Proceedings of the 1992 Winter Simulation Conference
ed. J. J. Swain, D. Goldsman, R. C. Crain, and J. R. Wilson

APPROXIMATE TIME-PARALLEL SIMULATION OF QUEUEING SYSTEMS WITH
LOSSES

Jain J. Wang
Marc Abrams

Department of Computer Science
Virginia Polytechnic Institute and State University
Blacksburg, VA 24061-0106

ABSTRACT

This paper presents partial state matching simula-
tion using approximation for time-parallel simulation.
The notion of degree of freedom in time-parallel sim-
ulation is introduced. Two partial state matching
algorithms are proposed to simulate FCFS G/G/1/K
and G/D/1/K queues in which arriving customers
that find the queue full are lost. The performance
of the algorithms is studied. Experiment results with
M/M/1/K and M/D/1/K models show that potential
speedup and simulation accuracy of the algorithms
are good 1n general cases.

1 INTRODUCTION

Computer simulation is a process of computing a
sample path, or irajectory, of a target simulation
model, consisting of the time evolution of the state of
the model over a period of simulation time. The state
space and time domain of a simulation model form a
space-time region (Chandy and Sherman 1989). The
state spacc is typically defined as the set of compo-
nents, processes (in the process-oriented world view),
or state variables comprising a simulation model.
For parallel distributed simulations, parallelism can
be obtained through decomposing the state space
(space-parallel) or the time domain (time-parallel).
In this paper, the term simulation refers to discrete
event. simulation.

1.1 Space-Parallel Simulation

Many space-parallel algorithms have heen proposed
(Fujimoto 1990). These algorithins decompose a sim-
ulation model into components based on the model’s
state space. Each component is modeled by a log:-
cal process. Logical processes communicate with each
other through messages (Chandy and Misra 1981; Jef-
ferson 1985). In this approach, speedup is bounded
by the number of logical processes. For example, in a

700

queueing network model, each queue is usually mod-
eled by a logical process. When the network consists
of fewer queues than available processors, speedup
is limited to the number of queues. In addition,
speedup may be further limited by the overhead in-
volved in coordinating multiple processors to enforce
execution of events in chronological order (Fujimoto
1990), by structural dependencies (Wanger and La-
zowska 1989), and by time scale differences (Ammar
and Deng 1991) that exist within some models.

1.2 Time-Parallel Simulation

Time-parallel simulations (Ammar and Deng 1991;
Bagrodia, Chandy, and Liao 1992; Chandy and
Sherman 1989; Greenberg, Lubachevsky, and Mi-
trani 1990; Jones 1986; Lin and Lazowska 1991;
Reiter, Bellenot, and Jefferson 1991) exploit paral-
lelism through temporal decomposition of a simula-
tion model. Some of these simulations combine spa-
tial and temporal decomposition (Ammar and Deng
1991; Bagrodia, Chandy, and Liao 1992; Chandy and
Sherman 1989; Jones 1986; Reiter, Bellenot, and Jef-
ferson 1991). In this paper, a time-parallel simulation
refers to one that obtains parallelism solely through
temporal decomposition. A time-parallel simulation
partitions the trajectory into a number of segments,
or batches, along the time domain. Each batch is
assigned to one processor. Each processor computes
the batch assigned to it by simulating the entire sys-
tem independently (and possibly asynchronously) for
the time interval of the batch. Therefore, multiple
processors can simultaneously simulate the system at
different points in simulation time.

The initial state and the final state of a batch
are the initial and final values of all the state vari-
ables, respectively. The simulation proceeds in an
iterative manner. Initially, each batch is assigned a
guessed initial state. The batch is computed using
the guessed initial state. After computation of one
or more batches has completed, the guessed initial

Approximate Time-Parallel Simulation of Queueing Systems 701

states may be modified. Then the batches are cor-
rected using a state correction technique with the up-
dated initial states. The process is repeated until no
changes occur in any initial state, at which point the
simulation converges or reaches a fired point. We use
estimated trajectory and true trajectory to refer to an
intermediate trajectory before convergence and the
final trajectory after convergence, respectively.

The efficiency of time-parallel simulations rests on
the ability to select the initial states of each batch to
minimize the number of iterations required for con-
vergence and the availability of efficient state correc-
tion mechanisms. In the worst case, a time-parallel
simulation can take longer to execute than a sequen-
tial simulation.

In this paper we study time-parallel simulation us-
ing partial state matching with approximation. This
approach sacrifices simulation accuracy in exchange
for shorter convergence time. In this paper, two ap-
proximation techniques are introduced for simulating
FCFS G/G/1/K queues and FCFS G/D/1/K queues,
respectively. In both cases, arriving customers that
find the queue full are lost rather than block.

The rest of this paper is organized as follows. In
section 2, we review two related time-parallel sim-
ulation algorithms. Section 3 introduces the pro-
posed partial state matching simulation. Two partial
state matching algorithms and experiment results for
FCFS G/G/1/K and G/D/1/K queues with losses
are presented in sections 4 and 5. Conclusions are
given in section 6.

2 RELATED WORK IN TIME-PARALLEL
SIMULATION

In this section, we review two related time-parallel
simulation algorithms: (1) Greenberg, Lubachevsky,
and Mitrani’s (GLM) recurrence algorithm (Green-
berg, Lubachevsky, and Mitrani 1990) and (2) Lin
and Lazowska’s time-division algorithm (Lin and La-
zowska 1991). The GLM algorithm is discussed with
more detail because it forms the basis of one of our
approximation algorithms.

2.1 The GLM Algorithm

The GLM algorithm provides an efficient way to sim-
ulate a class of queueing network models which can
be expressed as recurrence relations and transformed
into a parallel prefix problem. Let D be a domain
and o be any associative operator on that domain.
Let N be any positive integer. A prefix problem is
to compute each of the products agoa;o...o0a; for
1 < k < N (Hills and Steele 1986; Lander and Fis-

cher 1980). We first review how the GLM algorithm
is applied to a FCFS G/G/1/20 model.

Fora FCFS G/G/1/oc model, let A; and D; denote
the arrival time and the departure time, respectively,
of job 7 for i=1,2,.. .N. Let a; denote the interarrival
time between job i and job 7 + 1, and é; denote the
service time of job 7. If A;, the arrival time of the
first job, is given, the arrival and departure time se-
quences Ay, Aq,..., Ay and Dy, Do, ..., Dy are the
solution of the following recurrence relations (Mitra
and Mitrani 1989):

Ai= Air+a;_; 1<i<N, (1)
D. = A+ 6 1=1,
v 7Tla;lZ(Di_1,Ai)+6i 1< < N.

It is assumed that job interarrival and service times
are continuous random variables whose values can be

pre-sampled. Therefore, sequences «1,...,any and
61,...,6n can be computed in advance.

In a G/G/1/o0 model, an event is a job arrival or a
departure. An event {ime sequence FEy, Eo, ..., Ean
1s the result of merging sequence A;,...,Any and
D, ..., Dy in time order. Because there are N jobs,
a total of 2N events will be simulated. The queue
length sequence Lo, L1, Lo, ..., Loy, where Lg is the

initial queue length and L;, 1 < i < 2N, is the queue
length immediately after event ¢, is obtained by solv-
ing the following recurrence relation:

I = Li_1+1 Eventiis an arrival,
7| Li—1—1 Event{is adeparture.

Therefore, the computation of the queue length se-
quence is again a prefix problem. Assume that the
number of processors, denoted P, divides N evenly.
To compute agoa;o...0a; for 1 <i < N in parallel,
the GLM algorithm performs the following steps:

1. Partition the sequence of ag,ai,...ay into P
batches evenly. Then batch {, 1 <! < P, will
contain a((,_l),N/pH,l, ey a,*N/p.

2. Compute f; = a(=1).n/P)41° - -0 nyp for all
1<(<P.

3. Assume there exists an « € D, such that (oa; =
a;, for 1 <i < N. Compute:

L =1,
ﬁ"{ fio...0ofi,y 1<I<P

4. Lev s; denote the product of agoa;o...0a; and ¢
and » be the quotient and the remainder of N_}P"
respectively. For 1 < i < N, compute:

702 Wang and Abrams

Bt r=0,q<P,
§; = B0 f, r=0,¢q=P,
ﬁq+loaq*(N/P)+lv"‘1ai 7':1601q<P'

Using the GLM algorithm to compute the job
arrival time sequences, the job departure time se-
quence, the queue length sequence, and the event
time sequence for a FCFS G/G/1/o0 queue requires
O(N/P+logP+logN) (Greenberg, Lubachevsky, and
Mitrani 1990). In the rest of this paper, a sequence
NavNag1. ..., Xy will be represented by (X, 3).

2.2 Lin and Lazowska’s Time-Division Algo-
rithm

Lin and Lazowska’s algorithm partitions the time-
domain through state matching. The state of a sys-
tem 1s defined by the values of the system’s state vari-
ables. A simulation is partial regenerative if there ex-
ists a subset of the system state variables such that
the subsystem represented by the subset can repeat
its state for an unlimited number of times as the sim-
ulation proceeds indefinitely. Such subset is called a
regenerative substate. Lin and Lazowska's algorithm
partitions the trajectory at the points where the re-
generative substate repeats its state.

For each batch, the simulation initializes the re-
generative substate with a pre-defined matching state
and gives the rest of the state variables arbitrary val-
ues. The batch is then computed based on this ini-
tial state until the regenerative substate matches the
matching state of the following batch. Later, when
the full information of the initial state is known, the
batch is fized up by applying a state correction mech-
anism. To exemplify the algorithm, consider compu-
tation of a G/G/1 model whose system state includes
the queue length, the remaining service times of the
jobs in the queue, and the current simulation time.
The regenerative substate contains the queue length
and the remaining service times. Assume that two
processors, p; and po, are available. Each processor
simulates a batch with the initial simulation time and
queue length set to zero (i.e., an idle server). Com-
putation of a batch stops when the server becomes
idle again. If p; finishes first and the final simulation
time of its batch is ¢, then ¢ is added to the time of
each event in the batch computed by ps, and p; can
initiate another batch whose correct initial time can
be decided when p, finishes.

3 PARTIAL STATE MATCHING SIMULA.-
TION WITH APPROXIMATION

To apply the GLM algorithm, recurrence relations
solvable as a prefix problem must be identified. For
Lin and Lazowska’s algorithm, a regenerative sub-
state must be identified such that there exists a state
correction mechanism which can fix up the batches ef-
ficiently. In addition, Lin and Lazowska’s algorithm
requires the matching states to occur at least (P-1)
times to obtain P batches. Moreover, for balancing
the load among processors, the occurrences of match-
ing states have to be evenly distributed in the time
interval of the simulation. Simulation models are not
likely to fit these conditions. This paper proposes
partial state matching with approximation to extend
the class of models to which time-parallel simulation
can be applied.

Before discussing the partial state matching simu-
lation, some definitions are required. Let S = {v;|k =
1,...,M} be the state space of a simulation model
which contains M state variables. Let vy ;(t) denote
the value of state variable vy at simulation time t after
J iterations (for j = 0,1,...) where 0 <t < 7 for some
7 > 0. The system stale at time t after iteration j and
before iteration j + 1 is represented by an M-tuple:
S;(t) = (v1,j (1), v2,;(t), ...var,;(t)). For discrete event
simulations, the simulation models change states only
at certain discrete simulation times ty,to,...,tn. The
trajectory of a simulation after j iterations is repre-
sented by the sequence: S;(t0),S;({1),...,S;(tn).

The simulation time interval [0,7] is partitioned
into P intervals: [bg, b,], (by,b2],...,(bp_1,bp], where
bo = 0 and bp = 7. The segment of the trajectory in
the interval (b;_1,b)] for 1 <! < P, and [bj_y, b for
[= 1 is referred to as batch . Each batch is assigned
with a processor and all batches are computed simul-
taneously. For batch {, 1 <1 < P, Sj_;(b-;) and
S;(b;) are called the initial and the final state, respec-
tively, of the batch at iteration j. That is, the initial
state of a batch is obtained from the final state of the
previous batch resulting from the previous iteration.
The simulation is said to have converged on v € S if
Uk’j(b,) = Uk,j’(bl) for all jl 2] and 0 _<_ l S P. If the
simulation has converged on all v, € S’ C S, then
the simulation is said to have partially converged on
subset S’. Otherwise S’ = S, and we say the sim-
ulation has ezactly converged. We call S — S’ the
unmalched set of the simulation, where ™ — " is the
set difference operator. The number of state variables
in the unmatched set is called the degree of freedom
of the simulation. Therefore, the degree of freedom
defines the number of states that must converge for
the sinulation to exactly converge. Note that the

Approximate Time-Parallel Simulation of Queueing Systems 703

degree of freedom of a simulation may decrease as j
increases because more state variables may converge
as the simulation proceeds.

Let jeon be the smallest j such that the simu-
lation exactly converges after j iterations. Then
S;(to), Sj(t1), ..., Sj(tn) 1s a true trajectory for j >
jeon and is an estimated trajectory for 0 < j < jeon.
At worst, a simulation requires P iterations to com-
plete because the correct initial state propagates at
least one batch for every iteration.

We propose a partial state matching simulation
which artificially fizes some state variables in the un-
matched set with approximate values so that these
state variables can be removed from the unmatched
set. As a result, the simulation which converges on
fewer variables will generally require fewer iterations
for convergence. In the following sections we will dis-
cuss two partial state matching algorithms for simu-
lating G/G/1/K queues and show some experiment
results of both algorithms.

4 FCFS G/G/1/K QUEUES WITH LOSSES

In this section we apply partial state matching to
a FCFS G/G/1/K model with losses in which the
arriving jobs that find the queue full are lost. In
the G/G/1/K model, we assume that job interarrival
times and service times are modeled by independent,
identically distributed random variables. Unless men-
tioned otherwise, in the rest of this paper a G/G/1/K
queue refers to one with a FCFS queueing discipline.

The GLM method described in section 2 can not
be applied directly to a G/G/1/K model with losses.
Let Q; denote the queue length immediately before
job i arrives. If we define the departure time of a lost
job to be 0, then the departure sequence satisfies the
following relation:

—_
o
~

D — mar(Dy,...,Di_1,A)+6 Q. <K,
' 0 Q. =N.

Proposed below is an partial state matching al-
gorithm to simulate a FCFS G/G/1/K model with
losses using multiple processors. It is an open ques-
tion whether there exists a linear recurrence equiva-
lent to (2) that is solvable by a parallel prefix algo-
rithm.

41 The G/G/1/K Partial State Matching
Algorithm

For a G/G/1/K model, the system state contains the
next arrival time, the queue length, and the remaining
service times (RST) of each job in the queue. The

next departure time can be determined by the RST of
the first job in the queue. Because the queue has room
for K jobs, there are ' RST's and ||S|| = A + 2. By
equation (1), job arrival times are constants and thus
S’ always contains the next arrival time. Therefore,
the initial degree of freedom of the simulation is the
initial value of ||S — S’|| which is (A" + 1). In this
section, we discuss an algorithm which reduces the
initial degree of freedom to one.

The algorithm consists of two phases. The first
phase simulates a G/G/1/oc model using the GLM
algorithm and generates an estimated trajectory. The
second phase which takes the finite buffer storage into
account transforms the estimated trajectory into a
better estimated trajectory. The phase-two trajec-
tory 1s still estimated and not in general the true tra-
Jectory because the transformation process involves
approximation of job departure times. Noted that if
the queue length in the first phase never exceeds R,
phase two is skipped because the trajectory generated
by phase one is a true trajectory.

For simplicity, in our algorithm we assume that the
number of processors divides the number of events
to be simulated evenly. Let L;; denote the queue
length immediately after event 7 at iteration j. The
algorithm is shown as follows:

Phase 1:

input: a G/G/1/K queue model and N (the number of
jobs).

output: (Ai,~) (job arrival time sequence); (Di n)
(phase-one job departure time sequence); (Lo2n)
(phase-one queue length sequence); (Ej2n) (event
time sequence).

begin
1. K’ =K.
2. N = o0.

3. Apply the GLM algorithm of section 2.1 to com-
pute (A1 n), (D1,~n), (Lo2n), and (E} on) of the
G/G/1/K queue.

end.

Phase 2:
input: (Loon); (E12n8).

output: (M;2~) (an event type sequence; the type
of an event can be arrived, departed, lost, or ig-
nored); (D} ,.) (phase-two job departure time se-
quence where m < N is the number of jobs enter-
ing the queue and not lost; D; is the time of the

704 Wang and Abrams

irn departure); (Lg,n) (phase-two queue length se-

quence).
begin
1. K=K"
2. 3 =0. For each I,1 <! < P, compute step 3 to 5
independently.
3. if j=0, then
b= U= D gy, 2 2V

{min(Lb,_l.]\") j=0,
Lb,—l,;

Ly —1,;-1 otherwise.

5. For by <1< hy,

min(Ll—l,] + ln A') Ll = Ll—] + 1.
L, = Lo=L

maz(Li-1,; —1,0) ' -1 — L.
arrwved L.; > L._y,,
M = departed L., < L.y,
R lost Lz,] = Ll—].] = A'v
ignored L,;, = L., =0.

6. j = 3+ 1. If there exists some | for 1 <1 < P such
that Ly, ; # Ls,,;—1 then go to step 4.

7. Create an empty sequence (D'). For 1 <1 < 2N, if
M., = departed, append E, to (D’).

end.

In phase two, step 3 computes batch boundaries at
the first iteration. Step 4 assigns each batch an initial
queue length which is obtained from the final queue
length of the preceding batch resulting from the pre-
vious iteration except for the first iteration at which
a guessed initial queue length is given. The guessed
initial queue length of each batch is obtained by
computing the minimum of the corresponding phase-
one queue length and the buffer size since the queue
length can not exceed the buffer size. Step 5 computes
the queue length sequence and decides each event’s
type. The computation of the queue length sequence
in step 5 assumes that at any simulation time ¢, when
a departure event occurs in the G/G/1/>c queue, a
departure event will also occur in the corresponding
G/G/1/K queue at t. Obviously, this assumption is
not true when losses occur. Therefore, the departure
times used in phase two to compute a queue length
trajectory are approximate. In the next section, we
will show that this approximation in departure times
will not cause significant errors in general. An impor-
tant property follows the assumption in step 5:

Table 1: Numbers of iterations for an M/M/1/K
model using the G/G/1/K partial state matching al-
gorithm. Each data point is an average of 10 runs.
Each run simulates 10° jobs which are divided into
210 batches. For each entry (a,b), a is the average
iteration number and (a — b, a + b) is the 90-percent
confidence interval for a.

K Y/ P=4 P=16 P=64 P=256 P=1024
1 1.2,0.2 1.7,0.3 2.0,0.0 2.0,0.0 2.0,0.0
.3 1.9,0.2 2.0,0.0 2.0,0.0 2.0,0.0 2.0,0.0
.5 2.0,0.0 2.0,0.0 2.0,0.0 2.0,0.0 2.0,0.0
7 2.0,0.0 2.0,0.0 2.0,0.0 2.0,0.0 2.0,0.0
) 2.0,0.0 2.0,0.0 2.0,0.0 2.0,0.0 2.0,0.0
1 .95 2.0,0.0 2.0,0.0 2.0,0.0 2.0,0.0 2.0,0.0
1.0 2.0,0.0 2.0,0.0 2.0,0.0 2.0,0.0 2.0,0.0
1.05 2.0,0.0 2.0,0.0 2.0,0.0 2.0,0.0 2.0,0.0
1.1 2.0,0.0 2.0,0.0 2.0,0.0 2.0,0.0 2.0,0.0
1.3 2.0,0.0 2.0,0.0 2.0,0.0 2.0,0.0 2.0,0.0
1 0.0,0.0 0.0,0.0 0.0,0.0 0.0,0.0 0.0,0.0
.3 0.0,0.0 0.0,0.0 0.0,0.0 0.0,0.0 0.0,0.0
.5 0.0,0.0 0.0,0.0 0.0,0.0 0.0,0.0 0.0,0.0
.7 1.1,0.2 1.6,0.3 2.0,0.0 2.0,0.0 2.0,0.0
.9 1.9,0.2 2.0,0.0 2.0,0.0 2.0,0.0 2.2,0.2
10 .95 1.9,0.2 2.0,0.0 2.0,0.0 2.0,0.0 2.3,0.3
1.0 2.0,0.0 2.0,0.0 2.0,0.0 2.0,0.0 2.7,0.3
1.05 2.0,0.0 2.0,0.0 2.0,0.0 2.0,0.0 2.6,0.3
1.1 2.0,0.0 2.0,0.0 2.0,0.0 2.0,0.0 2.6,0.3
1.3 2.0,0.0 2.0,0.0 2.0,0.0 2.0,0.0 2.1,0.2
1 0.0,0.0 0.0,0.0 0.0,0.0 0.0,0.0 0.0,0.0
.3 0.0,0.0 0.0,0.0 0.0,0.0 0.0,0.0 0.0,0.0
s 0.0,0.0 0.0,0.0 0.0,0.0 0.0,0.0 0.0,0.0
7 0.0,0.0 0.0,0.0 0.0,0.0 0.0,0.0 0.0,0.0
.9 1.0,0.0 1.4,0.3 2.0,0.0 2.6,0.3 7.71.1
.95 1.6,0.3 2.0,0.0 2.1,0.2 4.7,0.5 15.8,2.1
50 1.0 2.0,0.0 2.0,0.0 2.5,0.3 6.3,0.4 21.1,1.5
1.05 2.0,0.0 2.0,0.0 2.1,0.2 5.1,0.5 18.2,1.2
1.1 2.0,0.0 2.0,0.0 2.0,0.0 4.1,0.4 13.3,1.6
1.3 2.0,0.0 2.0,0.0 2.0,0.0 2.0,0.0 3.8,0.4
1 0.0,0.0 0.0,0.0 0.0,0.0 0.0,0.0 0.0,0.0
3 0.0,0.0 0.0,0.0 0.0,0.0 0.0,0.0 0.0,0.0
) 0.0,0.0 0.0,0.0 0.0,0.0 0.0,0.0 0.0,0.0
T 0.0,0.0 0.0,0.0 0.0,0.0 0.0,0.0 0.0,0.0
9 0.1,0.2 0.1,0.2 0.2,0.4 0.3,0.5 1.0,1.8
.95 1.1,0.3 1.3,0.4 2.1,0.5 4.8,1.6 17.0,6.1
100 1.0 2.0,0.0 2.2,0.2 4.9,0.6 17.3,1.7 66.6,6.6
1.05 2.0,0.0 2.0,0.0 3.2,0.5 9.9,1.1 36.5,4.9
1.1 2.0,0.0 2.0,0.0 2.0,0.0 4.9,0.5 16.5,1.5
1.3 2.0,0.0 2.0,0.0 2.0,0.0 2.0,0.0 3.8,0.4

Property 4.1: Forall 1 < i < 2N and 1 <j <
Jeons Li > Lij > Lij.... That is, the queue
length as a function of time of any iteration is a
lower bound on the queue length of the previous
iterations.

Step 6 checks the convergence of the simulation on
queue lengths and advances the simulation to the next
iteration if the simulation is not converged. Step 7
creates a departure time sequence. Note that Dj is
the (estimated) 7;; departure time rather than the
(estimated) departure time of job i. Given (Mj on),
it is easy to associate elements in (D]) with correct
job indexes.

Phase two requires O(jeon(N/P+1logP)) to execute
with P processors because step 1 to 4 take a constant
of time; step 5 and 7 take O(N/P); step 6 requires
O(logP). Therefore, the total execution time of this
algorithm is O[(N/P + logP + logN) + jeon(N/P +
logP)] in which the first term is the time required by
the GLM algorithm in phase one.

Approximate Time-Parallel Simulation of Queueing Systems 705

Phase-One Queue Length
Trajectory

..... Phase-Two Queue Length
True Trajectory

batch i

Figure 1: The first loss occurs at tg. An Ep occurs
at to and t; and an Eg occurs at 5. Sub-trajectories
from tg to t; and from ¢, to t, are two propagation
segments.

4.2 Experiment Results and Analysis

An experiment of the algorithm described above is
carried out for an M/M/1/K model. Table 1 shows
some results of the experiment. In general, it takes
only a few iterations to converge. Many iterations are
required only when both the traffic intensity (ratio of
A to p) is close to 1 and the buffer size is large. We
discuss this phenomenon next.

Recall that phase two of the G/G/1/K algorithm
is a process of transforming an initial estimated tra-
jectory into a more accurate trajectory. When there
1s no job being lost, phase-two computation is not
necessary. Otherwise, phase-one trajectory after the
first loss has to be modified. This is illustrated in
Figure 1. At tp where the G/G/1/K queue is full
and a job is lost. A change in queue length at ¢
has to be made and the change needs to be propa-
gated along the queue length trajectory. At time t;
the queue becomes full again. By property 4.1, the
queue length at time ¢; will be changed to A in the
first iteration in phase two regardless of the initial
queue length of batch i which contains t;. There-
fore, no matter how many iterations it takes for a
change to propagate from tg to t;, it is guaranteed
that the propagation segment between t; to to would
start with a correct initial queue length, namely K, at
any iteration. Similarly, at t,, where the G/G/1/x
queues become idle the estimated queue length at any
iteration in phase two will always be zero as well.
Thus, the propagation starting from ¢; will not pass
beyond t,. We call time points such as t; and t5 syn-
chronization points. Formally, ¢ is a synchronization
point of a trajectory if for all state variables vy in the
trajectory, vg j(t) = vk j.,.(t) for all 1 < j < jeon-
A propagation segment is a trajectory fragment en-
closed by two neighboring synchronization points. An
event which leads to a synchronization point is called
a synchronization eveni. Let Ep denote a (job ar-

rival) event immediately after whose occurrence the
G/G/1/K queue becomes full, and let Eg denote a
(job departure) event immediately after whose occur-
rence the G/G/1/00 queue becomes empty. Then,
Er and Eg are synchronization events of the queue
length trajectory.

[t becomes evident that the number of iterations
required for convergence is bounded by the number of
batches spanned by the longest propagation segment.
Therefore we have:

maz[d(Er, Eg),d(EF, E%))

lp

1 <jeon < T 1+1
where (Ep, Eg) and (Ep, E%) are any pair of neigh-
boring synchronization events, lp is the batch length,
and d(E;, Ey) is the number of events between the
occurrence of £ and Ey.

Therefore, when some losses occur, if the traffic in-
tensity is low or is very high, Eg and Er tend to
occur more frequently, respectively, and hence the
maximum propagation length is shorter. As a result,
the number of iterations required for convergence be-
comes small. When the traffic intensity is neither
high or low, both synchronization events occur more
sparsely and the longest propagation length increases.
Thus, the number of iterations increases. Once the
propagition length becomes longer than the batch
length, adding more processors becomes useless be-
cause the number of iterations will grow linearly with
the number of processors used. This situation can be
seen when A is 50 and 100, and A/u is close to 1 in
Table 1.

In Table 1, the worst M/M/1/K simulation perfor-
mance always occurs when A/ = 1, regardless of the
number of processors and the buffer capacity. Actu-
ally, when A/pu = 1, it is least likely that the queue
will become empty or full. This can be derived as
follows.

Let p = A/u. If Py is the probability that the
M/M/1/o0 queue is idle (when an Eg occurs) then
Py is given by:

Po=(1-p) 0<p<l
If Py is the probability that the M/M/1/K queue
is full (when an Ep occurs), then Pg is given by
(Kleinrock 1975):

K _ pK+1 oK

Z{(:o P .
Because when the M/M/1/2c queue is empty, the cor-

responding M/M/1/K must also be empty, the joint
probability of Eg and Ep occurrence can be given as:

oo Po + PK 0 S p< 1’
Py(p, K) = { Px otherwise.

_F —
PK_ l_ph'+l -

706 Wang and Abrams

Table 2: Normalized approximation errors of the
M/M/1/K and the M/D/1/K model using the
G/G/1/K partial state matching algorithm. Each en-
try is the value of 100 * (E(L) — A(L))/E(L), where
E(L) and A(L) are the average queuc lengths of 10
runs obtained from a sequential simulation and the
partial state matching simulation, respectively.

N u K=1 K=5 K=20 K=60 K=100
1 -0 03 0.0 0.0 0.0 0.0
3 029 -0.07 0.0 0.0 0.0
.5 0.11 0.01 0.0 0.0 0.0
MMI1K T -0.24 0.06 0.07 0.0 0.0
.9 0.07 0.83 -0.3% 0.1 0.0
1.0 -0.29 0.39 1.35 0.95 0.49
1.1 0.46 0 56 -0.29 0.50 0.14
1.3 0.43 0.38 0.08 0.26 0.16
1 0.88 0.0 0.0 0.0 0.0
.3 4.11 0.0 0.0 0.0 0.0
5 9.41 0.80 0.0 0.0 0.0
MD1K T 15.92 0.94 0.0 0.0 0.0
.9 23.18 4.66 017 0.0 0.0
1.0 26.64 8.0 2.22 0.85 0.36
1.1 25.16 4.97 0.18 001 0.005
1.3 22.35 1.73 0.02 0.01 0.003

It can be shown that P,(p, ') has a minimum at p =
1 for any K > 1 (Wang and Abrams 1992).

The results of the partial state matching simulation
in average queue length are compared with a sequen-
tial simulation (Table 2). For a fair comparison, both
simulations use the same sequence of random num-
bers. The approximation errors are very insignificant
except for the M/D/1/1 model. Actually, when both
the variance of job service times and the buffer size
of the queue are small, the G/G/1/K algorithm be-
comes biased and will result in more significant errors.
A detailed discussion of this approximation error is
given in (Wang and Abrams 1992). In the following
section, an alternative algorithm is proposed for this
case.

5 THE G/D/1/K PARTIAL
MATCHING ALGORITHM

STATE

For a G/D/1/K queue, in which each job has a fixed
service time, the system state contains the first job
remaining service time (FRST), the queue length, and
the next job arrival time. Let N be the number of
arrivals, P be the number of processors, and g be the
initial queue length of batch I. A G/D/1/K partial
state matching algorithm is described by the following
steps:

1. Partition the N arrivals evenly into P batches.

2. Compute the arrival time sequence using the
GLM parallel prefix algorithm.

3. Set Zrto0forall l <I<P.
4. Set FRST of each batch to 0.

Table 3: Numbers of iterations of the M/D/1/K
model using the G/D/1/K partial state matching
(PSM) algorithm and the full state matching (FSM)
algorithm. Each data point is an average of 10 runs.
Each run simulates 10% jobs, which are divided into
64 batches (i.e. P=64). For each entry (a,b), a is
the average iteration number and (a — b,a+ b) is the
90-percent confidence interval for a.

Iy K=1 K=5 K=20 K=60 K=100
1 2.0,0.0 2.0,0.0 2.0,0.0 2.0,0.0 2.0,0.0
3 2.0,0.0 2.0,0.0 2.0,0.0 2.0,0.0 2.0,0.0
s 2.0,0.0 2.0,0.0 2.0,0.0 2.0,0.0 2.0,0.0
T 2.0,0.0 2.0,0.0 2.0,0.0 2.0,0.0 2.0,0.0
PSM 9 2.0,0.0 2.0,0.0 2.0,0.0 2.0,0.0 2.0,0.0
1.0 2.0,0.0 2.0,0.0 2.1,0.2 3.5,0.4 7.9,1.1
1.1 2.0,0.0 2.0,0.0 3.0,0.0 3.0,0.0 3.0,0.0
1.5 2.0,0.0 2.0,0.0 3.0,0.0 3.0,0.0 3.0,0.0
2.0 2.0,0.0 3.0,0.0 3.0,0.0 3.0,0.0 3.0,0.0
1 2.0,0.0 2.0,0.0 2.0,0.0 2.0,0.0 2.0,0.0
3 2.0,0.0 2.0,0.0 2.0,0.0 2.0,0.0 2.0,0.0
5 2.0,0.0 2.0,0.0 2.0,0.0 2.0,0.0 2.0,0.0
7 2.0,0.0 2.0,0.0 2.0,0.0 2.0,0.0 2.0,0.0
FSM 9 2.0,0.0 2.0,0.0 2.0,0.0 2.0,0.0 2.0,0.0
1.0 2.0,0.0 2.0,0.0 2.4,0.3 6.4,0.5 16.0,3 1
11 2.0,0.0 2.0,0.0 7.0,0.9 61.2,5.1 64.0,0.0
1.5 2.0,0.0 22,00 64.0,0.0 64.0,0.0 64.0,0.0
2.0 92,09 64.0,0.0 64.0,0.0 64.0,0.0 64.0,0.0

5. For each batch ;1 < I < P, compute departure
times and queue lengths independently via a se-
quential simulation.

6. Let f; be the final queue length of batch I. If
Biy1 = fi, for all 1 < | < P, exit; otherwise
assign f; to B4 forall 1 <1< P and go to step
4.

The degree of freedom of the simulation is one be-
cause job arrival times can be pre-computed using the
GLM algorithm and the initial FRST’s of all batches
are fixed (i.e. 0). Thus, the initial unmatched set
contains only the state variable for the queue length.
Table 3 compares the convergence time in terms of
iteration number of the proposed G/D/1/K partial
state matching simulation with a full state maich-
ing simulation. The only difference between the two
matching algorithms is that the full state matching
does not use approximate FRST’s and checks on both
FRST and queue length for convergence. That is, for
the full state matching simulation, except the first it-
eration, the initial FRST of each iteration is obtained
from the final FRST of the preceding batch resulting
from the previous iteration and the simulation com-
pletes only if both queue length and FRST converge.

Table 3 shows that full state matching requires
many iterations to converge when A\/p > land K 25
and as A/ increases, the number of iterations con-
verges (o 64. In such case, no speed-up can be gained
through using multiple processors. The partial state
matching simulation, on the other hand, requires
no more than 3 iterations to converge except when

Approximate Time-Paralle] Simulation of Queueing Systems

Table 4: The normalized approximation errors for the
M/D/1/K model using the G/D/1/K partial state
matching algorithm. Each entry is the value of 100 *
(E(L) — A(L))/E(L), where E(L) and A(L) are the
average queue lengths of 10 runs obtained from the
full state matching simulation and the partial state
matching simulation, respectively.

M K=1 K=s _ K=230 K=60 __K=100

1 0.0 002 0.02 0.02 0.02

.3 0.01 0.11 0.11 0.11 0.11

5 0.02 024 0.26 0.26 028

7 0.04 038 0.58 0.58 058
MDI1K 9 0.07 053 1.85 2.48 248

1.0 0.06 068 2.38 4.88 10.28

1.3 0.08 0.56 0.83 0.54 027

1.3 0.10 029 0.06 0.03 001

2.0 013 043 0.09 0.03 0.02

M p = 1. In fact, the number will converge to 2 as
A/p increases and a linear speed-up can be obtained.
In the worst case when A/y = 1 and N = 100, the
simulation takes an average of 7.9 iterations to con-
verge.

The reason that the partial state matching outper-
forms the full state matching in convergence time is
illustrated in Figure 2. It is not hard to see that
for the FRST trajectory, a synchronization point oc-
curs only when the G/D/1/~ queue becomes empty.
Therefore, as A/p increases, the possibility of the
queue being empty decreases. When there exists no
synchronization point in the FRST trajectory, linear
convergence (i.e. J.on = P) will occur. For the par-
tial state matching, the longest convergence times oc-
cur at A/p = 1. The reason can be argued similarly
as the M/M/1/K simulation discussed in section 4.2.
The trade-off of execution time is simulation accu-
racy. Table 4 shows that the partial state matching
simulation produces close results. The approximation
error is less than 1% in general and is about 10% for
the worst case.

6 CONCLUDING REMARKS

Partial state matching simulation artificially fixes
some state variables in the unmatched set by using
some approximate values so that these state variables
can be removed from the unmatched set. As a result,
the simulation needs to converge on fewer state vari-
ables and thus is likely to converge more quickly.
Two algorithms using this partial state matching
approach to simulate FCFS G/G/1/K and (:/D/1/K
queueing models are proposed in this paper. The first
algorithm uses approximate job departure times; the
second algorithm uses approximate first job remain-
ing service times. Experiment results of an M/M/1/K
and an M/D/1/K model show that the speed-up

707
O Synchronization
Point

FRST
Trajectory |---===------ AR LR ©---
Queue Length |- - -0--- O -=-O--O-nunmun. (o NN O---
Trajectory] ! !]

1 T [

Lot t: ta

Time

Figure 2: Without approximation, the full state
matching simulation converges on both FRST and
queue length. The longest propagation distance is
(t4 — t1). With approximation on FRST sequence,
the partial state matching simulation converges only
on queue length. The longest propagation distance is

(tz — ta).

gained by using these partial state matching simula-
tions against full state matching simulations becomes
very significant as A/u exceeds 1. For simplicity, both
algorithms do not use the processors optimally. In
these algorithms, when a prefix of the trajectory be-
ing computed is converged so that no changes will
be made in the following iterations to this prefix, the
processor(s) assigned to this prefix remain(s) to com-
pute the converged prefix until the simulation exactly
converges. With a more carefully devised load dis-
tribution algorithm where batch partition is updated
dynamically to exclude the converged prefix, speedup
can further be enhanced.

Also, both partial state matching simulations pro-
duce small approximation errors in general cases. The
worst performance for both simulations occurs when
Ap = 1. An argument is made to explain this phe-
nomenon. The first algorithm introduces more signifi-
cant errors when the model has a small buffer and has
a small job service time variance. The second algo-
rithm is introduced for this situation. Possible future
work includes testing a broader class of probability
distributions, and investigating networks of queues
which contains G/G/1/K queues.

REFERENCES

Ammar H. H., Deng. S. 1991. Time Warp Simulation
Using Time Scale Decomposition Proceedings of the
SCS Multiconference on Advances in Parallel and
Distributed Simulation. Jan., pp 15-22.

Bagrodia R., Chandy K. M., Liao W. T. 1992. An
Experimental Study On the Performance of the

708 Wang and Abrams

Space Time Simulation Algorithm. Proceedings of
the Sizth Workshop of the Parallel and Distributed
Sitmulations. pp 159-168.

Chandy K. M. and Misra J. 1981. Asynchronous
Distributed Simulation via a Sequence of Parallel
Computations. Commun. ACM. Vol. 24, No. 11,
Nov. pp 198-205.

Chandy K.M. and Sherman R. 1989. Space-Time and
Simulation. Proceedings of the 1989 SCS Mult:-
conference on Distribuled Simulation. March, pp
53-57.

Fujimoto R. M. 1990. Parallel Discrete Event Simu-
lation. Commun. ACM. Vol. 33, No. 10, Oct. pp
31-53.

Greenberg A. G., Lubachevsky B. D., Mitrani I
1990. Unboundedly Parallel Simulations via Re-
currence Relations. Proceedings of the Conference
on Measurement and Modeling of Computer Sys-
tems. Boulder, Colorado, May, pp 1-12.

Hills W. D., Steele G. L. 1986. Data Parallel Algo-
rithms. Commun. ACM. Vol. 29, No. 12, Dec., pp
1170-1183.

Jefferson D. 1985. Virtual Time. ACM Transactions
of Programming Languages and Systems. Vol. T,
No. 3, July, pp 404-425.

Jones D. W. 1986. Concurrent Simulation: An Al-
ternative to Distributed Simulation. Proceedings
of the 1986 Winter Simulation Conference, Decem-
ber. pp 417-423.

Kleinrock L. 1975. Queucing Systems. Vol. 1, Wiley-
Interscience.

Lander R. E., Fischer M. J. 1980. Parallel Prefix
Computation. Journal of ACM. Vol. 27, pp 831-
838.

Lin Y. B., Lazowska E. 1991. A Time-Division Al-
gorithm for Parallel Simulation. ACM TOMACS,
Vol. 1, No. 1, Jan., pp 73-83.

Mitra D., Mitrani I. 1989. Control and Coordination
Policies for System with Buffers. ACM SIGMET-
RICS Performance FEvaluation Review, Vol. 17,
No. 1, May, pp 156-164.

Reiter P., Bellenot S., Jefferson D. 1991. Tempo-
ral Decomposition of Simulations Under the Time
Warp Operating System. Proceedings of 1991 SCS
Multiconference on Advances in Parallel and Dis-
tributed Simulation, Jan., pp 47-54.

Wang J. J., Abrams M. 1992. Approximate Time-
Parallel Simulation of Queueing Systems with
Losses. Tech. Rep. TR92-08, Department of Com-
puter Science, Virginia Tech.

Wanger D. B., Lazowska E. D. 1989. Parallel Sim-
ulation of Queueing Network: Limitation and Po-
tentials. Proceedings of 1989 ACM SIGMETRICS
and PERFORMANCE, May, pp 146-155.

AUTHOR BIOGRAPHIES

JAIN J. WANG is a Ph.D. student in the Depart-
ment. of Computer Science at Virginia Polytechnic
Institute and State University. He received an en-
gincering diploma from the National Taipei Institute
of Technology, Taiwan, in 1983, and M.S. in com-
puter science from the State University of New York
in 1988. His research interests include parallel dis-
crete event simulation and system performance anal-
ysis. He is a student member of ACM.

MARC ABRAMS is an assistant professor in the
Department of Computer Science at Virginia Poly-
technic Institute and State University. His research
interests include parallel simulation, software perfor-
mance analysis, and communication protocols. He
received his Ph.D. from the University of Maryland
in 1986. He serves as Program Chair for the 1992 SCS
Parallel and Distributed Simulation (PADS) work-
shop.

