Proceedings of the 1992 Winler Simulation Conference
ed. J. J. Swain, D. Goldsman, R. C. Crain, and J. R. Wilson

HIERARCHICAL, MODULAR CONCEPTS APPLIED TO AN OBJECT-ORIENTED
SIMULATION MODEL DEVELOPMENT ENVIRONMENT

Joel J. Luna

Dynamics Research Corportation
60 Frontage Road
Andover, Massachusetts 01810

ABSTRACT

The application of hierarchical and modular properties to
the simulation model construction process is identified
as a need, particularly for modeling of large and complex
systems. Informal definitions of modularity, coupling
of modules and hierarchical construction are provided.
The application of hierarchy and modularity to a
modeling and simulation environment implemented in
an object-oriented language (Smalltalk) is described.
Object-oriented mechanisms are evaluated with respect to
mechanisms needed for hierarchical model construction.
The elements for construction, atomic and coupled
components, and the model construction process are
defined and their implementation described.

1 INTRODUCTION

Modeling is an essential part of any simulation effort.
The degree to which the simulation results are able to
characterize the system under study is directly related to
the degree the simulation model characterizes the
system. Itis desirable to represent what is considered to
be the important aspects or behavior of the system. For
many systems, particularly large and complex systems,
the model which characterizes the desired aspects of the
system may itself be large and complex.

As a result, it is desirable to decompose the
system model into a set of smaller parts which can be
managed scparately. There arc two primary advantages
to decomposing a problem into parts: first, all elements
and facets of the task can be scen more clearly; second,
the parts can be developed and tested incrementally. The
result of model decomposition should be a set of model
modules which can be executed independently or
combined to execute as an integrated whole. The system
model then is considered a modular model.

A second important property is that of hierarchy.
If the result of combining model modules is itself a
model module, then it can in turn be used to form other
model modules. The recursion of such combinations,
which is the process of hierarchical construction, results

694

in a module hierarchy which as a whole represents the
system model.

The properties of modularity and hierarchy have
been applied in particular to simulation modeling
(Zeigler 1984, Oren 1984). Environments for simulation
model development implementing these properties have
also been developed (DEVS-Scheme in Zeigler 1987,
GEST in Oren 1984, and HIRES in Fishwick 1988).
The author's own work in developing an environment
implemented in the object-oriented language Smalltalk,
in which multiple analysis methods (discrete-event
simulation, continuous simulation, analytic solution)
could be applied to a commonly defined problem (Luna
1990, 1991a), was extended to include an initial
hierarchical capability (Luna 1991b). The focus of this
paper is to further examine and implement hierarchical
and modular properties in this environment.

2 ENVIRONMENT OBJECTS

A brief overview of the multi-analysis environment
framework, in particular of the object structure which
comprises it, will help to identify the role of the model
components in the overall simulation process. The
simulation model is constructed by the user through the
sclection and interconnection of a set of pre-coded
software objects. The result of model construction is @
model specification which is essentially a map of
selected model objects. This map is used to create an
executable model by creating (instantiating) and
initializing the model objects and cross-referencing them
according to the map at simulation runtime. The user
also selects a data file or enters data for the model
inputs.

An experimental frame is also specified by the
user, which is comprised of simulation processor, input
generator and model measurcment objects. The
simulation processor provides all of the discrete-event
scheduling functions for the input generator and
simulation model. The input generator provides the
workload for the simulation model by generating input
objects at a specified arrival rate. The model
measurement objects, consisting of the probe event

Object-Oriented Model Development 695

handler, probe, and statistics objects, compute user
selected measures based on reported model events which
are then displayed to the user. The overall relationship
of these objects is shown in Figure 1.

Input Windows Output Windows

Input Model Event Tabular Graph
Data Map Script Results Results

F

Computed
Measures

Script
Events

Model Model

Workload
|
Selected
p Model Events
Objects
Run
Control Events

Figure 1: Environment Objects

3 MODULARITY, COUPLING, AND
HIERARCHY

Before addressing the implementation of hierarchical and
modular properties in the subject simulation modeling
environment, a further discussion of these properties
would be useful. A module is defined by Zeigler (1984)
to be "a program text that can function as a self-
contained autonomous unit in the following sense:
Interactions of such a module with other modules can
only occur through predeclared input and output ports”.
A module encapsulates its own internal variables and
implementation details which are hidden from other
modules. Access to them can only be achieved through
a defined interface. In the programming language
Modula-2 (Wirth, 1985), the interface of a software
module is defined in its definition part, while the details
are defined in its implementation part. In order to access
a module's functionality, one only needs to import its
definition part in order to utilize it. In order to execute
the module, both parts are independently compiled and
linked with other compiled modules.

Each module must have a clearly defined
input/output interface by which it can be combined with
other modules. For model modules, such an interface
can be thought of as a collection of input and output
ports. An example of this is seen in the simulation
environment DeNet (Livny, 1991). In DeNet, the
interface between model modules is implemented by
connectors, which establish a directed interface between
model objects. Through a connector one object can
observe changes in the state of another object - the
connector ties a set of output variables of one module to
a set of input variables and events of another module.

A module composed of other modules, each of
which may receive input or send output external to the
module, can have multiple paths of module input and
output. Each of these paths must be identified in order
to unambiguously couple the modules. Assigning each
path an entry or exit point to the module constitutes the
definition of its input and output ports. The total sct of
input and output ports and the specification of what may
pass through them comprises the module's interface. In
Figure 2, submodules A and B have separale input so
that they are assigned separate ports Ein:1 and Ein:2 (E -
module E, i - input port, 1,2 - port number). On the
other hand, if the user wishes to combine the output of
submodules C and D, then they are both assigned to
Eout:1. The process of combining or
interfacing modules, defined as coupling, is the mapping
of input and output ports between modules. This is also
shown in Figure 2. The resulting module can itself be
used to form other coupled modules. This can be seen
in Figure 2 simply by substituting a coupled module E
for submodule C or D since they have an identical
interface (2 input ports, 1 output port). This assumes of
course that the output of modules C and D are
compatible with the input of modules A and B. The
issue of port compatibility will be addressed later.

Ein:1 Coupled Module E Eout:1

4
Ain:1 Adut:1 Cin:1
Cout:1
> A C
[
Cin:2
Din:1
L]
o[B D
Dout:1
Bin:1 Bout:1 Din:2
Ein:2
Figure 2: Connecting Modules to Form a Coupled

Module

696

4 IMPLEMENTATION
4.1 Object-oriented Features

The language in which the author's simulation
environment was developed is Smalltalk (Digitalk 1988,
Goldberg and Robson 1983) which already has
mechanisms useful for implementing simulation model
hierarchy and modularity. Smalltalk is based on the
class concept originating in SIMULA (Birtwistle 1979).
The object class in Smalltalk is used to specify the
variable names and procedures (called methods) each
object has in creation (instantiation). Each created
object or instance maintains its own variables which can
only be manipulated by the object's own methods. An
object executes a method when it receives a message of
the same name from some other sending object.
Smalltalk objects are modular in that the only
interaction each object can have with other objects is
through a predeclared set of messages, or protocol. Each
object variable can only be accessed, if at all, through
object protocol, which persists as long as the object.

Object classes are organized in a hierarchical
structure. Classes are related in the hierarchy by
inheritance, in which related classes share variable names
and methods. The variable names and methods of a class
higher in the hierarchy are a subset of those in a class
lower in the hierarchy. The class higher in the hierarchy
is defined as the superclass to classes lower than in it in
the hierarchy, which are defined as subclasses. Thus, a
subclass has access to all the variable names and
methods of the superclass, and has additional variable
names and methods or both itself. In this way the
subclass specializes the behavior of the superclass.
While this provides a hierarchical specialization of
objects, the structure for hierarchical decomposition is
not explicitly provided.

The interface of Smalltalk objects is by message
passing from source (the sender) to the receiver. In fact,
the statement syntax of Smalltalk is in the form

receiver message(: argument - optional).

where receiver is the namc of the receiver object,
message is the name of the method the receiver is to
implement, and an argument may be supplicd with the
message. The source object is implied since it is the
object in which the statement is implemented. The
receiver is identified as a variable in the sender's code
(either directly labeled or indirectly as a member of a
labeled set) which holds the receiver's reference or address
at run time. The full set of messages sent by one object
to another is the protocol directed from the sender to the
receiver. This will become important in ensuring valid
couplings during the hierarchical construction process.

Luna

4.2 Atomic and Coupled Modules

This section will address the implementation of
hierarchical and modular simulation model modules
using the Smalltalk object-oriented inechanisms. It is
helpful first to reconsider the model decomposition
process. The system model is decomposed into
successively smaller problems interrelated by a
hierarchical tree structure. In this structure each node
represents a module, and the leaf nodes represent atomic
modules - modules which are not further subdivided. An
example of this structure is shown in Figure 3, in which
coupled module E is substituted for atomic module C
from Figure 2 to form a new coupled module F.

F
N\
A B E D
/[\

A B C D

Figure 3: Hierarchical Tree of Mappings

Each leaf node is implemented in the
environment as a Smalltalk class which defines the
behavior of each module. The other nodes (root and
branch) are results of coupling atomic and other coupled
modules. Each coupled module is essentially a map of
modules. Thus, the coupled module is not a software
object, rather, it is a specification or map of the
interconnection of its member modules or submodules.
The root model, the system simulation model, is a
hierarchical mapping of the underlying Smalltalk
objects. Hierarchical construction then becomes the
process by which these maps are defined.

The coupled module is a named specification
which identifies its submodules, their type, their
interconnection (internal mapping) and their connection
with the module ports. An example is shown in Table
1. If a submodule is an atomic module, its type
corresponds to the Smalltalk class name. If it is a
coupled module, its type corresponds (o the name of a
coupled module. Since a coupled module does not
consist of actual code, the user can create any number or
type of coupled modules for use or reuse without having
to do any programming.

Object-Oriented Model Development 697

Table 1: Coupled Module Specification
Submodules Type

A atomicModuleA

B atomicModuleB

E coupledModuleE

D atomicModuleD

Internal Map External Map

Aout:1 -> Ein:1 Fin:1 -> Ain:1

-> Din:1 Fin:2 -> Bin:1
Bout:1 -> Ein:1 Eout:1 -> Fout:1

-> Din:1 Dout:1 -> Fout:1

4.3 User Model Construction

The environment should support the process of model
construction. In creating a coupled module, the user
should be able to select a set of submodules from a
module library of both atomic and coupled modules.
The user should then be able to interconnect them with
assistance from the environment, particularly in
ensuring port compatibility through port protocol
checking. The user should also be able to define a set of
input and output ports to which the submodules are
connected. Once named, the environment should save
the new coupled module in the module library for
browsing and selection.

4.4 Protocol Checking

The issue of port compatibility in a message passing
environment is one of compatible protocol. Before two
ports are connected, one must ensure that the source and
receiver protocol are compatible in order to avoid any
errors. In Smalltalk, an error is reported when a source
attempts to send a message for which the receiver does
not have a corresponding method. In order to ensure that
the receiver will not be sent any messages it does not
have, the entire set of messages which the source will
send must be a subset of the set of methods which the
recevier implements. If this condition exists, then the
protocol will be compatible, and ports connecting these
two objects will be compatible as well. Ensuring
compatibility then involves checking the output
protocol of the source with respect to the input protocol
of the receiver.

The simplest example of protocol checking is
that of a coupled module which has only one submodule
(an atomic module) and only one input and one output
port. In this case, the valid input port protocol is the
list of methods implemented by the atomic module (a
Smalltalk object). The valid ouput port protocol is the
set of messages sent by the object to its receiver. If two
of these modules are connected, then the Smalltalk

object protocol is compared for compatibility. An
example is shown in Figure 4.

>
rev rey
do do
other

(a) Valid Connection

X

rcv rcv
do do
don't other

(b) Invalid Connection
Figure 4: Protocol Checking for Valid Port Connection

If a coupled module has more than one atomic
module, there may be more than one input and output
port. There can be as many input ports defined as there
are submodules (assuming a one-to-one correspondence
of input ports to submodules) or as few as one input
port (assuming a one-to-many correspondence of input
port to submodules). In the former case, the port input
protocol corresponds one-to-one with the submodule
input protocol. In the latter case, the port input
protocol corresponds to the intersection of the sets of
submodule input protocol. This is because the valid
input protocol of a module must be at least a subset of
the input protocol of each submodule, and the only set
of input protocol which is a subset of each submodule's
set of methods is the intersection of all the submodules'
set of methods.

For example, consider three submodules with
method sets (go, stop), (go, stop, pause), and (go, stop,
goSlow). If these submodules are all connected to the
same input port, then they all must be able to receive
the same protocol. If an external model module sends
either go or stop, all three submodules can respond. If
pause or goSlow 1is sent, only one of the three
submodules can respond. The other two will report an
error. The only set of protocol sent that will not yield
an error is (go, stop), which is the intersection of the
three submodule method sets. This set then is defined as
the input port protocol for this port. Any module port
connected to this port must have a protocol which is a
complete subset of this protocol.

The output ports are handled similarly, only the
set of output protocol for each port is the union of the
sets of output protocol of each submodule to which it is
connected. The union, rather than the intersection, of

698

the sets of protocol is appropriate because the output
port protocol must contain all possible protocol which
an input port of another coupled module will receive. If
in our previous example the three sets were sets of
messages sent to the receiver, then the receiver must
have a corresponding method for each one or an error
will result. The set of all possible messages is (go,
stop, pause, goSlow), which is the union of the three
sets. This set then is the output protocol for this port.

The protocol for input and output ports is saved
as part of the coupled module's specification.
Otherwise, scarching for object protocol would become
increasingly prohibitive as the coupled modules become
increasingly nested. By identifying the protocol
associated with each port of a coupled module as part of
its specification, protocol checking can be conducted by
the environment to ensure a valid connection between
modules is being made.

4.5 Model Execution

When the user is ready to execute the constructed model,
having already defined the measures to be obtained
(which are implemented by the probe and statistics
objects as described in Luna 1991), the environment
builds and executes the simulation model. The
environment does this by first instantiating all
Smalltalk objects which correspond to atomic modules
in the system model. Then starting at the root of the
hierarchical tree structure, it attempts to connect
submodules by pairing source and receiver objects. If
the submodule is a coupled module, then its submodules
connected to the port in question are also searched. Once
the search has reached the leaf nodes (atomic modules),
then the corresponding instantiated Smalltalk objects are
used to make the connection. The receiver variables in
the source objects are set with the references of the
recciver objects. This is performed for each connection
until the hierarchical mappings are fully implemented.
The result is a set of executable, cross-referenced
Smalltalk object instances which implement the
simulation model. The model is executed by the
environment using the objects previously described.

5 FUTURE WORK

The implementation of hierarchy and modularity in the
subject simulation environment can be summarized as a
hicrarchy of mappings of Smalltalk objects which the
environment uses to create executable models. While
the method of allowing the user to construct models
from pre-defined units in a building block fashion is not
unique, the implementation of this approach in
Smalltalk allows the user to modify and add objects for
usc in constructing models. There are two extensions to
this approach, however, which will increase the
flexibility of the user to build his own models.

Luna

The first is the translation of protocol between
modules. If the set of atomic modules is allowed to be
an open set to which modules can be added from external
sources, then some translation of protocol identical in
function would be very useful. For example, if a source
object sends a message whatlsYourStatus to a receiver
object with method giveStatus, an error will occur even
if the function is the same as that intended by
whatlsYourStatus. One solution is to create a Smalltalk
class which acts much like the DeNet connector. The
objects instantiated from this class would act as a shell
around the receiver object, in which the method names
would correspond to those sent by the source object and
the method would consist of sending the corresponding
method name in the receiver to the receiver. Thus the
method for whatlsYourStatus would look like

whatIsYourStatus
receiver giveStatus.

where receiver references the receiver object. Any
number of these objects could be defined for any pairing
of source and receiver objects from among the atomic
modules.

The second extension would be the
implementation of coupled modules as Smalltalk objects
which the user could define within the environment.
These objects would provide for variables and methods at
the coupled module level, so that not only would the
behavior of a coupled component be defined by the
behavior of its atomic modules, but by its own methods
as well. These modules should be allowed to have not
only atomic modules, but coupled modules as receivers
as well within the method statements. This would
provide the user with greater flexibility in defining and
modifying behavior at all levels of the model hierarchy.

REFERENCES

Birtwistle, G.M. 1979. Discrete-event Modeling in
SIMULA New York: MacMillan.

Digitalk, Inc. 1988. SmallTalk/V286 Tutorial and
Programming Handbook. Los Angeles: Digitalk, Inc.

Fishwick, P.A. 1988. The role of process abstraction in
simulation. /EEE Transactions on Systems, Man,
and Cybernetics, 18:18-39.

Goldberg, A. and D. Robson, 1983. SmallTalk-80:
The Language and Its Implementation. Reading,

MA: Addison-Wesley.

Livny, M. 1991. DeNet: An overview. Computer
Sciences Department, University of Wisconsin-
Madison, Madison, Wisconsin.

Luna, J. 1990. Object-oriented multi-simulation
environment. In Proceedings of the 1990 Summer
Computer Simulation Conference, ed. W. Svrcek ?lnd
J. McRae, 56-61. Society for Computer Simulation,
Calgary, Alberta, Canada.

Object-Oriented Model Development

Luna, J. 1991a. Object framework for application of
multiple analysis paradigms. In Object-Oriented
Simulation 1991, ed. R. K. Ege, 81-86. Society for
Computer Simulation, Simulation Series Volume 23,
Number 3.

Luna, J. 1991b. Application of hierarchical modeling
concepts to a multi-analysis environment. In
Proceedings of the 1991 Winter Simulation
Conference, ed. G. M. Clark, W. D. Kelton, and B. L.
Nelson, 1165-1172. Phoenix, Arizona.

Oren, T.I. 1984a. Model-based activities: A paradigm
shift. In Simulation and Model-Based
Methodologies: An Integrative View, ed. T.1. Oren,
B.P. Zeigler, and M.S. Elzas, 3-40. Amsterdam:
North-Holland.

Oren, T.I. 1984b. GEST - A modelling and simulation
language based on system theoretic concepts. In
Simulation and Model-Based Methodologies: An I
ntegrative View, ed. T.I. Oren, B.P. Zeigler, and M.S.
Elzas, 281-335. Amsterdam: North-Holland.

Wirth, N. 1985. Programming in Modula-2. 3d ed.
New York: Springer-Verlag.

Zeigler, B.P. 1984. Multifaceted modelling and discrete
event simulation. Orlando: Academic Press.

Zeigler, B.P. 1987. Hierarchical, modular discrete-
event modelling in an object-oriented environment,
Simulation 49:219-230.

AUTHOR BIOGRAPHY

JOEL J. LUNA is a Senior Analyst at Dynamics
Research Corporation. He is primarily involved in the
application of systems analysis techniques, especially
modeling and simulation, to a variety of projects. His
current interests are in the areas of simulation,
modeling, and object-oriented programming.

699

