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ABSTRACT

The Distributed Network Simulation Testbed is a re-
search tool designed to aid users in the modeling
and performance analysis of communication proto-
cols. The testbed can be used to model communica-
tion networks consisting of mobile and/or immobile
nodes communicating over broadcast and/or point-
to-point channels. Its object-oriented design permits
users to utilize previously developed modules and,
when necessary, to derive new modules which are
subsequently added to the testbed. The testbed, im-
plemented in Sim++, can run either sequentially on
a single processor or in parallel on multiple proces-
sors. An object-oriented, graphical user interface al-
lows users to monitor simulation progress for both
demonstration and debugging and permits users to
graphically construct network simulations from ex-
isting testbed components.

1 INTRODUCTION

The Distributed Network Simulation Testbed is a re-
search tool designed to aid users in the modeling
and performance analysis of communication proto-
cols. It serves as a reusable simulation platform
upon which users develop individually tailored sim-
ulations. The testbed’s primary design goal is to re-
duce time necessary for users to develop communica-
tion network simulations. This goal is accomplished
through object-oriented software reuse. When using
the testbed, users construct communication network
simulations from existing testbed components and
when necessary, develop new components for their
simulation which are then added to the testbed for
future use. The secondary design goal is to permit
distributed, multi-processor simulation. Distributed
execution permits simulation of much larger networks
than would be possible on a single workstation (due
to memory constraints) and, for some applications,
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gives parallel performance speed-up.

The testbed is written in the Sim++ Programming
Language, a process-oriented discrete-event simula-
tion language imbedded in the object-oriented lan-
guage C++. The testbed’s design is object-oriented
and hence, very modular allowing it to be incremen-
tally built and used. For those unfamiliar with object-
oriented programming, a good introduction is given
in Wiener and Pinson (1988). The testbed may be
configured for two modes of execution, single proces-
sor or multi-processor. Given the same initial con-
ditions, both modes produce the identical simulation
runs and either may be advantageous, measured in
terms of execution speed, depending on the network
being simulated.

2 ABSTRACT SYSTEM MODEL

The system model stems from a top-down, object-
oriented view of a network. The design approach is to
combine all possible communication network models
and, from this aggregation, extract those core com-
ponents which are present in all models. These core
components are the abstract data types or objects
of the object-oriented model and form the simula-
tion’s abstract framework. Each abstract type heads
an object hierarchy derived from the abstract type.
The relationships between the abstract objects define
the basic relationships between their respective de-
rived non-abstract object hierarchies. Users are not
permitted to create instances of abstract objects but
must construct simulations from the more specialized
objects derived from the abstract objects. The fol-
lowing outlines the simulation’s major abstract data
types, the name of each is italicized when introduced.

At its highest level, a communication network con-
sists of a set of nodes which exchange messages with
one another. The nodes may be mobile (cellular
user, satellite, personal communications user, etc.)
or fixed (satellite ground station, telephone switch,
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Figure 1: OSI 7-layer model

LAN node, etc.). Nodes are broken down into lay-
ers according to the 7-layer OSI model (see Fig. 1).
Layers 2-7 model communication protocols and con-
sist of protocol objects whereas layer 1 models the
physical hardware layer and consists of {ransmitters
and receivers. Both transmitters and receivers are
further separated into two abstract types, broadcast
and point-to-point; a distinction which will be made
clear shortly.

The nodes communicate by sending messages over
communication links. Links, which are also subdi-
vided into the abstract varieties broadcast and point-
to-point, connect a transmitter to a receiver. The
implication is that a broadcast link type connects a
broadcast transmitter to a broadcast receiver and that
a point-to-point link type connects a point-io-point
transmitler to a point-to-point receiver. A point-to-
point link models a physically hardwired connection
such as a fiber optic cable or telephone line. A broad-
cast link models a wireless, possibly temporary con-
nection between a transmitter and a receiver within
range of the transmitter. All links consist of physics
objects and noise objects. Physics objects determine
parameters such as propagation delay and signal at-
tenuation. Noise objects determine received SNR and
model the link’s particular noise phenomena, possibly
statistically corrupting the packet’s content.

Communication channels are either broadcast or

point-to-point and consist of a collection of appropri-
ately typed links. Broadcast channels are assigned
a portion of the spectrum, determined by center fre-
quency and bandwidth, and transmissions on these
frequencies occur over broadcast links assigned to
those channels. Hence, link type and frequency de-
termine the assignment of broadcast links to broad-
cast channels. For point-to-point channels, the as-
signment of links to channels is determined solely
by link/channel type. For instance, a telecomm net-
work may consist of both fiber and copper links, each
group constituting a different logical point-to-point
channel. The relationship between transmitters, re-
ceivers, and links can be seen for both channel types
in Fig. 2. Note, the transmitter/receiver mapping is
1-1 for point-to-point channels and 1-N for broadcast
channels.

In modern networks, messages are exchanged be-
tween nodes in the form of packets. Packets are com-
posed of bits which are grouped into data ficlds, each
of which has a fixed bit length and conveys a special
meaning to the protocols.

Users construct simulations, not {from the abstract
data types mentioned above but, from subtypes de-
rived from the abstract types. Yet, the basic rela-
tionships between the abstract objects is the inher-
ited by the derived objects. For instance, a cellular
simulation may consist of two types of nodes, cellu-
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Figure 2: Transmitter/receiver link mapping

lar users and cell base stations, both of which are
derived from the abstract type node. They com-
municate over cellular channels on cellular links us-
ing cellular transmitters and receivers, all of these
derived from their corresponding broadcast abstract
type. Alternatively, a satellite simulation may consist
of satellites and ground stations with communication
occurring using derived objects specific to satellite
communications. In both cases, the network’s basic
operation remains the same. Namely, nodes transmit
packets over broadcast channels which are received by
other nodes. However, the way in which this occurs
differs greatly between cellular and satellite networks.

Therein lies the key to the simulation’s design. The
commonality between cellular and satellite communi-
cations, namely that of broadcast communication, is
identified and placed in a set of abstract “broadcast”
objects. This information is then “inherited” by both
cellular and satellite communications objects result-
ing in software reuse. Also, sets of operations par-

ticular to broadcast communications are identified in
the broadcast abstract classes and are redefined in
each of the derived classes to suit their particular re-
quirements. These operations can then be applied
uniformly to a heterogeneous list of broadcast objects
and the correct operation is automatically applied to
each object resulting in software “polymorphism.”

3 SIM++ IMPLEMENTATION

In Sim++, a program is broken down into entifies.
Entities are loosely coupled, independently execut-
ing objects that interact by scheduling and receiving
time-stamped events. These entities may either all
reside on a single processor or be distributed over
multiple processors. The interacting entities form
a distributed, object-oriented, discrete-event simula-
tion whose synchronization is maintained by mecha-
nisms built into Sim++, thus relieving the program-
mer of the burden of process synchronization. In
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Sim++ terminology, when all entities reside on a
single processor, the simulation is termed sequential
whereas a multi-processor simulation is termed dis-
tributed. Sim++ ensures that, given the same initial
conditions, both sequential and distributed simula-
tion runs produce the same results.

During sequential execution, a global simulation
clock and event list is maintained and the discrete-
event simulation proceeds forward in simulation time
according to standard event list processing tech-
niques. During distributed execution, a separate
clock and event list i1s maintained at each processor.
The global simulation time, defined to be the mini-
mum of the local clocks, is not known to the entities.
The entities execute events from the local event list
optimistically under the assumption that their local
clock contains the global simulation time. Sim-++
saves the state of each entity at each event from the
local time back to the global simulation time. Occa-
sionally, an event is received at a processor which is
scheduled to occur before the processor’s local time.
In these cases, the states of all entities at that proces-
sor must be rolled back to their states just prior to the
scheduled time of the event and before local forward
progress may be resumed. The rollback may require
sending “anti-events” to cancel events which had been
sent during the computation which was rolled back.
This synchronization mechanism involving state sav-
ing, rollback, and anti-messages, is known as “Time-
warp” and is transparent to the simulation. This
transparency permits identical source code for both
sequential and distributed execution modes.

Sim++ designates two types of abstract entities:
stim_entity and sim_inlerface_entity. An entity de-
rived from sim_entity may undergo rollback whereas
an entity derived from sim_nterface_entity always ex-
ecutes at the global simulation time and hence, never
undergoes rollback.

Sim++ simulations consist of two phases: ini-
tialization and ezecution. During the initialization
phase, entities are created and assigned to processors
and global memory is initialized. Once completed,
the execution phase begins. During the execution
phase, global memory may not be modified and the
mapping of entities to processors is frozen.

The testbed contains three types of abstract enti-
ties: nodes, simulators, and monitors. Both nodes
and simulators are derived from sim_entity whereas
monitors are derived from sim_interface_entity.

During the initialization phase, the testbed uti-
lizes a YACC-based parser to read in a simulation
file. This simulation file specifies either (i) an entire
network simulation consisting of nodes, simulators,
and (possibly) monitors and all the information re-

quired to perform a simulation or (ii) a monitor used
to graphically build a network simulation.

3.1 Simulators

Simulators manage communication channels; each
may manage one or more channels. There may be
multiple simulators per simulation, each managing a
different set of channels. A communication channel
consists of links, all of which must be the same type.
The simulator contains the global topological knowl-
edge of each channel it’s managing. This is essen-
tial for modeling broadcast channels or for modcling
point-to-point channels that use centralized link con-
trol. Consequently, the simulator controls the status
of each link in those channels.

All simulators must be derived from the abstract
base class com_sim, itself having been derived from
stm_entity. The class com_sim contains an array of
pointers to channels, each non-NULL entry indicat-
ing a channel is present. The com_sim also holds
an array containing topological information regarding
those nodes that either (i) are permanently connected
to a link in one of the simulator’s channcl (point-to-
point link) or (ii) may possibly become connccted to
a link in such a channel (broadcast link). An exan-
ple of the latter case would be a cellular user node
which has a receiver tuned to a cellular channel be-
ing managed by a simulator, but is not currently in
range of a transmitter. The simulator must track the
position of the node to know when it conies in range
of a transmitter.

Channels come in two abstract varictics: broad-
cast (bcast_chan) or point-to-point (plop_chan), the
major difference being the virtual operations defined
for each channel. The type of channel controlled hy
the simulator depends on the simulator’s type. For
example, a cellular simulator would control ccllular
channels while a satellite simulator would manage
satellite channels. Nevertheless, both the broadcast
channels types are derived from bcasti_chan, which is
derived from channel and thus share the same under-
lying data structure shown in Fig. 3. The data struc-
ture for each channeli contains two lists, a rintr_id list
and a rcvr_id list. Each zmitr_id and rcor_id identily
a transmitter or receiver on a node which is associ-
ated with a link in channel i. These “ids” are indexes
into the simulator’s node topological information ar-
ray shown in Fig. 4.. Each node contains a rmirarray

and a rcvr array. Each zmir associates with it a list
of rcvr_targs, each of which represents a receiver on
a node also tuned to channel ¢ which is in range of

the zmtr. Each rcvr_targ contains a pointer to a link
object over which the receiver may be reached. Sim-
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ilarly, a rcur identifies a receiver on a node which is
tuned to channel ¢ and associates with it a list of
mcem_zmirs, each of which represents a transmitter
on a node also tuned to channel 7 which is in range
of the rcur. In this case, however, the inecm_zmir con-
tains only the ID of the incoming transmitter and not
a link pointer. This data structure is generic and can
be used for all channels. Note, the characteristics of
each different channel determine its connectivity and
the link type pointed to by each rcvr_targ. Portions
of the data structure containing broadcast channel
information are dynamic and change as the broad-
cast channel’s topology changes. Portions containing
point-to-point channel information retain the connec-
tivity fixed initially. However, link parameters and
operation may change dynamically if necessary.

3.2 Nodes

Nodes represent the communication points of the net-
work. They do not possess global topological knowl-
edge and must rely on the simulators for accurate
topology information (more on this later). Each node
must be derived from the abstract base class osi_node,
itself having been derived from the abstract classes

node and sim_entily. The abstract base class node
contains information regarding the node’s ID, loca-
tion, and a pointer to a motion_model which deter-
mines its movement (if mobile).

Each osi_node is broken down into the 7-layer OSI
architecture of Fig. 1. Each block in the figure repre-
sents a pointer to an abstract base class which must
be assigned to an object derived from the base class.
The particular set of protocols and hardware objects
attached to these pointers depends on the type of
node and determines how the node functions. Pro-
tocol layers may be swapped easily by reassigning
pointer values, provided the adjacent layers’ inter-
faces are compatible with the new protocol layer.

Each layer 2 protocol object (derived from layer-2)
1s, by default, associated with a different transmit-
ter/receiver pair. However, the mapping of layer-%
to hardware objects may be reconfigured as desired.
All transmitters and receivers must be derived from
the abstract objects zmitr and rcur respectively.

Network traffic is generated in the layer_7 object
by calling the virtual function gen_msg(). C++ im-
plements polymorphism through the use of virtual
functions. For those unfamiliar with (44, refer to
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the book by Ellis and Stroustrup (1990). The func-
tion gen_msg() returns a packet derived from msg_{7.
If the default layer 7 protocol layer_7.def is present,
the packet returned would be of type msg_17_def. The
default packet hierarchy used by the default layer pro-
tocols is shown in Fig. 5. The msg_17 is passed to the
layer_6 through the virtual function pkt_tz(msg_17%).
All layer_6s must have such a function which is rede-
fined for the each protocol. In a similar fashion, the
packet continues down the layers, each layer expect-
ing a packet type derived from the previous layer’s
abstract packet type, until it reaches a layer_2 object
and 1s queued for transmission.

Eventually, the packet is transmitted by a zmir
towards one or more rcvrs. Separate copies of the
packet are given to each link corresponding to each
rcvr. The link object operates on the packet with its
physics and noise objects, each derived from phys_obj
and noise_obj respectively, and delivers the packet to
the rcur. At the receiving node, the packet is passed
up through the layers. If the node was the intended fi-
nal destination of the packet, it is delivered to layer_7.
Otherwise, it is intercepted by the layer_3 protocol,
rerouted, and sent back down for transmission.

3.2.1 Design for Parallel Implementation

Up to now, we have described the major software
objects without mention of sequential versus paral-
lel implementation issues or performance. It was

stated previously that Sim++ does not require dif-
ferent versions of the source code for each execution
mode. However, that does nof mean that one may ig-
nore parallel processing issues if one hopes to achieve
speed-up in a distributed run. A simulation writlen
without regard for distributed execution will likcly run
more slowly distributedly than sequentially.

Earlier, it was stated that the links reside in the
channels in the simulator entities. Therefore, when-
ever a zmir, which resides on a node entity, transmits
a packet, the node must “send” (schedule one or more
events) the packet to the proper simulator which, in
turn gives the packet to the channel and finally to the
link. Similarly, after the link operates on the packet,
the simulator must send it to the proper node which
gives it the the intended rcor.

This model is true to real world situation. Each
transmitter blindly transmits packets into the com-
munication channel and they magically reappear at
the receiver. However, this implementation requires
that every packet transmitted by a node entity is
sent through a simulator entity before reaching the
intended node entity. This design is not too bad for
sequential execution as there is only one event list and
each event is processed in the order scheduled. How-
ever, packet transmission constitutes the lion’s share
of the work in a communication network and occurs
frequently. Also, a typical network model consists of
relatively few channels but many nodes. Therefore,
during distributed execution, the simulators would



678

Corson

Satellite Channels Simulator 1

Cellular Channels Simulator 2

i

Bases Mobiles Satellite

Combined satellite/cellular system

———-—

Mobile

e |

i
|
‘ Lane_t !
- S Entities 31 o J___

Prd Processor 6

Figure 7: Combined satellite/cellular processor mapping

become bottlenecks, each processing a large num-
ber of events, effectively removing a portion of the
system’s inherent parallelism and lowering achievable
speed-up.

The implementation is modified for parallel execu-
tion by having each node utilize its own “local chan-
nel” or local_chan, (recall Fig. 1). The local_chan
contains the node’s local topological knowledge. As-
sociated with each zmir and rcvr is a rcur_targ list
and incm_zmirlist, respectively. These lists are man-
aged by the simulators and kept consistent with those
in the channels. Whenever an event occurs which
changes a link’s status, the change is reflected in both
the channel and local_chan in which the link resides.

Hence, when transmitting, the zmir gives the
packet to the link in the local_chan (via a function
call) instead of its copy in the channel (via events).
Once the link has operated on the packet, it sends (via
events) the packet to the proper node entity. By using
local_chans, we remove half the event scheduling and

eliminate the bottleneck problem. The price paid for
the performance increase is partly in memory (dupli-
cate rcor_targ and incm_zmir lists) and partly in CPU
time (the events necessary to keep the lists consis-
tent). The assumption is that many more events must
be sent to transmit packets than to keep the lists con-
sistent due to topological changes. This assumption
holds for point-to-point networks and for broadcast
networks which don’t have rapidly changing topolo-
gys. Simulators are not involved in packet transmis-
sion and are only concerned with channel topology
management.

3.3 Monitors (under development)

Monitors present a 3-dimensional, animated image
of network operation for demonstration or protocol
debugging. They also provide a graphic, object-
oriented, menu-driven user interface from which the
user may graphically construct networks from testbed
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components.

Monitors may execute in two modes: passive and
interactive. In passive mode, user-selected graphical
events are received from the nodes and simulators,
placed in a graphics event buffer, and displayed as
quickly as possible. Nodes and simulators are per-
mitted to execute freely, provided the graphics buffer
does not overflow. If this occurs, the nodes and sim-
ulators are halted while the display catches up with
the simulation. In interactive mode, the nodes and
simulators are halted after each graphic event thus
permitting “single-step” operation essential for pro-
tocol debugging. Users are able to change simulation
parameters at each step during a run. This ability
precludes the use of global data (due to the Sim++
constraint) for many items which are global (such as
the simulation run’s duration) and requires that a
separate copy be kept at each entity.

There may be multiple monitors active at one time,
each viewing a different set of network objects and ob-
ject interactions. Only one monitor may be “interac-
tive” at a given time. Monitors run under X-windows
utilize the XGL graphics library.

3.4 Example

Consider the example shown in Fig. 6. A group of
mobiles needs to communicate. With cellular cov-
erage, they communicate through the base stations
over cellular channels while outside the coverage, they
communicate through the satellite and base stations
over combined satellite/cellular channels. The mo-
biles, bases, and satellite are node entities and two
simulators are used for channel management.

A possible processor mapping is seen in Fig. 7.
The solid communication indicates packet transmis-
sion events between the nodes via the local channels.
The dashed communication to the channels are topo-
logical update events. The dashed events to the mon-
itor (if present) indicate graphical events.

4 SUMMARY

The testbed can be used to model communication
networks consisting of mobile and/or immobile nodes
communicating over broadcast and/or point-to-point
channels. Its object-oriented design permits users to
utilize previously developed modules and, when nec-
essary, to derive new modules which are then added
to the testbed.

The testbed, implemented in Sim++, and can run
either sequentially on a single processor or in parallel
on multiple processors. The source code is identical
for both modes and is tailored for parallel execution.

A graphical user interface allows uscrs to monitor
simulation progress for both demonstration and de-
bugging and permits users to graphically construct
network simulations from existing testbed compo-
nents.
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