Proceedings of the 1992 Winter Simulation Conference

ed. J. J. Swain, D. Goldsman, R. C. Crain, and J. R. Wilson

OBJECT ORIENTATION & THREE PHASE SIMULATION

Michael Pidd

The Management School
Lancaster University
Lancaster LA1 4YX

ABSTRACT

Object oriented methods are now popular in many areas
of computing, increasingly so in those areas associated
with analysis and management science. The first system
to incorporate many of the ideas of object orientation was
SIMULA, which is also associated with a process-
interaction view of discrete simulation. Possibly as a
consequence of this history, most attempts to take an
object oriented approach within discrete simulation seem
to have been associated with a process-based or process
interaction based modelling paradigm. This paper
considers the advantages of object orientation and applies
an object oriented approach to the provision of a three-
phase approach to discrete simulation. It argues that such
an object based, three-phase system is just as convenient
as a process based approach.

1 SIMULATION AND OBJECT ORIENTATION
1.1 Origins

Recent years have seen a substantial growth of interest in
the subject of object orientation. Though hardly a novelty
in the wider world of computing, actual applications in
the computer simulation arena are still somewhat sparse.
Commercial discrete simulation systems such as
MODSIM 1I (from CACI) are available and embody
many of the concepts of object orientation. Going back
into the 1960s, it seems widely accepted that the first
system to embody most features of object orientation was
SIMULA (Dahl & Nygaard, 1966). Thus discrete
simulation has been intimately linked with object
orientation since the inception of the latter.

Recent years have seen a number of attempts to
produce discrete simulation systems using a variety of
object oriented approaches and programming languages.
Examples include systems written in SmallTalk (for
example, Ulgen, 1986 and Knapp 1986 & 1987) and C++
(for example, Blair and Selvaraj, 1989). 1986 saw the

UK

689

publication System Simulation, Programming Styles &
Languages (Kreutzer, 1986) which attempted to show
how object oriented approaches to simulation could be
taken in procedural languages such as ISO Pascal, as
well as using SmallTalk. There have also been
conferences devoted to cross-fertilisation between
simulation and object orientation as reported in various
conference proceedings.

1.2 Process Interaction

SIMULA implemented an approach which is now known
as process-interaction and which is well understood in the
discrete simulation community. In this approach, each
dynamic object within a model is given one or more
processes through which it moves during its life within
the system. A process becomes a sequential list of the
actions in which the object (or entity) may engage as the
simulation proceeds. As simulation entities are created in
such an approach, they are seen as members of particular
classes and are destined to operate within the processes
defined for their class. Thus each entity is regarded as an
instance of a class and inherits a template which defines
its life within the system. The task of the simulation
system’s executive is to track each entity through its
process template, making sure that the entity operates to
plan. This is the essence of the process description
approach (Davies & O’Keefe, 1989).

SIMULA, being based on Algol had access to
pseudo-concurrency which permits the operation of a
routine to be suspended whilst it calls another routine or
process into operation. Thus a calling process may
interact with a called process, leading to the notion of
process-interaction in which the processes of classes of
entities interact with one another to lead to the
characteristic behaviour of the simulation model. Process
interaction, then, goes beyond the basic notion of process
description in that processes are assumed to interact with
one another. This then allows the entities to be simulated

690

as if they interacted amongst themselves.
1.3 Object Orientation

Given that the processes belong to the entity classes, each
created instance of the entity class can be permitied to
engage in the same sequence of actions of its process.
Thus the actions could be conccived as of operations
which, in some sense bclong to the entity class in
question.

In all discrete simulations, cach entity is
represented by some form of data structure which must,
at the very least represent the current state of the entity
and any known future states. Thus an entity class can be
represented by a set of operations (the process) which
operates on a set of internal state variables which can be
hidden from other entity classes in the simulation model.
Thus, if the description of a class encompasses the data
which represents the entity and also the action sequence,
or process, in which the any entity may engage if it is a
member of this class.

This of course is the idea of encapsulation
which is, nowadays, associated with object orientation.
Using the conventional definitions of object orientation,
encapsulation occurs when class definitions include not
just state data, but also a complete list of the operations
in which the class member may engage. Thus, in a
language such as C++, the class definition includes data
members and function members. The data members being
used to define the internal data structures of a class and
the function members define what operations can be
performed on the data members. Each encapsulation
presents an interface with other classes, but the internal
data and function members need not be visible to other
classes. Viewed at its simplest, therefore, encapsulation
provides data hiding via modularisation.

But encapsulation is not object orientation, for
an OOPS approach requires (Wegner, 1990) that some
abstraction mechanism be provided. If descendant classes
can be defined so that they inherit all or some of the
features of their ancestor classes, then this brings the
second feature of object orientation - inheritance. This is
where the links with discrete simulation terminology
appear at their strongest, for inheritance provides the
possibility of defining one entity class in terms of
another. Thus the simulation objects, or entities, can be
successively refined as a simulation program is developed
in a parsimonious way. It also permits the provision of
proper simulation libraries which can, in theory at least,
be enhanced without the need for access to source code.

The final element of object orientation is
polymorphism, which is essential if a program is to
include dynamic objects whose type (class membership)

Pidd

may vary. Polymorphism is the ability to overload the
meaning of an operator, function or procedure call. I
this way, as a descendant class inherits the methods of its
ancestors, these methods may need to be re-defined to
cope with special features of the descendants. Thus one
method call may have different meanings to different
members of a class hierarchy, they objects responding to
the message in different ways depending on their class
membership.

Within a simulation model, all of these features
are valuable. Encapsulation, because it permits a system
provider to package together system data and operations
in a way which is safe and which allows important data
to be hidden from the system user. Inheritance permits
objects o be defined in terms of other objects, thus
avoiding the need to go on re-inventing the wheel. The
addition of polymorphism permits code re-use, as
function calls and operators can be overloaded to meet
the needs of newly defined descendant classes.

Thus the attraction of object orientation to
discrete simulation is clear. But need such an approach
be linked solely to the use of a process-interaction
approach, given that such approaches have been severely
criticised, in the UK at least?

2 THREE PHASE SIMULATION
2.1 A Brief Description

This approach, popular in the UK, originated in
manufacturing simulations in the Steel industry and was
first described by Tocher (1963) and is covered in
considerable detail in Pidd (1992). As with all approaches
to discrete simulation, it requires the analyst to atomise
the operations of the system being modelled. For a
process-interaction model, the atoms are the processes,
which are regarded as sequences of operations which can
be interrupted as other processes are called at re-
activation points. A three-phase approaches requires a
rather finer atomisation in which each atom (known
confusingly as an activity) is concemed with only the
immediate consequences of a state change in the system.

Consider a simple queuing system in which the
process of a customer can be described as;

Arrive generate time of next arrival

then

Wait _until at the head of the queue and the

server is free

then

engage the server & generate service time

Until the service is over

then

release the server.
Where the underlined code indicates re-activation points.

Object Orientation and Three Phase Simulation 691

For a three-phase approach, this process would
be further atomised into two kinds of operation. Thus
which follow only from the passage of time (known as
Bs) and those which depend on other conditions within
the model (known as Cs). Hence the process is
represented by 2 Bs and a C as follows.

Bs: Arrive (Add customer to the queue,

generate time of next arrival)

End serve (Release server)

C: Begin serve (If at head of queue and If

server free, then engage the server and generate

the service time)

It should be clear, that for simple processes, the
two process interaction and three-phase approaches
amount to pretty much the same thing. This must, of
course, be the case for one or both models would be
invalid if their logic produced different results. The
difference, at this level, lies in the degree of atomisation.

2.2 Three-phase and process interaction

There are two major differences between the process-
interaction approach and the three-phase approach. The
first is that the three-phase approach has no need to
pretend that each operation must be the prime concern of
a single entity class. This is particularly important for the
Cs, for such conditional activity may depend on the states
of a variety of entities in different classes and, most
importantly, may cause the states of a number of entities
in different classes to change at the same time.

The operation of the Cs is controlled by the
simulation executive which checks that the necessary
logical tests are passed so as to permit the Cs to begin.
Thus, as many entity classes as necessary can be
included in the test-head of a C, which need not,
therefore, belong to any particular entity class. In a
process-interaction approach, each process belongs to a
particular class and thus each activity, as a process
segment, belongs to a class. With complicated multi-class
activity it is by no means clear that this is the best
approach.

The second difference is that the code for an
activity (whether B or C) may commit any entity to
another B sometime in the future. That is, the control of
the entity is explicitly handed over to the executive for
that intervening period. Thus a B is scheduled pretty
much as an event might be in an event-based simulator.
In a process-interaction based model, this handover of
control is implicit as the entity is delayed in its process
or may have to activate other processes. To do the latter
properly requires co-routines on single processor
computer systems.

In a process-based approach it is clear that the
equivalent of Bs can belong to entity classes and each B
equivalent can thus be encapsulated with an entity class.
However, it is by no means clear what should be done
about the equivalent of the Cs which occur, in process-
interaction mode, at conditional re-activation points.

3 OBJECT ORIENTATION AND THREE-PHASE
SIMULATION

The preceding discussion suggests how object orientation
and three-phase simulation might be brought together.
Many of the features will be the same as in a process-
interaction implementation, the major difference being the
ways in which the set of Cs (Conditional activities) need
to be treated. Thus a possible object hierarchy presents
itself as suitable for a three-phase simulation system and
this is illustrated in Table 1.

Table 1: Simple Object Hierarchy for Three Phase
Simulation

DESCENDANT CLASSES

BASE FIRST SECOND & SUBSEQUENT
LEVEL LEVEL LEVELS

BaseType Ring Queue

BaseType GEntity Specific entities for a model
BaseType Resource Specific resources for a model
BaseType Calendar Executive

Random sampling objects
Data collection objects

BaseType Rand
BaseType Tally
BaseType C activities
Where the following definitions apply.

BaseType: a simple abstract class from which others

descend.

Ring: some way of maintaining lists of BaseTypes
and descendants. Rings of rings are
possible.

Queue: ordered sets of BaseTypes and descendants.

GEntity: a general entity template which maintains
state information for all entity classes.

Resource: countable static resources used by entities.

Calendar: a chronological list (event list).

Executive: the control program.
Cs: the Cs, organised into a list via a Ring.

Thus for a particular model, entity classes
descend from the GEntity class and resources from the
Resource class. The public member functions of entity
classes include the Bs. The Cs are placed in a CList
which is a data member of the Executive object. Objects

692

to carry out random sampling and run-time collection and
display can obviously also be added as descendants of
the BaseType. Thus a GEntity could be made to inherit
from these extra objects as well.

3.1 Implementations

The system described above has been implemented in
Turbo Pascal v6 and also in Turbo C++ v2. The
availability of multiple inheritance in C++ made the task
rather simpler and produced fewer anomalies. The
addition of object oriented features to languages such as
C and Pascal can be viewed as an attempt to make these
procedural programming languages closer to a declarative
style. This, if successful, should make discrete
simulations easier to write as the user can be less
concerned about the implementation of libraries provided
for their use than has to be the case in C or Pascal.

3.2 The C++ Implementation

This object hierarchy has been implemented in C++,
using the cheap Borland Turbo compiler, without any
significant problems. The simulation objects themselves
(descendants of GEntity) are, of course, dynamic and
therefore recourse had to be made to the usual dangerous
C++ type casting in order to cope with these objects.
This particular implementation is divided between several
source and header files as follows.

GenLib: containing a library of general purpose
C++ functions for smoothing I/O and
screen display. These need not be
written in an object oriented style.
containing the definitions and
implementations of the non-simulation
specific C++ functions and variables
which create the basic classes of Table
1.

containing the simulation specific
objects.

Rnd: containing sampling routines and data
collection facilities.

OOPGen:

SimObs:

These files are then used by the final simulation program
itself, this takes the class definitions and creates, where
necessary, descendant classes to fit the application.

3.3 An example of its use

The C++ implementation is forming the basis of the
simulation component of a Geographic Decision Support
System (GDSS) for use by emergency planners in the
UK. This GDSS is to help emergency planners in

Pidd

planning evacuation from natural or man-made disasters
in the UK and is, as an initial case, focused on nuclear
power plants close to urban centres. The GDSS is built
on a database of digitised maps which use the
ARC/INFO systems. The simulation element aims to
show the effect of different evacuation policies in the
event of a major crisis. Hence the simulator has to show
vehicles and other objects moving through a road
network in accordance with routing rules and algorithms.

The core of this can be simulated rather simply in three-
phase mode using the C++ system described earlier. The
following classes need to be defined from those in the
basic system.
Network: this is a descendant of Ring and
contains the currently feasible routes in
the road network. A route consists of a
sequence of Locations.

this is a descendant of base type and is,
in effect, a short segment of road
which a vehicle must traverse.

a descendant of GEntity and, thus, the
main dynamic simulation object. Sub-
classes of vehicle are formed by
defining new descendant classes. Each
vehicle has, amongst its data members,
its current location and its currently
feasible network.

Location:

Vehicle:

Thus the simulation executive moves the vehicles through
the network using the locations and assumed speeds.
Congestion is represented by vehicles attempting to
occupy the same location. The current state of evacuation
can be shown on-screen by instructing the vehicles to
reveal their locations.

4 SOME CONCLUSIONS

A three-phase approach to discrete simulation is easily
implemented in C++ using an object oriented approach.
This differs from a process based approach in that
conditional activity is not linked to specific entity classes
but is modelled as an attribute of the total simulation
system. If necessary, these Cs can be defined as part of
the simulation executive. Though such a system can be
programmed in a single inheritance mode, such as with
Turbo Pascal 5.5 and later, multiple inheritance makes
the task much easier.

Use of this object library in the evacuation simulator
should indicate whether it makes program development
easier, faster and safer.

Object Orientation and Three Phase Simulation

REFERENCES

Blair E.L. & Selvaraj S. (1989) DISC++: a C++ based
library for object oriented simulation. Proc 1989
Winter Sim Conf, pp301-307.

Dahl O. & Nygaard K. (1966) SIMULA - an Algol based
simulation language. Comm ACM, 9, 9, pp671-678

Davies R. & O’Keefe R.W. (1989) Simulation in Pascal.
Prentice-Hall, Englewood Cliffs, NJ.

Knapp V. (1986) The SmaliTalk simulation environment.
Proc 1986 Winter Sim Conf, pp125-128.

Knapp V. (1987) The SmaliTalk simulation environment.
Proc 1987 Winter Sim Conf, pp146-151.

Kreutzer W. (1986) System simulation, programming
languages and styles. Addison-Wesley Co, Sydney.
Pidd M. (1992) Computer Simulation in management
science, third edition. John Wiley & Sons Ltd,

Chichester.

Tocher K.D. (1963) The art of simulation. English
Universities Press, London.

Ulgen O.M. (1986) Simulation modularity in an object
oriented environment using SmallTalk-80. Proc Winter
Sim Conf, pp474-484

Wegner P. (1990) Concepts and paradigms of object
oriented programming. OOPS Messenger 1, 1, pp7-83,
ACM Press

AUTHOR BIOGRAPHY

MIKE PIDD is a professor in the Management School
of Lancaster University, UK. His research interests focus
on the creation of useable computer-based models,
especially in manufacturing. He is well known for two
books on computer simulation methods, Computer
Simulation in Management Science (3rd ed) and
Computer Modelling for Discrete Simulation, both
published by John Wiley. He was awarded the
President’s Medal of the Operational Research Society
for a paper on computer simulation.

693

