Proceedings of the 1992 Winter Simulation Conference

ed. J. J. Swain, D. Goldsman, R. C. Crain, and J. R. Wilson

REPLICATED OBJECTS IN TIME WARP SIMULATIONS

Divyakant Agrawal

Department of Computer Science
University of California
Santa Barbara, CA 93106, U.S.A.

ABSTRACT

The simulation objects in a Time Warp distributed,
discrete event simulation system can be replicated
in order to gain improvements in both performance
and fault tolerance.
by having copies of frequently used objects at mul-
tiple sites, reducing the message traffic and delays.
This represents a tradeoff since there is overhead in-

Performance can be increased

volved in maintaining the consistency of the various
copies. In general, there are advantages if the ratio of
state modifying operations versus state observing op-
erations is small. However, the replicated object can
also be used as the basis of a new technique for in-
creasing performance of fault tolerant systems called
Optimistic Fault Tolerance (OFT). OFT uses Time
Warp as part of the consistency maintenance scheme
allowing the simulation to mask various forms of pro-
cessor failures and continue operations in the case of
a subset of processor failures.

1 INTRODUCTION

The notion of Virtual Time for synchronizing dis-
tributed applications was first introduced by Jefferson
and Sowizral (1985) for controlling event sequencing
in distributed, discrete event simulation (Misra 1986,
Fujimoto 1990). Unlike real time, Virtual Time is
not a monotonically increasing, single-valued func-
tion, but rather it allows different portions of a com-
putation to advance and retract their own relative
times, dynamically preserving the precedence con-
straints. The Time Warp Mechanism (TWM) (Jef-
ferson 1985, Berry 1986) is an implementation of
virtual time in a distributed environment, in which
the asynchronous components are synchronized using
partial rollback instead of the conventional method of

657

Jonathan R. Agre

Science Center
Rockwell International Corporation
Thousand Oaks, CA 91360, U.S.A.

blocking (Chandy and Misra 1979). One of the draw-
backs of the TWM is that it assumes a completely
reliable and failure-free environment.

Object replication is used in distributed systems
to increase availability and fault-tolerance. By stor-
ing multiple copies of objects at several sites in the
system, there is an increased likelihood of objects re-
maining available and accessible to users despite site
and communication failures. However, complex and
expensive synchronization mechanisms (Gifford 1979,
Thomas 1979, Davcev and Burkard 1985, El Abbadi,
Skeen and Cristian 1985, Paris and Long 1988, Jajo-
dia and Mutchler 1990) are needed to maintain the
consistency and integrity of objects. In this paper,
we describe how object replication can be used to im-
prove performance and fault-tolerance of simulations
based on the Time Warp Mechanism.

System performance can be enhanced using strate-
gically located replicas and allowing objects to ac-
cess replicas locally. If an object is being sent mes-
sages from several other objects on differing nodes
and if the frequency of reads is much greater than
writes, then it may be beneficial to replicate the ob-
ject on multiple nodes. It is felt that an optimistic
processing mode, such as Time Warp, has an inher-
ent advantage over other consistency control schemes
because the replicas do not need to be explicitly syn-
chronized in order to achieve consistency. Rather,
the replicas can execute independently and use the
rollback capability of Time Warp to maintain con-
sistency in an efficient manner. A scheme for per-
formance improvement was investigated by Goldberg
(1992) who used virtual time to synchronize transac-
tions in a database. However, the scheme was not ap-
propriate for simulation, since it allowed the receiver
(rather than the source) to set the event time. We
have modified that scheme for distributed simulation

658 Agrawal and Agre

and extended it for fault tolerant applications.

2 THE TIME WARP MECHANISM

In this section we describe the Time Warp mech-
anism (Jefferson 1985) and some of its properties.
The TWM controls a set of N objects distributed
over a computer network. The objects communicate
with each other by transmitting time-stamped mes-
sages over separate logical communication channels.
We assume that the logical communication channel
between two objects is completely reliable and pre-
serves the order of messages. Each process executes
optimistically without regard to synchronization con-
flicts with other objects. A synchronization conflict
in the TWM arises when an out-of-order message is
received, resulting in the rollback of some TWM ob-
jects. Each object, O;, in the TWM maintains the
following data-structures required for implementing

rollback:
1. An input message queue, InQ;.
2. An output message queue, OutQ);.
3. A local state queue, StateQ@;.

4. A logical clock that maintains the local virtual
time, LVT;.

A message in the TWM conforms to the following
format:

m = msgType(src, SVT, dest, RVT)

where msgType is one of {+, —}, src is the source ob-
ject of m, SVT is the source virtual time at which
m was sent, dest is the destination object of m, and
RVT is the receive virtual time at which m must be
processed at the destination. A data field that speci-
fies the contents of the message is also part of the mes-
sage, but is not relevant to the discussion in this pa-
per. Messages received as input at an object O; with
the type field “+” are stored in InQ@; in the increas-
ing order of RVT of the input messages. Copies of
the messages that are sent by O; are stored in OutQ);
with the type field “—” and are stored in increas-
ing order of the SVT of the output messages. The
virtual time at O;, denoted as LV T;, is used as an
index in the InQ;, OutQ;, and StateQ; to determine
the current state of the process. The index in InQ;
also indicates the extent to which the input messages

have been processed at O; (since processed messages
are not immediately removed).

A TWM object O; executes by processing the input
messages in InQ; according to the scheduling rule of
smallest RVT next. When a message m is processed,
LVT; is set to the receive virtual time of the message,
RVT(m), and we say that an event has occurred at
O; at time LVT; = RVT(m). This event may alter
the local state of O; and a copy of the object state is
saved in StateQ@;. In addition, the event may cause
one or more messages to be sent to other objects in
the system. These positive messages have the RVT
set to the intended virtual time to be processed at
the destination and the SVT set to the LVT,. Af-
ter sending a positive message m’, O; places a nega-
tive counterpart of m’, called the antimessage m’ in
Out@;. When all of the messages in the InQ; have
been processed, LV T; is advanced to +oo.

The execution of TWM objects is expected to hap-
pen as described above most of the time. However,
occasionally an object O; may receive an input mes-
sage m,, such that RVT(m,,) is earlier than the cur-
rent value of LVT;. The message m,, is termed an
out-of-order message and causes O; to roll back. O;
is rolled back to the event time prior to RVT(m,,)
and all events since that time must be undone. This
is accomplished by discarding the states of O; from
StateQ; since RVT(m,,) and removing and trans-
mitting all antimessages in OutQ; with SVT greater
than or equal to RVT(m,,) to their intended recipi-
ents. O; restores its internal state from StateQ; to the
state with the largest time earlier than RVT(m,).
The object then continues its forward execution by
processing input messages in InQ); starting from m,,.

When an antimessage 77 is received at O;, InQ; is
searched for the corresponding m. If m is in the un-
processed part of InQ;, i.e., RVT(m) is later than the
current LVT;, then m and 77 annihilate each other.
The effect is as if m was never sent. On the other
hand, if m is already processed at O;, O; must be
rolled back to undo the effect of m. This is identi-
cal to the processing of an out-of-order message, ex-
cept for the distinction that the positive message is
withdrawn from the processed part of InQ; and then
annihilated.

As a Time Warp computation executes a dis-
tributed computation, the notion of a system time
is defined and used to control storage, detect termi-
nation and handle other critical events such as I/O.

Replicated Objects in Time Warp Simulations 659

Definition 1 The global virtual time at real time t,
GVT(t), is defined as the minimum of the LV T; of all
objects O; and the RVT of any unprocessed messages
(including those in transit) (Fujimoto 1990)

At any real time ¢, it can be shown that no object will
roll back to a virtual time earlier than GVT(t). Sim-
ilarly, it can be shown that GVT is a nondecreasing
function of real time and progress in a computation
is thus defined as an increase in GVT. Under certain
reasonable assumptions a Time Warp computation is
guaranteed to make progress (Jefferson 1985). In a
distributed environment, only a lower bound of GV T
can be computed.

3 TWM WITH REPLICATED OBJECTS

3.1 Overview

We now consider a model of the time warp mecha-
nism where objects are replicated. In particular, the
systemn consists of N objects and each object may be
replicated at several sites. Furthermore, we assume
that event messages can be classified into two cate-
gories:

1. Read messages or state-observing events.
2. Write messages or state-modifying events.

The state of an application object at simulation time
t is defined to be the values of its instance variables
at that time. Automatic modification to the local
virtual time that occurs when a message is executed
is not considered as a modification to the state since
the application has no access to the previous time. In
addition, the output message queue is not considered
part of the state. Hence, it is possible for a Read mes-
sage to generate output to any object in the system.

When objects are replicated in the TWM, incon-
sistencies could arise due to two reasons. The first
type of inconsistency could arise due to the out-of-
order messages that result from the optimistic or
look-ahead execution mode of the TWM. The second
type of inconsistency arises since replicas of an object
may be inconsistent with each other during process-
ing of write messages. For example, a read message
at different replicas of the same object could return
different results if a write has been received and pro-
cessed at one, but not the other. In the following, we
describe the extensions to the TWM event execution
model to eliminate such inconsistencies.

As in the original TWM, the J!» replica, Of of ob-
ject O; maintains the three data-structures: InQy,
OutQ/, and StateQ. In addition, LVT/ is the lo-
cal virtual time at replica O7. In order to deal with
replication, we extend the message format as follows:

m = msgType(src, SV T, destList, RVT, primaries)
where the msgType is now { +R,+W,-R,-W } to ex-
press the new categories of read and write. The field
destList is now a list of replicas where the message
is destined and the field primaries are members in
destlist who are responsible for generating the out-
put for m (if any). All other members in destList will
process m but will not generate any output.

Based on the above model, we now describe how
a simulation proceeds in the TWM with replicated
objects. A read message to an object O; is sent to the
closest (perhaps local) replica O of object O;. That
is, the field destList contains the address of replica
O/ and the field primary is also set to O/. Replica
O/ processes the read message in the same way as
objects process messages in the original TWM.

A write message to an object O; is sent to all the
replicas of O;. That is, the field destList contains the
addresses of all replicas O}, ..., 0K of object O;. In
addition, primary in the write message is set to the
address of the closest (perhaps local) replica of O;,
say O7. The write message is also processed at each
replica in the same manner as objects process mes-
sages in the original TWM. The main distinction is
that any output resulting from the processing of the
write message is discarded at replicas that are not
mentioned as primary. Thus, the output messages are
sent only from the primary replica. As in the original
TWM, a simulation starts through a special message
from the application to one of the objects in the sys-
tem. This message can be either a state-modifying
message or a read message and it has the same for-
mat as described above.

Consider an object O; with several replicas. Note
that the contents of input and output queues at the
replicas of O; may not be identical. In particular,
the input queues of replicas will contain all the write
messages destined to O; but will not contain all the
read messages sent to O;. Thus, the set of write mes-
sages in the input queue will be the same at each
replica and the union of read messages to all replicas
will contain all read messages sent to O;. Further-
more, the relative order of all the write messages will
be identical at each replica indicating that the state

660 Agrawal and Agre

queues of each replica will be identical. Similarly, the
union of the output queues of all replicas will contain
the messages that are sent from O; to other objects.
Thus, the rollback mechanism of the TWM can be
used to correct the processing of an out-of-order mes-
sage as well as to withdraw incorrect replies of read
messages.

In particular, the reply of a read message from a
replica may be incorrect if it has not received all prior
write messages. However, later when the write mes-
sage arrives at this replica, the replica will rollback
and incorporate the effects of the write message and
will then send the correct reply corresponding to the
read message. We note that the computation of GVT
will function correctly with this replication scheme
and will not advance GVT to a new time until all
replicas have processed the event at that time.

3.2 Implementation Issues

It is desirable to implement the replicated object
management in a Time Warp kernel system so that
many of the details are hidden from the applica-
tion. In general, the application should transmit nor-
mal event messages without regard to the underly-
ing replica numbers and locations. Message delivery
to the replicated objects and the consistency mainte-
nance should be handled by the Time Warp kernel.
An implementation scheme for replicated objects is
described for the Time Warp Object Oriented Dis-
tributed Simulation (TWOODS) kernel system (Tin-
ker and Agre 1989, Agre and Tinker 1991). In this
implementation, the only interface between the ap-
plication and the specification of the replica numbers
and distribution occurs at object creation time.
Unlike most Time Warp systems, TWOODS sup-
ports dynamic object creation so that the applica-
tion can schedule an object to be created at any time
during the simulation. The kernel maintains an ob-
JectCreator object on each node which is responsible
for object creation. For the non-replicated case, an
application object requests the creation of another
object by sending a create event-message of the form
defined earlier to the objectCreator at a specified
node, where the data field specifies the type of ob-
ject to be created. The create message immediately
returns an objId that is a globally unique reference of
the form: [src, seq, dest], where src is the source node,
seq is the number of objects previously requested to
be created by the source node and dest is the node

on which the object is to be created. The application
objects are referred to by their objId’s and in applica-
tion event messages the source and destination fields
are given as objld’s.

The objectCreator maintains several standard ta-
bles including an Object Location Table and a Com-
munications Port Table. In order to deliver an event
message, the destination node is decoded from the ob-
jId. For objects that reside on a given node, the Ob-
ject Location Table supplies the translation between
the objId and the local address of that object. If an
object resides on a foreign node, the destination node
is used to select a port from the Communications Port
Table on which to transmit the event message.

In order to support replicated objects, the user
specifies the number of replicas of each object and
their locations as part of a modified create message
of the following form:

objId = create(src, SV T, destList, RVT, primaries)
which immediately returns an objId tag for the new
object using a primary node as the dest field of the ob-
jId. The objectCreator must also maintain a Replica
Table consisting of entries of the form: [objlId, {
destList }]. We note that the [src,seq] pair of the
objId is sufficient to uniquely identify the replicated
object set. For the purposes of this paper, the distri-
bution of replicas is assumed to be static throughout
an execution of the simulation (although it will oper-
ate in the case of objects that are created and deleted
during the course of the run).

The distribution of the Replica Table is broadcast-
based and assumes that all nodes will maintain an
identical copy of the complete replica table. When a
create message is given to the kernel by the applica-
tion, the kernel broadcasts the message to all of the
objectCreators on all nodes. This supplies the data
necessary for each node to construct an entry in its
Replica Table. When a create message is processed
by an objectCreator at a node in the destList, the ob-
ject is created and the appropriate entry in its object
table will be made. Hence it is possible to determine
locally if an object is a replica and where the original
replica and all of its copies reside.

The application generates event messages to an ob-
ject in the conventional manner using the objId as the
single destination and does not specify replicas. We
assume that the kernel, using predetermined rules,
will select the most efficient replica to serve as the
primary object. In general, the choice is a function

Replicated Objects in Time Warp Simulations 661

of the communication delay and the processor load-
ing. When the application generates an event mes-
sage, the kernel will use the destination objId field
to check the replica table and identify a replica set.
The kernel will then make a determination of which
replica will handle the request. For a read message,
it will forward the message to that object, also des-
ignating it as the primary. When a write message
is generated, the kernel identifies the primary object
and then forwards the message to all of the repli-
cas. All recipients of the message will execute it, but
only the primary will generate output messages. An-
timessages are designated as read or write according
to their positive counterparts and are handled in the
same fashion as event messages.

A variation of this scheme for systems with very
large numbers of objects and replicas is possible in
which each replica table contains only entries for ob-
jects that are replicated on that node. However, this
is accomplished at the expense of an additional mes-
sage hop delay for forwarding of replica copies.

A second variation removes the restriction that the
source object determine whether the message is a
state modifying message (i.e., read or a write). In
this case, the application sends the message to the
replica given by the objld. When the event mes-
sage is executed, the object determines if the state
has been modified by the message through a priori
knowledge or direct comparison of the new and old
states. If so, the message is tagged as a write and the
kernel is notified to deliver copies of the message to
all the other replicas, with the original object as the
primary. An antimessage for a write message must
also be replicated.

In the second variation it is possible for a message
that is rolled back to change from a read message to
a write message and vice versa. Hence, the rollback
mechanism must be modified to remember whether
the previous execution resulted in a change. If a mes-
sage is reexecuted and remains the same, then no ac-
tion is required of the kernel. If a message that was
previously a read is reexecuted and becomes a write,
then the kernel must replicate the message. If a write
message is reexecuted and becomes a read, then it is
necessary to retract the replicas. We note that each
replica will have executed the entire set of state mod-
ifying messages earlier than a given GVT, yielding
correct results. The overhead involves the possibly
substantial delay in waiting for the message to be

executed in the simulation, and then an additional
message delay to send the replica copies for the write
messages. This delay would also have an impact on
the replicas since they would receive their messages
at a later time, possibly causing more rollback.

3.3 Discussion

A surveillance application consisting of a large num-
ber of sensor objects monitoring moving targets (Agre
and VoPava 1992) was enhanced using replicated ob-
jects. There are a small number of server objects,
called environment sector managers, which maintain
lists of targets in their area. Sensors periodically
query the environment managers, which return in-
formation on the states of their target objects. The
state of the environment is modified relatively infre-
quently by the introduction or departure of targets.
These environment managers became bottlenecks due
to the large number of sensor queries that needed to
be processed. The performance penalty in the simula-
tion was large since the environment manager tended
to sequentialize the sensor requests, reducing the po-
tential parallelism. Since the TWOODS kernel does
not yet support replicated objects, we modified the
application and replicated the environment manager
at several nodes resulting in a significant decrease in
execution time for cases with large numbers of sen-
SOrs.

In general, the time warp mechanism with repli-
cated objects described above improves performance
of systems in which the communication delay between
different sites is significant and the ratio of read ac-
cesses over write accesses is high. In such an environ-
ment, it would be particularly beneficial to identify
those objects that are frequently accessed for reads
and replicate them at several sites. Thus, read ac-
cesses to such objects can be handled by sending read
messages to their local replicas. A write access, on
the other hand, will result in a larger overhead since
the write message must be sent to all replicas of repli-
cated objects. However, this overhead can be reduced
significantly if the underlying system provides a mul-
ticast communication facility.

Finally, we consider the issue of GVT computation.
For the purpose of GVT computation, each replica is
treated as an individual object and GVT then can be
computed as in the original TWM. In the above mech-
anism a read message is sent to only one replica of an
object, and, if this message has not been processed at

662 Agrawal and Agre

that replica, GVT cannot be allowed to be advanced
beyond the RVT of this message. This mode of GVT
computation impacts the fault-tolerance in the sys-
tem as will be discussed in the next section.

4 OPTIMISTIC FAULT TOLERANCE

4.1 Overview

Another motivation for considering replicated objects
is for increased fault tolerance. This may be more im-
portant than improving performance in certain appli-
cations. A new technique for improving fault toler-
ance, called Optimistic Fault Tolerance (OFT), that
employs the Time Warp Mechanism for synchronizing
redundant objects is described. The OFT assumes
that objects are fault free most of the time and can
proceed optimistically. Only when faults are detected
is it necessary to perform recovery. The capabilities
of Time Warp to rollback and retract events are then
used to efficiently correct many forms of intermittent
and permanent faults.

Clearly, requiring that all replicas participate in
the computation of GVT as described in the previous
section, results in reducing the overall fault-tolerance
of the GVT computation. Consider for example a
system with N objects and each object is available
with probability p. Thus at the time when GVT is
computed, the probability that the computation will
be successful is p?. However, considering a triple
modular redundant (TMR) system where each object
is replicated at three sites, this probability becomes
p®N, making it less likely to compute GVT at any
time. Note, however, the overall ability of the simu-
lation to terminate in the presence of faults is poten-
tially very high. In the original TWM, if a process
fails, the simulation fails. On the other hand, in the
TWM with TMR, all three copies of an object have to
fail simultaneously for the simulation to fail. Other-
wise, the state of the failed replica can be constructed
from the redundant copies using a recovery protocol
similar to that described in Agrawal and Agre (1992).

Reduced fault-tolerance of the GVT computation
discussed in section 3 arises because of the following
two reasons:

1. A read message r is sent to only one replica and
unless r is processed, GVT cannot go beyond the
RVT of r. Hence, the LVT of each replica must
be consulted for GVT computation.

2. Similarly, a write message w generates output
only at the replica designated as primary by w.
Since GVT cannot be advanced beyond the vir-
tual time of output messages in transit, once
again, the status of each replica is needed for
GVT computation.

Thus, even though the earlier approach improves the
overall performance and fault-tolerance of the system,
it has some disadvantages. In particular, we would
like to instill enough redundancy in the states of the
replicas so that not all replicas are needed to compute
GVT at any time. In particular, if read messages are
sent to multiple replicas of an object and write mes-
sages generate output at multiple replicas, then only
a subset of replicas are needed to compute GVT. In
the following, we generalize this approach to tolerate
up to K — 1 failures of replicas when there are K
replicas in a group.

In the proposed optimistic fault-tolerant scheme,
we use the following model of the system. We as-
sume that processes are fail-stop, i.e., if a process fails
it will not generate further messages and will cease
to participate in further computation. However, this
implies that it is possible for a process to fail leaving
erroneous messages in the system and replicas in in-
consistent states. We will assume that it is possible
to detect such failures. As before each object may be
represented by multiple replicas of that object. Fur-
thermore, all messages are assumed to be writes so
that every replica receives a copy of each message. In
addition, output is generated at all replicas by assign-
ing each as a primary. Since multiple messages may
represent a singleton entry in the queues, the struc-
ture of input and output queues is modified so that
the entry in a queue is a message suite instead of sin-
gleton messages. The unique identifier of a message
suite is (SoureObjectld, SV T).

As a result of message processing, several repli-
cas will send the reply. All messages from the same
replica group with identical SVT are enqueued in the
same message suite of the input queue. The key el-
ement of this scheme is that forward processing at
an object proceeds optimistically as soon as any one
of the messages in a message suite is received at the
object. However, if the majority of messages in a mes-
sage suite changes, then the object will rollback, re-
tracting the previously executed member of the suite
and execute the majority. Otherwise, rollback and
annihilation execute as in normal TWM.

Replicated Objects in Time Warp Simulations 663

The processing of messages is performed as fol-
lows. When a message m arrives at replica O] it
is stored in an appropriate message suite. During
its normal forward processing, O] processes the next
message suite by setting its LVT to RVT(M sgSuite).
RVT(MsgSuite) is set to the dominant RVT value
in the message suite, i.e., most messages in M sgSuite
agree upon RVT. If the receipt of m causes
RVT(MsgSuite) containing m to change and LVT
is larger than RVT(M sgSuite), O] is rolled back.
After rollback, Of continues its forward processing.

The GVT computation proceeds by consulting each
object for its reliable LVT. The reliable LVT is defined
to be the largest time for which a majority of replica
messages in the suite and every earlier suite have been
processed. By this we mean that if a suite receives
from a 3-replica set, then a majority of two messages
is sufficient. The reliable LVT is always less than
or equal to the object’s current LVT, guaranteeing a
lower bound on the actual GVT. If the GVT com-
putation discovers that a node has failed, then every
other node will update its replica set to reflect the
loss of replicas (necessary to compute the sufficient
majority). The new GVT and new replica configura-
tion is sent to all operational replicas. The replicas
use the new configuration to discard messages from
failed replicas with RV T larger than the new value
of GVT. It can be easily shown that as long as one
replica has survived, the GVT computation as well
as the TWM simulation can continue. We note that
the communication traffic has been greatly increased
in this approach in order to achieve this level of fault
tolerance. For example, if there are K replicas of each
object then we have increased the message traffic by
a factor of K?2.

4.2 Discussion

In a TMR OFT system, the availability of GVT com-
putation increases significantly from a non-replicated
case. Let the system be composed of N objects on NV
nodes each with availability p. In this case, the avail-
ability or fault-tolerance of the GVT computation as
explained before is p”Y. On the other hand, when each
object is represented by three replicas on 3V different
nodes, at least one from each replica set is sufficient
to compute GVT. The probability that at least one
replica is available at any time is: 1 —(1 —p)3. Hence,
the availability of GVT computation increases from
p" to (1—(1—p)3). For a numerical value of N = 10

and p = 0.90, the availability of a GVT computation
is 0.35 in the non-replicated TWM whereas it is 0.99
in the OFT.

A more equitable comparison using an equal num-
ber of nodes is shown by considering the following ex-
ample of a simulation consisting of three objects A,B,
and C. Suppose we have 3 replicas of each object and
9 nodes, so that each replica is on a separate node.
A traditional approach would be to execute the sim-
ulation as 3 independent, non-communicating runs,
i.e., [Al, Bl, Cl], [Az, Bg, CQ], and [Ag, B3, Cg] The
simulation is successful if one or more runs completes.
One or more failures in each run would result in an
unsuccessful simulation. In contrast, the TMR OFT
scheme would communicate among the replicas in or-
der to maintain consistency and would “switch-out”
the failed nodes. Availability is increased, however,
the cost is a 3-fold increase in message traffic. As-
suming that each node is available with probability
p, the availability of the three independent runs is:
1 — (1 — p3)3. The availability of the TMR OFT is:
(1 = (1 = p)®)3. For p = .9, the independent runs
has an availability of .98 while the TMR OFT has an
availability of .997.

5 CONCLUSIONS

Optimistic processing of replicated objects in a dis-
tributed, discrete-event simulation system has been
implemented by augmenting the standard features of
Time Warp such as time stamped messages and roll-
back. Replicated objects can be used to improve the
performance and/or the fault tolerance of the sim-
ulation, depending on the needs of the application.
Further research is needed to quantify the benefits of
replicated objects and to determine the parameters
of simulation applications that determine whether an
application can be enhanced by object replication.
There are several extensions to the optimistic fault
tolerance (OFT) technique that are being pursued.
The fault model described in this paper is fail-stop,
however, the scheme will mask many other types of
faults. Extensions to other classes of faults such as in-
termittent or Byzantine faults is feasible. In addition,
a combination of replication and a recovery scheme
such as in Agrawal and Agre (1992) could resurrect
failed objects on other nodes. Similarly, nodes could
fail and then later recover or be replaced by spares,
thus further increasing the fault tolerance of the sys-

664 Agrawal and Agre

tem. Lastly, although this scheme has been pre-
sented for simulations, many other applications that
use active objects (i.e., those that are both clients and
servers) could benefit from this technique.

ACKNOWLEDGEMENTS

Dr. Agrawal was supported by the NSF under grant
numbers IRI1-9004998 and IRI-9117094.

REFERENCES

Agrawal, D., and J. R. Agre. 1992. Recovering from
Process Failures in the Time Warp Mechanism.
IEEE Transactions on Computers. To Appear.

Agre,J. R., and P. A. Tinker. 1991. Useful extensions
to a time warp simulation system. In Proceedings
of the SCS Multiconference on Parallel and Dis-
tributed Simulation, pages 78-85, Anaheim, CA.

Agre, J. R., and S. M. VoPava. 1992. Distributed
end-to-end simulation of a strategic attack/defense
engagement model (sadem). In Proceedings of the
Summer Compuler Simulation Conference, pages
914-919, Reno, NV.

Berry, O. 1986. Performance FEvaluation of the Time
Warp Distributed Simulation Mechanism. PhD
thesis, University of Southern California.

Chandy, K. M., and J. Misra. 1979. Distributed sim-
ulation: A case study in design and verification of
distributed programs. IEEE Transactions on Sofi-
ware Engineering, SE-5(5):440-452.

Davcev, D., and W. Burkhard. 1985. Consistency
and Recovery Control for Replicated Files. In Pro-
ceedings of the Tenth ACM Symposium on Operat-
ing Systems Principles, pages 87-96.

El Abbadi, A., D. Skeen, and F. Cristian. 1985. An
efficient fault-tolerant protocol for replicated data
management. In Proceedings of the jth ACM Sym-
posium on Principles of Database Systems, pages
215-228.

Fujimoto, R. M. 1990. Parallel discrete event simula-
tion. Communications of the ACM, 33(7):30-53.
Gifford, D. K. 1979. Weighted voting for replicated
data. In Proceedings of the Seventh Symposium on

Operating Systems Principles, pages 150-159.

Goldberg, A. P. 1992. Virtual time synchronization
of replicated processes. In Proceedings of the SCS
Multiconference on Parallel and Distributed Simu-
lation, pages 107-116, Newport Beach, CA.

Jajodia, S., and D. Mutchler. 1990. Dynamic Vot-
ing Algorithms for Maintaining the Consistency
of a Replicated Database. ACM Transactions on
Database Systems, 15(2):230-280.

Jefferson, D. R. 1985. Virtual time. ACM Trans-
actions on Programming Languages and Systems,
7(3):404-425.

Jefferson, D. R., and H. A. Sowizral. 1985. Fast con-
current simulation using the time warp mechanism.
SCS Simulation, 15(2):63-69.

Misra, J. 1986. Distributed-discrete event simulation.
ACM Computing Surveys, 18(1):39-65.

Paris, J. F., and D. E. Long. 1988. Efficient Dynamic
Voting Algorithms. In Proceedings of the Fourth
IEEE International Conference on Data Engineer-
ing, pages 268-275.

Thomas, R. H. 1979. A majority consensus approach
to concurrency control for multiple copy databases.
ACM Transaction on Database Systems, 4(2):180-
209.

Tinker, P. A., and J. R. Agre. 1989. Object han-
dling, messaging, and state manipulation in a time
warp system. In Proceedings of the SCS Multi-
conference on Distributed Simulation, pages 79-84,
Tampa, FL.

AUTHOR BIOGRAPHIES

DIVYAKANT AGRAWAL is currently an Assis-
tant Professor in the Department of Computer Sci-
ence at the University of California at Santa Barbara.
He received his B.E. degree from Birla Institute of
Technology and Science, Pilani, India in 1980. He
received his M.S. and Ph.D. degrees in computer sci-
ence from SUNY at Stony Brook in 1984 and 1987.
His research interests include design of algorithms for
concurrent and fault-tolerant systems.

JONATHAN R. AGRE is currently working at
the Rockwell International Science Center in the Soft-
ware Systems Department on simulation technolo-
gies. He received his B.S. in Mathematics and Com-
puter Science in 1975, the M. S. and the Ph. D.in
Computer Science in 1977 and 1981, all from the Uni-
versity of Maryland. His research interests include
distributed and parallel simulation and fault tolerant
systems.

