel Simulation Using Conservative Time Windows 713

control_event(i, f) ::
/* i = obj_number, ¢ = time of an eventin O;*/
begin
for all immediate successors, j of O; do
begin
if t +d;; <Ujthen Uj=1+d,;
if ¢t + d,~j< min_time[j] then
/* an event with time ¢ may be scheduled for
Oj and thus replace W; by an empty window */
begin
lock(j];
/* changes are done atomically, so check once
more if another object made the changes*/
ift + d,~j < min_time[j] then
begin
cand(i] = false; min_time[j] = ¢ + d;;;
unlock(j];
control_event(j, min_time[j]);
end;
else
unlock(j];
end
end
end

Figure 7: Details of the adjustment phase

We used the following metrics to evaluate the
performance of the algorithm:

¢ Speedup Sp: S, = T/ Tp , where Tp is the
execution time of the modified CTW-algorithm using p
processors, and T is the execution time of a sequential
simulator. In order to obtain realistic performance figures,
a conventional sequential simulator was also developed
and used as the basis for all performance comparisons.
The event list in the sequential simulator is represented
by a binary heap. The binary heap gives O(logn) searches
for each insertion (or deletion), compared to O(n) searches
required by a linked list data structure.

¢ Average Number of Independent Windows
(ANIW): Those windows that contain at lease one event
and are eligible to be processed in the evaluation phase of
the algorithm (Figure 3) are counted as independent.
Thus, ANTW can be used as a measure for the amount of
parallelism detected by the CTW algorithm.

¢ Average Number of Events per Window
(ANEW): At the beginning of the evaluation phase each
Independent window contains one or more events. The
number of events occurring in different windows may
vary radically. The average number of events occurring in
an independent window is denoted ANEW.

5.1 Feed-forward Networks

As benchmark for this type of topologies, Multistage
Interconnection Network, MIN, was used (Figure 8). The
size of the network was varied between 4 and 9 stages (16
to 512 inputs). Each switch of the network was
represented by an object. Messages were generated by
source nodes attached to inputs, assuming a Poisson
distribution. The arrival rate was assumed to be 1/3 for
each input link (2/3 for each input switch) in most of the
experiments. However we also performed some limited
experiments with arrival rate 1/2. The simulation time
for all experiments was assumed to be 100,000 units.
The service time of a message j at a node i, STjj, was
defined as:

STij=ci+vj
where
¢; is the constant part of the service time for node i; it
can be considered as the minimum time a node
needs to process a message, and
vj is the variable part of the service time depending
on the message j.

5.1.1 Symmetric Workload

In this set of experiments, we assumed that the message
destination is uniformly distributed among the N outputs
of the MIN; and whenever a message reaches its
destination it is discarded. Hence, the total number of
messages in the network may change. The values of ¢;
and v; are calculated in the following way: ¢; = C +
expntl(A); vj= expntl(B), where A, B, and C are some
constants. In this way, C is a common constant, but
expnl(A) generates an individualized value for each of the
objects. Thus, in general, ¢; # c, for i # k. Similarly, v;
values are different for different messages. The variable v;
is exponentially distributed with mean B.

We studied, among others, the impact of various
values of A, B, and C on performance of the CTW-
algorithm.

Figure 9 illustrate the relationship between the size of
the network and its performance for some values of A, B
and C. As can be seen, the size of the network has a
substantial impact on the speedup.

Figure 10 illustrates the relation between some of the
simulation parameters and the ANIW and Figure 11 for
the ANEW. As shown by the figures, the variation of B
and C does not have much impact on the ANIW and
ANEW. However, the size of the network has a
significant effect on the ANIW.

714 Ayani and Rajaei

0 0

—_— 1
1 2 | U o
N 1]
P T
u P
T 4 4
5] 5 7

S _I_ 6

7

STAGE 0 1 2

Figure 8: A Multistage Interconnection Network with
8 inputs

No. of processors: 15

94

8

Speedup

79 A=C=0, B=100

- % - A=0,8-90,C=10
--®:= A-0B8-80,=20
—o— A-19,8-80,C=1
—&— A-20,8-70,C=10

5 - T Y v -

* No. ‘of Stages

10

Figure 9: Impact of network size on speedup

ST = C + expntl(B)

wod @ B90,C-10
B B-s0, C-20
E] B=50, C=50

ANIW

2000 «

OO R R R S R

SRR
SOMONMANAMMIMMNMNN

O«

No. of Stages

Figure 10: Average Number of Independent Windows
detected by the CTW-algorithm in each iteration

ST - C + expnt(B)
- ¥ = B.90, C-10
wespers Bl Ca20

g B-50, C-50
]

ANEW

4 s ¢ 7 s 9 10
No. of Stages

Figure 11: Average Number Events occurring in each
Windows.

5.1.2 Asymmetric Workload

To measure the performance under asymmetric workload,
we assume that P-percent of the messages are sent to a
hot-spot node. In our experiment, we varied the value of
P between 0 and 100. For the sake of simplicity, this
experiment was carried out with a constant service time
of 10 assigned to all nodes. Figure 12 illustrates the
impact of P on the speedup. The speedup is stable for
low values of P, but it drops considerably when the
number of hot-spot messages reaches certain level. We
may call this value of P as turning-point, which is equal
to 20 in our experiment (Figure 12).

No. of processors: 15
Network Size: 512 inputs

*q Anival rate: 1/3

.01 Rl 1 10 100

Figure 12: Obtained speedup when P% of messages are
sent to a hot-spot node

5.2 Networks with Feedback Loops

A torus network (Figure 13) was chosen as benchmark
for this type of topologies. The size of the network was
varied from 4x4 to 20x20. Messages were initially
generated for each node and sent out to one of the output
links of the node. Hence, the message population was
kept constant during the simulation. We experimented
with cases where 1, 4, 10, 50, and 100 initial messages
were generated for each node.

The service time for a node i was defined as:

STi=ci+v;

where

ci is the constant part of the service time, and

v; is the variable part of the service time.

Parallel Simulation Using Conservative Time Windows 715

We assumed that ¢; = C + expntl(A) and v; =
expntl(B). The slight changes in the definition of the
service time (compared with 5.1) was aimed at making
comparison of our results with those reported in the
literature easier.

OFO
56
Oror

Figure 13: A torus network with dimension d (number
of nodes: dxd)

QLY

5.2.1 Symmetric Workload

In this set of experiments, we assumed that messages are
routed uniformly to one of the four neighbours of a node.
We studied the impact of network size, message
population and the computation time required for a
message on speedup.

Figure 14 illustrates the impact of network size and
number of processors on speedup. The speedup increases
almost linearly for large torus networks, but much slower
for small ones (e.g., see the values for the 4x4 torus).

We introduced an artificial processing time, ¢, to each
message. The value of ¢ corresponds to the time required
for processing an event in a real simulation. Thus, ¢ can
be seen as event granularity. Figure 15 illustrates the
impact of ¢ on speedup, where d;j =10, forall i and j.

We also investigated the impact of network size and
message population on number of independent time
windows detected by the CTW algorithm. Figure 16
illustrates ANIW (which corresponds to the degree of
parallelism detected by the CTW-algorithm). As can be
seen, ANIW depends heavily on network size.

8
Initial msgs per node: 4
Network Dimension

61 —»— axs

weme gg
51 =k 122 L g
“eb- 16216 i

49 —0— 20x20

o 2 4 6 8 10 12 14 16
No. of Processors

Figure 14: The impact of network size on speedup,

where djj = 10 for all i and j,i.e. A=B =0, and C=10

No. of Processors: 15
m: initlal msgs per node
t: Busy loop time, msec

B ma1, t=0
B me10,t=0
O ma1, t=1.83
O ma10,t=1.83

A A S S S S S N 3]

4 8

16 20

12
Dimension

Figure 15: The impact of computation time needed by
a message on speedup, where djj = 0 for all i and J, i.e.
A=B=0,andC=10

»0

ST = C + 6xpnti(B)
2004 m: Inttial mags per node

m=10, Ce10
m=100, C=10
Mm=10, C=100
M=100, C=100

250

ANW
g

AN

Figure 16: Average Number of Independent Windows
detected in each iteration of the CTW-algorithm for
different network sizes and message populations

5.2.2 Asymmetric Workload

We introduced some lazy nodes in the torus network to
study the asymmetric case. We assumed that a lazy node
is 10 times slower than a normal node. The number of
lazy nodes has been varied between 0 (no lazy node) and
16, where 16 is the dimension of the torus network used
in these experiments. Figure 17 shows that the speedup
decreases when the number of lazy nodes are increased.
This figure indicates that the drop in the speedup depends
heavily on the message population.

5.3 Comparison with Related Works

Boris Lubachevsky has proposed a bounded lag algorithm
for parallel simulation (Lubachevsky 1988 and
Lubachevsky 1989). Our approach is similar to his in
many aspects. He also uses the distance between objects
(referred to as minimum propagation delay) and several
phases separated by barriers. However, he calculates an
incoming (outgoing) spherical region for each node and
uses these regions, in combination with a bounded lag
(BL) restriction, to determine a set of safe events.
Lubachevsky also calculates a global floor, which is the

716 Ayani and Rajaei

minimum of all event times, in each cycle of his
algorithm, and broadcasts this floor to all objects. His
approach uses a global window for all objects (ceiling of
the window = floor + BL). The size of BL has a
significant impact on performance (e.g. see Figure 18),

Dimension: 16x16
No. of processors: 15

m: hitial msgs per node
-8~ m=l
e

m=10

“0-q.
O '0'0'-0..._1

>
~&
--.-.-a‘...‘...‘_‘_‘:

[] 2 12 14 16

4 6 8 10

No. of Lazy Nodes
Figure 17: The impact of having k lazy nodes on the
speedup

but it must be specified by the user; and no method has
been proposed to find an optimal value. Moreover,
calculation and broadcasting of the floor requires an
additional overhead which depends on the number of
nodes. In our approach: (a) All windows are local, (b) The
width of each window is dynamically determined in each
iteration of the algorithm using a recursive function
(Figures 6 and 7) which is based on Lemma 2. (c)
Different windows, even those belonging to the same
iteration of the algorithm, may have different sizes (as
shown in Figure 4) and the windows are not cut from
above by a global ceiling. Our experiments indicate that
the latter feature of the algorithm exploits more
parallelism as opposed to the case where a global ceiling
must be kept (see Figure 18).

Nicol (1991) has proposed a conservative protocol
where each LP (corresponding to an object in our
notation) may advance its time up to a global ceiling.
However, calculation of the ceiling is different from the
one proposed by Lubachevsky.

Although an accurate comparison of our performance
results with the related works requires having the same
testbed and the same parameters, we try to correlate our
results with some of those reported in the literatures, in
particular with (Lubachevsky 1989, Nicol 1991).

Lubachevsky reports an efficiency of about 50%
corresponding to a speedup of 4.5 for simulating a 20x20
torus network using 9 Processors (Figure 11b in
Lubachevsky (1989)). We have obtained speedup of 5.5
for a similar case.

To evaluate the impact of BL on performance, we
introduced a BL restriction in the CTW-algorithm and
conducted several experiments. The experiments were
performed on a 16x16 torus network with exponentially
distributed timestamps. The results of these experiments
(Figure 18) indicate that the size of BL has a significant
effect on performance. In these experiments, we did not
use any global floor, but it would be interesting to study

the cost of calculating and broadcasting it. It should be
mentioned that Lubachevsky uses the BL parameter 1o
reduce the cost of identifying safe events, but it was not
considered here. Our conclusion is that BL and floor can
be used in certain applications where the cost related to
using them is less than the gained benefits.

Dimension: 16x16
No. of Processors: 15
ST = 10 + expnt}(90)

Bounded Lag;

cossnguese
ceQen
-—fp--

BL=10
BL=20
BL =30

=4a-= BL=100
v CcTW

Initial Messages per Node

Figure 18: The speedup obtained by imposing a
Bounded Lag (BL) constraint on the windows is compared
to the CTW-algorithm. A 16x16 torus network with
uniform routing is assumed.

Nicol has calculated, among others, processor
utilization of his protocol for self-initiating networks and
has determined where such a conservative protocol can
achieve better performance than Time Warp (Nicol 1991).
However, the global ceiling used in his protocol is an
important factor limiting performance of the scheme. For
instance, he reports 0.348 processor utilization for K =
32 messages per cycle (Nicol 1991, Table I). Whereas our
experimental result shows processor utilization of 0.67
when the CTW-algorithm with a similar set of
parameters is used. In our experiment, the overhead
assumed by Nicol (1991) was replaced by the actual one.

6. CONCLUSIONS

The CTW-algorithm described in this paper is a
conservative approach to parallel simulation. In this
approach, the system to be simulated is partitioned into n
disjoint sub-systems and each sub-system is represented
by an object. The algorithm produces a Time Window,
which may be empty, for each object. The width of the
windows is calculated in each iteration of the algorithm
and may be different for different objects (see Figure 4).
The number of non-empty windows produced in each
iteration of the algorithm and the size of each one depends
on features of the system being simulated and the used
paramelters, e.g. message population, network topology,
and network size. A significant feature of the CTW-
algorithm is that it, in contrast to other window based
methods reported in the literature, e.g. Lubachevsky
(1989), Nicol (1991), Sokol, Briscoe, and Wieland
(1988), produces local bounds for the time windows. Our
experiments indicate that this feature improves
performance of the algorithm.

Parallel Simulation Using Conservative Time Windows 717

We conducted extensive experimental measurements
on two main types of topologies, feed-forward networks
and networks with feedback loops. The purpose of these
experiments was to gain better understanding of the time
window protocols in general, and to evaluate performance
of the CTW-algorithm in particular. We used mainly
three metrics to measure the performance: Speedup,
ANIW, and ANEW. The obtained results suggest that:

i) The ANIW depends heavily on message population
and network size (see Figures 9 and 15).

ii) The speedup does not depend much on dj; for feed-
forward topologies.

iii) The CTW algorithm produces good speedup for
symmetric workloads, and in particular when size
of a network, message population, and the amount
of computation time needed to process each event
is large. Some variations in the service time of
messages affect the speedup, but its impact,
especially for feed-forward networks, is generally
not significant. With moderate asymmetric
workload (i.e., low percentages of hot-spot
messages for MIN, or few lazy nodes in Torus),
the speedup is not changed radically. However,
rapid drop in the speedup occurs with large amount
of asymmetry.

At the same time the experiments revealed several
limitations of the CTW-algorithm. First, it requires that
size of application is much larger than size of hardware.
For instance simulating a 4x4 torus (16 objects) on a
Sequent Symmetry with 16 processors produces poor
performance. However, increasing the size of the network
to 20x20 leads to substantially better speedup. Second,
the CTW-algorithm performs poorly for heterogeneous
applications. This kind of applications were studied by
introducing lazy nodes in the torus net (Figure 17), and
assuming hot-spots in MINs (Figure 12). This
phenomenon can also be observed when variation of the
djj for different objects is very high.

ACKNOWLEDGEMENTS

The paper was reworked and rewritten as the first author
was spending a year at the Georgia Institute of
Technology. The use of the resources at Georgia Tech and
the valuable supports given by Richard. M. Fujimoto are
greatefully acknowledged. This research has been
supported by the Swedish National Board for Technical
Development (STU).

REFERENCES

Ayani, A., 1991. Parallel Discrete-Event Simulation on
Shared Memory Multiprocessors. International Journal in
Computer Simulation. 1:81 - 97.

Chandy, K. M. and Misra, J. 1979. Distributed Simulation: A
Case Study in Design and Verification of Distributed
Programs. IEEE Transactions on Software Engineering,
SE-5:440-452.

Fujimoto, R.M., 1989. Time Warp on Shared Memory
Multiprocessor. Transactions of the Society for Computer
Simulation. 6:211-239.

Jefferson, D.R., 1985. Virtual Time. ACM Transactions on
Prog Lang. & Syst. 7:77-93.

Lubachevsky, B.D., 1988. Bounded lag distributed discrete
event simulation, in Proc. of the SCS Western
Multiconference on Distributed Simulation, pp. 183-191.

Lubachevsky, B.D., 1989. Efficient Distributed Event-
Driven Simulations of Multiple-Loop Networks.
Communications of the ACM. 32:111-131.

Misra, J., 1986. Distributed Discrete-Event Simulation.
ACM Comp. surveys. 18:39-65.

Nicol, D., 1988. Parallel Discrete Event Simulation of FCFS
Stochastic Queueing Networks. Parallel Programming:
Experience with Applications, Languages and Systems,
ACM-SIGPLAN, 124-137, July.

Nicol, D., 1991. Performance Bounds on Parallel Self-
Initiating Discrete-Event Simulations. ACM Trans. on
Modeling and Computer Simulation, Vol. 1, No.1, 24-50.

Peacock J.K., Wong J.W., and Manning E.G., 1979.
Distributed Simulation Using a Network of Processors.
Computer Networks, vol. 3:44 - 56.

Rajaei, H., 1992. SIMA: An Environment for parallel
Discrete Event Simulation. Proceedings of the 25th
Annual Simulation Symp. 147-155.

Reed D.A., Malony A.D., and B. D. McCredie B.D., 1989.
Parallel Discrete Event Simulation using Shared Memory.
IEEE transactions on software Eng. 14:541-553.

Righter, H., and Walrand J.C., 1989. Distributed Simulation
of Discrete Event Systems. Proceedings of the IEEE,
77:99-113.

Sokol L.M,, Briscoe D.P., and Wieland A.P., 1988. MTW: A
strategy for scheduling discrete simulation events for
concurrent execution. in Proc. of the SCS Western
Multiconference on Distributed Simulation, 34-42.

Wagner D.B., Lazowska E.D., and Bershad B.H., 1989.
Techniques for Efficient Shared-Memory Parallel
Simulation. in Proc. of the SCS Eastern Multiconference
on Distributed Simulation. 29-37.

AUTHOR BIOGRAPIES

RASSUL AYANI received his D.I degree from
Technische Hochshule in Vienna, Austria (1970) and his
Ph.D degree from the Royal Institute of Technology in
Stockholm. He is an Associated Professor in the
Departement of Telecommunications and Computer
System, Royal Institute of Technology in Stockholm,
Sweden. His current research interests are in parallel
architectures, parallel algorithms and parallel simulation.
He is Associate Editor of the ACM Transactions on
Modeling and Computer Simulation (TOMACS) and a
member of ACM, IEEE and SCS.

HASSAN RAJAEI received a MS from U. of Utah in
1979. He has been at the Royal Institute of Technology
in Stockholm since 1985 and currently is in the process
of finishing his Ph.D. His research interests are parallel
simulation, communication systems, and distributed
systems. He is a member of SCS.

