Proceedings of the 1992 Winter Simulation Conference
ed. J. J. Swain, D. Goldsman, R. C. Crain, and J. R. Wilson

TRANSPARENT OPTIMIZATIONS OF OVERHEADS IN OPTIMISTIC SIMULATIONS *

Rajive L. Bagrodia
Wen-Toh Liao

Computer Science Department
University of California at Los Angeles
Los Angeles, California 90024

ABSTRACT

A large fraction of the overhead in a typical optimistic
simulation is due to the state-saving and recomputa-
tion needed to correct a potentially incorrect compu-
tation. Traditional mechanisms that are used to trig-
ger recomputations may incur significantly greater
overheads than are necessary to ensure a correct com-
putation. In this paper, we describe a performance
study of an optimization mechanism which uses ap-
plication semantics to identify artificial rollbacks in
an optimistic simulation. Detection of artificial roll-
backs can reduce unnecessary recomputations and in-
directly reduce state-saving overheads. The detection
mechanism has been transparently implemented in a
distributed simulation language called Maisie. The
paper demonstrates that detection of artificial roll-
backs can yield significant performance improvements
in the simulation of stochastic systems.

1 INTRODUCTION

The potential for significant performance improve-
ments from parallel executions of simulation pro-
grams has led to the design of many algorithms for
executing simulations on parallel architectures (Jef-
ferson 1985, Misra 1986, Chandy and Sherman 1989.)
However, empirical studies have shown that both con-
servative and optimistic algorithms incur significant
overhead that may reduce the effectiveness of the al-
gorithms in the simulations of some physical systems.

A number of experiments have been designed to an-
alyze the cost components of distributed simulation
algorithms in order to identify the primary sources
of overhead. For example, Fujimoto (1990), and Lin
and Lazowska (1989) note the major impact of the
frequency of state-saving overheads on the cost of op-
timistic simulations, and Gafni (1988) demonstrates

*This research was partially supported by NSF (ASC
9157610) and by ONR (N00014-91-J-1605)

637

how the recomputation overheads may be reduced by
using lazy cancellation. With respect to conserva-
tive methods, Fujimoto (1990) and Nicol (1988) de-
scribe how lookahead in physical systems is useful in
obtaining performance improvements. Other studies
have shown that application semantics may be used
to improve the performance of both conservative and
optimistic simulations. For example, Baezner et al.
(1989) and Wagner (1991) show that, when lookahead
is included in the design of the simulation model,
the overhead associated with the optimistic or con-
servative algorithm can be reduced. Sokol, Mutchler,
and Weissman (1992) illustrates that the amount of
computation associated with each event has a major
impact on the performance of parallel simulations.
These studies suggest that performance of parallel
simulations may be further improved if the simula-
tion engine can deduce semantic information from the
applications and perform appropriate optimizations.

Bagrodia and Liao (1990) describes a distributed
simulation language called Maisie, and an optimiza-
tion mechanism to reduce recomputation overhead in
optimistic simulations. In this paper, we describe a
performance study of Maisie, and demonstrate that
the design of Maisie enables the runtime system to
use the application semantics and transparently re-
duce rollback overhead in optimistic simulations. We
show that, by identifying artificial rollbacks and re-
ducing unnecessary recomputation, the execution of
Maisie programs can obtain a significant performance
improvement.

The rest of the paper is organized as follows: the
next section gives a brief description of Maisie. Sec-
tion 3 describes the transparent rollback optimization
mechanism. The experiments are illustrated in sec-
tion 4, and the sequential and parallel implementa-
tions are described in 5. Section 6 discusses the per-
formance results of the experimental study. Section
7 is the conclusion.

638 Bagrodia and Liao

2 MAISIE SIMULATION LANGUAGE

Maisie (Bagrodia and Liao 1990) is a C-based process-
oriented simulation language. In Maisie, objects of
a given class in the physical system is modcled by
an entity-type. An entity-instance, henceforth re-
ferred to simply as an entity, represents a specific
object in the physical system, and may be created
and destroyed dynamically. Interactions among ob-
jects are modeled by exchanging of messages. Entities
communicate with each other using buffered message
passing, and every entity is associated with a unique
message-buffer. An entity sends a message to another
entity by depositing the message into the message-
buffer of the destination entity at the same simulation
time as 1t is sent.

Maisie uses typed messages. Every entity must de-
fine the types of messages that may be received by it.
An entity accepts messages from its message-buffer
by executing a wait statement. The wait statement
has two components: an optional wait-time (t.) and
a required resume-block. If ¢. is omitted, it is set to
an arbitrarily large value. The resume-block consists
of a set of resume statements, each of which has the
following form:

mtype(m;) [st b;] statement;;
where m; is a message-type, b; is an optional boolean
expression referred to as a guard, and statement; is
any C or Maisie statement. The guard is a side-effect
free boolean expression that may refer to local vari-
ables or message parameters. If omitted, the guard
is assumed to be frue. The message-type and guard
are together referred to as a resume condition. A re-
sume condition with message-type m; and guard b;
is said to be enabled if the message-buffer contains
a message of type m;, and b; evaluates to true; the
corresponding message is called an enabling message.

If two or more resume conditions in a wait state-
ment are enabled, the message with the earliest times-
tamp is delivered to the entity. If no resume condition
in the wait statement is enabled, a special timeout
message 1s scheduled for the entity ¢, time units in the
future. If prior to expiration of ¢, the entity does not
receive any enabling messages, the timeout message
is sent to and accepted by the entity (timeout mes-
sages are always enabled.) If an enabling message is
received before f. expires, the timeout message is can-
celed automatically. For convenience, a hold state-
ment is provided to unconditionally delay an entity
for t. time units.

As a simple example, Figure 1 describes a priority
server in Maisie. In the physical system, the server
expects two types of requests, respectively referred to
as high and low, where the requests of the first type

entity server{meanh,meani}
int meanh ,meanl,
{ int hent = 0, lent = 0, rtime,lostart;
message high;
message low;
while (true)
wait until
{ mtype(high) {hold(ezp(meanh)); hent++;}
or mtype(low)
{rtime= ezp(meanl);
do { lostart=sclock();
wait rtime until{
mtype(high) {
rtime = rtime - (sclock()-lostart);
hold(ezp(meanh)); heni++;}
or mtype(timeout) {/cni++; break;})
} while(true);
}
}

Figure 1: Maisie Model of Priority Server

have a higher priority and can preempt the service
of the request of type low. For requests of the same
type, they are serviced in a FIFO order. In the Maisie
program, an entity-type called server is used to mod-
eled the priority server, and it declares two message
types, high and low, to represent the two types of
requests that may be received by it. Henceforth, a
message of type high is referred to as a high message;
similarly for a low message. Initially, a server is idle
and executes a wait statement to accept the next ar-
riving job. If a high message is accepted, the server
simulates the service of the request by executing a
hold statement and t. is set to be the service time.
Upon expiration of t., the server accepts the corre-
sponding timeout message, increments the appropri-
ate counter, and starts waiting for another message.
On the other hand, if a low message is accepted, the
server computes the service time rtime and executes
a selective-wait statement with t.=rtime to simulate
the preemptible nature of the service. If a high mes-
sage is accepted before ¢, expires, the server computes
the remaining service time of the low message, ser-
vices the high message, and then resumes servicm'g
the low message. If the service of the low message 1S
not preempted by a high message, the server accepts
the timeout message and increments the counter a¢
cordingly.

3 ROLLBACK OPTIMIZATIONS

All optimistic algorithms require rollback and re

Transparent Optimizations of Overheads in Optimistic Simulations 639

computation whenever the runtime system detects
the timestamp of a message is less than the current
simulation time of the receiver. However, as described
in (Bagrodia and Liao 1990), in some cases rollback
may be unnecessary, and in some cases the rollback
distance may be reduced. In this section, we describe
briefly the rollback optimization mechanism and illus-
trate the idea with examples. We use the term artifi-
ctal rollback to refer to a rollback whose rollback dis-
tance can be reduced while maintaining the correct-
ness of the simulation. Detection of artificial rollbacks
improves the execution efficiency of optimistic simu-
lations by reducing recomputation and state-saving
overheads.

Let r; be a subsequence of the correct sequence of
messages that is delivered to some entity LP,. Let
F; and s; respectively be the final state of the entity
and the sequence of output messages generated by the
entity as a result of receiving the messages in r;. The
state of an entity includes its local variables and its
message buffer. Let ro be a permutation of ry, ry#ro,
and F» and s, be the final state and the sequence of
output messages generated due to delivery of rp to
LP,. Any one of the following four relationships may
hold among F;, Fa, 51 and ss:

(1) F1#F2 and sy #ss,
(2) F1#F2 and sy =so,
(3) F1=F» and s;#s2, and
(4) F1=F-, and s;=s,.

In a typical optimistic implementation like Time-
Warp (Jefferson et al. 1987), delivery of sequence r»
rather than r; would cause recomputation of LP,
and possibly other entities with which communica-
tion has occurred, in each of the four cases. However,
it is clear that only case (1) requires a propagating
rollback. The recomputation can be considerably re-
duced in case (2) and (3), and completely eliminated
in case (4). If upon the arrival of an out-of-order
message the runtime system can determines artificial
rollback as in case (2), (3), and (4), the recomputa-
tion overhead may be reduced.

To facilitate transparent detection of artificial roll-
backs, the runtime system maintains the following
two variables for every entity:

e mset(t;): set of enabling messages at time ¢;.

e tres(t;): timestamp(s) on the enabling mes-
sage(s) accepted by the entity when it resumes
execution after executing wait statement at ¢;.

Assume that an out-of-order message (tw,myw) is
delivered to an entity when its simulation time is t,.
Let ¢; be the latest time preceding t,, at which the en-
tity’s state was saved. On receipt of m,,, traditional

optimistic simulators immediately rollback the entity
to t;. However, in the optimized implementation, the
entity needs to be rolled back only to the earliest ¢,
t1<t,<tn, such that m, belongs to msel(t;) and t,
is less than tres(t,). In many cases, {, may be greater
than t;, and in some cases t, may be equal to t,, in-
dicating that the rollback is unnecessary. We present
an example.

The example uses the simplest form of the wait
statement where the resume conditions do not include
a guard. Consider the preemptible priority server in
Figure 1. Consider the effect of delivering the mes-
sage sequence (5,high), (9,low), (7,high), (18,low),
(14,high) to the server. Assume that message (5,high)
is accepted by the server at time 5, and the service
time computed is 10. Then, msei(5) for the server
includes only timeout messages; other messages in-
cluding (9,low) and (7,high) that are delivered to the
server, will be stored in its message-buffer until it re-
ceives a timeout message at simulation time 15. So,
as long as message (7,high) arrives at the server be-
fore or at simulation time 15, the order of the arrival
of (9,low) and (7,high) does not affect the correctness
of the simulation. Furthermore, if message (14,high)
is delivered to the entity after simulation time 15,
even though the message belongs to mset(15), roll-
back may be unnecessary as tres(15)=7, due to the
server initiating the service of message (7,high).

Associative Messages It is also possible to detect
artificial rollbacks in situations where a message is
processed rather than simply delivered in an incorrect
order. We use the notion of associative messages to
identify such sequences. Consider two sequences r;
and r, defined previously. The two sequences are said
to be associative if messages in either sequence may
be processed without affecting the correctness of the
simulation.

As an example of an associative sequence, con-
sider the following two sequences that are input to
a FIFO server: r;=(5,10,LP;),(18,7,LP>),(30,8,LP;)
and ro=(5,10,LP;),(30,8, LP3),(18,7,LP;) where the
message parameters respectively represent the mes-
sage timestamp, desired service duration and the re-
questing LP. The two sequences are associative, as
the final state of the server and the output message
sequences to each customer are the same, regard-
less of which sequence of input messages is actually
processed by the server. Detection of associative se-
quences allows messages to be processed out of order,
thus reducing recomputation overheads for the imple-
mentation.

In general, it is difficult for the runtime system to
transparently extract relevant information from the

640 Bagrodia and Liao

simulation program to identify an associative message
sequence. As described in (Bagrodia and Liao 1992)
these situations must be identified explicitly by the
programmer using specific constructs provided by the
simulation language.

4 EXPERIMENTS

The experimental study used three types of queueing
networks that have previously been used in perfor-
mance studies of parallel simulation algorithms. The
first example is a closed queueing network (hence-
forth referred to as CQNF) that consists of N fully
connected switches. Each switch is a tandem queue
of Q FIFO servers. A job that arrives at a queue is
served sequentially by the Q servers and is thereafter
routed to one of the N neighboring switches (includ-
ing itself) with equal probability. The service time of
a job at a server is generated from a negative expo-
nential distribution, where all servers are assumed to
have an identical mean service time. Each switch is
initially assigned J jobs. The simulation terminates
when the simulation time exceeds the maximum sim-
ulation time (T) specified. Figure 2 displays an in-
stance of the network with N=3, O=2 and Q=4.

FCFS Servers

Switch 1

Figure 2: Closed Queueing Network (N=3,0=2)

The second benchmark (henceforth referred to as
CQNP) is similar to CQNF except that a job may
belong to one of two classes: high or low, where jobs
in the first class have a higher priority than those in
the second class. Each FIFO server is replaced by a
priority preemptible server.

The third benchmark (henceforth referred to as
CQNF-A) is similar to CQNF except that the ser-
vice time of a job is assigned at initialization, whose
value is uniformly distributed in the interval [SER-
VICE_MIN,SERVICE_MAX]. Furthermore, on exit-
ing from a switch, a job is routed back to the current
switch with probability P, and is routed to one of its
N — 1 neighbors with probability (1 — P)/(N — 1).
This benchmark is used to demonstrate the utility of
the associative message mechanism described in the
previous section.

5 IMPLEMENTATION

Sequential implementation: Every event in a
Maisie simulation is implemented by the communi-
cation of a message, where the timestamp on the
message refers to the simulation time at which the
event is assumed to occur. Other than timeout mes-
sages, all messages generated in the simulation are
timestamped with the current value of the simula-
tion clock. As such, these messages can be directly
appended to the message buffer of the destination en-
tity, as soon as they are generated. This implies that
message delivery requires making a single copy of the
message parameters together with an append opera-
tion; in particular, these messages are never inserted
in a global event queue and no search is required.
Furthermore, the Maisie runtime system maintains
its own free-list, thus avoiding the overhead of mak-
ing external calls to the operating system routines
like malloc() and free(). With respect to timeout
messages, each Maisie entity is associated with ex-
actly one timeout message, which contains the future
time at which the message is to be delivered to the
corresponding entity. The timeout messages are the
only entries that are placed in the event queue. This
queue is implemented using a splay tree data struc-
ture in order to optimize the insert operation.

Parallel implementation: In principle, a Maisie
program may be executed using either conservative or
optimistic algorithms. This paper studies the perfor-
mance of Maisie programs when executed using the
space-time simulation algorithm. A detailed descrip-
tion of the implementation can be found in (Bagrodia,
Chandy, and Liao 1991.)

For the parallel execution, each entity is created
on a specific processor and may not move to another
processor. Entities mapped to the same processor
are executed sequentially. The space-time algorithm
is used to synchronize entities on different processors.
To implement the space-time algorithm, the runtime
system must perform the following major tasks:

e checkpointing and recomputation of entities,
¢ synchronization of entities, and

o convergence detection to determine the time
upto which the simulation has been computed
correctly.

Different strategies may be used to implement the
preceding tasks. For the results reported in this pa-
per, the runtime system checkpoints an entity after
each event, and uses synchronous algorithm for con-
vergence detection.

Transparent Optimizations of Overheads in Optimistic Simulations 641

Even though entities mapped to the same processor
are executed sequentially, the runtime system on each
processor is different from the sequential runtime sys-
tem in many ways. Unlike the sequential implementa-
tion, the parallel runtime system uses a linked-list for
the representation of the global event queue as well
as the local message-buffer of each entity. Further-
more, because the sender and receiver entities may
have different simulation times, the parallel runtime
system cannot use an append operation to deliver a
message; rather each message must first be inserted
into the global event queue which is sorted on the
message timestamps. Messages are subsequently re-
moved from the event queue in increasing order of the
timestamps.

Similar to the sequential implementation, the par-
allel runtime system manages its own free list for mes-
sage transmission. However, because remote commu-
nications use the communication primitives provided
by the operating system, additional copy operations
must be performed. Overall, each remote communi-
cation requires two sets of calls to the system mal-
loc(), memcpy(), and free() routines. This is a sig-
nificant overhead when compared with a single call
to the memcpy() function required for a local com-
munication. Furthermore, as the receive operation for
remote messages is implemented using polling, rather
than interrupts, checking for arrival of remote mes-
sages 1s slightly more expensive than for local mes-
sages.

6 RESULTS

Measurements for the experiments reported in this
paper were taken on a Symult S2010 hypercube where
each node uses a Motorola 68020 cpu and has 4MB
of main memory. All programs were coded in Maisie.
The Maisie programs used for the parallel implemen-
tations were identical to the sequential programs, ex-
cept for the explicit assignment of Maisie entities to
specific nodes of the multicomputer.

6.1 CQNF Experiments

For the Maisie model of the CQNF network, a merge
process and its associated tandem queue were mod-
eled by a single entity called queue and a fork process
was modeled by another entity called switch. Thus
each node of the physical network is modeled by one
switch and one queue entity; for parallel implemen-
tations of the model, the queue and swilch entities
corresponding to a node were both assigned to a sin-
gle processor. The queue entity is programmed as
follows: for each arriving job, the entity simulates

service of the job at each of its Q servers, and sub-
sequently sends a message to the associated switch
entity. The switch entity simply routes each incom-
ing job to one of its N neighbors.

To demonstrate the effectiveness of the rollback op-
timizations discussed in this paper, three different
versions of the Maisie model were executed for each
configuration of the CQNF network:

1. CQNF-no-opt: The Maisie model emulates the
execution of the simulation in a conventional en-
vironment that does not support a selective re-
ceive primitive. In such simulations, a job mes-
sage is accepted immediately on its arrival. The
corresponding departure time of the job is com-
puted and stored in a local buffer as a part of the
state of the entity (Jefferson et al. 1987.) The
arrival of any out-of-order message will trigger a
rollback in such implementations.

2. CQNF-optl: The queue entity in the program is
modified such that on arrival of a job, the entity
computes the departure time for the job and ex-
ecutes a hold statement to simulate the service
of the job. The next job in the message-buffer
1s accepted only after the current job has com-
pleted its service. The runtime system does not
explicitly detect artificial rollbacks.

3. CQNF-opt2: The Maisie model remains the
same as in the previous case. However, the run-
time system uses the tres and mset data struc-
tures described in the previous section to detect
artificial rollbacks and to perform rollback opti-
mizations.

The first graph (Figure 3) measures the speedup
obtained in the parallel simulation as a function of
N. The other parameters were fixed as O=N, Q=20,
and J=64. As seen from the figure, the speedup
increases linearly with N in all three cases. The
CQNF-opt2 yields the best result with 70-90% per-
formance improvement over CQNF-optl (for N >
2). While CQNF-no-opt and CQNF-optl have sim-
ilar performance, CQNF-no-opt is about 4-7% bet-
ter than CQNF-optl. (We subsequently elaborate on
this non-intuitive result.)

Given a network of N switches, the amount of com-
putation is determined by the number of jobs as-
signed to each switch (J) as also by the number of
servers in each tandem queue (Q). Figure 4 shows
the speedup of CQNF-opt2 obtained for a network of
N=32 switches as a function of the number of jobs in
the system for Q=10 and 20 respectively. Note that
initially the speedup increases with J and then levels
off to reach a peak speedup of about 22 and 25 for

642 Bagrodia and Liao

(Q=120,J =64,T = 8 x 10%)
25 T T T T T

20 | cqnf-opt2 ©—
cqnf-optl -@- -

Speed 15 | cqnf-no-opt & -

up

5 10 15 20 25 30
Number of CPU

Figure 3: CQNF Speedup: Effect of optimization

(N =32,Q=20,T=28x10%
26 1 T T T T T

Speed
up

20 40 60 80 100 120
Number of Jobs

Figure 4: CQNF Speedup: No. of jobs

J=128 depending on the value of Q. This behavior is
expected. The initial increase in J offsets the message
communication time in the network and once every
node is fully utilized, further increases in J have no
effect on the speedup. Other things remaining the
same, the performance is better for a larger Q, as the
network is more fully utilized.

The next set of experiments were designed to study
the overhead due to the simulation algorithm and the
rollback optimization. For these experiments, the
iteration count (K) is defined to be the number of
events processed before each node communicates with
other nodes. Other things remaining the same, the
value of K affects the amount of network message traf-
fic, and the frequency with which the system conver-
gence time (or GVT) is computed, which in turn af-

(@ =120, =64,T =8 x 10%)
240 F 7 T T . tQIQ_ n
cqnf-op _
;382 cqnf-optl -0 - |
cqnf-no-opt -4\ -
Time 180

(sec) 160
140

120

100

80

T P"—-‘I
o
1

50 100 150 200
Iteration count

Figure 5: CQNF: Execution time

fects the frequency of garbage collection. Figure 5, 6,
7, and 8 show the total execution time, total number
of rollback events, state-saving and garbage-collection
overhead, and communication overhead, respectively,
as a function of K (for K=30, 60, 120, 240.)

As seen in Figure 5, the execution time of both
CQNF-optl and CQNF-no-opt decrease monotoni-
cally as K increases, but the execution time of CQNF-
opt2 increases as K increases after first dropping to
the minimum value of 87(sec) at K=64. The intu-
itive explanation for this behavior is that, as K in-
creases, each node communicates less frequently and
thus the node 1s more likely to be in an incorrect state,
resulting in more rollbacks. Figure 6 demonstrates
this effect. The total number of rollback events for
CQNF-opt2, as expected, increases monotonically as
K increases. However, the value of K seems to have
little effect on CQNF-optl and CQNF-no-opt. The
number of rollback events has a direct impact on
state-saving and garbage-collection overhead. Fig-
ure 7 shows that only CQNF-opt2 demonstrates in-
creases of state-saving overhead as K increases. Note,
CQNF-no-opt has much higher overhead due to the
fact that messages have to be saved internally in the
local state of the entity increasing the size of the state
that must be saved.

Figure 8 shows that as K increases, the communica-
tion overhead decreases in all three cases. As explain
previously, when K increases, there is less communi-
cation and thus less overhead. The decrease of the
communication overhead in CQNF-optl and CQNF-
no-opt is also the major contributor to the decrease
of the total execution time in both cases.

Note, despite having more rollback events and more
state-saving overhead, CQNF-no-opt still has simi-

No. of
events

(x103)

30
25
20

154
0
10

(Q=120,J =64,T =8 x 10%)

Transparent Optimizations of Overheads in Optimistic Simulations

T

T

L cqnf-opt2 ©—
cqnf-optl -@- -
- cqnf-no-opt ‘A -

4 | | 1

50 100 150 200
Iteration count

Figure 6: CQNF: Rollback events

Time
(sec)

Figure 7:

Time
(sec)

(Q=20,7 =64,T =8 x 10%)

T T T T

T

cqnf-no-opt -A -

cqnf-opt2 ©—]
cqnf-optl @ -]

50 100 150
Iteration count

200

CQNF': State-saving, garbage-collection

45
40
35
30
25
20
15
10

Figure 8:

(Q=20,J =64,T =8 x 109)

Zg T T T T
B cqnf-opt2 ©&— 7

“.'.' cqnf-optl -@- -
- cqnf-no-opt & -

50 100 150

Iteration count

CQNF: Communication overhead

643

(@ =20,J =64, T =8 x 10*)

14 T T T T T T \
12 - cgnf-optl O - ;
cqnf-no-opt A& -
10 3
cqnf-no-opt-2 »—
8 -
Speedup
6
4
2
0
5 10 15 20 25 30

Number of CPU

Figure 9: CQNF Speedup

lar execution time as CQNF-optl, which is counter-
intuitive. The explanation is as follows: for CQNF-
no-opt model, there are two types of events: (a)
accepting a message and computing the departure
time; (b) sending a departing job to the associated
switch entity. Between the two, event granularity
(the amount of computation assiciated with an event)
of type (a) is larger than that of type (b). Upon
rollback, if most of the rollback events are of type
(b), CQNF-no-opt requires relatively little cpu time
to complete recomputation. Whereas, in CQNF-opt1
model, almost all events are of the first type with a
larger event granularity. Recomputation in CQNF-
optl thus require more cpu time. To confirm this,
we re-programmed the queue entity to compute the
departure time of a job only when it is ready to ser-
vice the job. Figure 9 shows the result. As expected,
the new benchmark, CQNF-no-opt-2, performs much
worse than CQNF-no-opt. Examining the data shows
that, comparing to CQNF-no-opt, CQNF-no-opt-2
requires more calls to the function computing job de-
parture time. This confirms that recomputation of
CQNF-no-opt-2 takes more cpu time to finish than
that of CQNF-no-opt.

6.2 CQNP Experiments

Unlike in CQNF, for CQNP experiments, the tan-
dem queue is modeled by Q queue entities each of
which simulates a priority preemptible server. Each
queue entity is programmed in a way that when ser-
vicing a high job, it executes a hold statement; when
servicing a low job, a selective-receive construct is
used to simulate the effect of preemption (see Fig-
ure 1.) As in CQNF experiments, three different ex-
periments were conducted for a given configuration:

644

Bagrodia and Liao

(N =32,Q =10,J =60,T = 20000)

90

85 T T N
80 L B -
5 O .
) 70 F cqnp-opt2 ©— -
Time 65 |- cqnp-optl -@- -
(sec) 60 cqnp-no-opt A -
55 | .
50 | .
45 I 7
405 Q & ;g
35 Y Y
30:30 20:40 10:50 5:55
Hi:Lo Ratio
Figure 10: CQNP: Parallel time
(N =32,Q =10,J = 60, T = 20000)
7504 - A e A ----- Vi
700 .
Time g50 | cqnp-optl -0 - |
(sec) cqnp-no-opt A -
600 —
550 [} D BE:]
500 ' L
30:30 20:40 10:50 5:55
Hi:Lo Ratio

Figure 11: CQNP: Sequential time

CQNP-no-opt, CQNP-optl, and CQNP-opt2 repre-
sent the non-optimized, the minimum optimized, and
the fully optimized version, respectively.

The first graph (Figure 10) plots the parallel execu-
tion time of the three experiments as a function of the
ratio of high to low priority jobs. The configuration
1s fixed as N=32, T=20000, and J=60. It demon-
strates that, though not as effective as in CQNF ex-
periments, rollback optimization (CQNP-opt2) still
achieve about 10% improvement over CQNP-opt].
This is as expected. First, because of the preemption
functionality of the server, it is less likely to detect
artificial rollback in CQNP. Second, since each queue
entity represents only a single server (compared to
Q servers in CQNF), the event granularity in CQNP
is smaller, and thus, the recomputation overhead re-

duced is less significant. The graph also shows that
as the number of high job decreases, the performance
of CQNP-no-opt is worse. The performance degra-
dation is mainly due to the increase in the num-
ber of rollback events. The next graph (Figure 11)
plots the sequential execution time of CQNP-no-opt
and CQNP-optl (or CQNP-opt2). The sequential
CQNP-no-opt has worse performance than CQNP-
optl due to more context-switches (in fact, more
than double), event-insertion, and internal message-
saving. This again illustrates that Maisie selective-
receive construct can be used to transparently min-
imize context-switching overhead in both sequential
and parallel simulations, and state-saving overhead in
parallel execution.

6.3 CQNF-A experiments

For CQNF-A experiments, the network is modeled
similarly to CQNP: each FIFO server is modeled by a
queue entity. Each job message carries, as a part of its
parameter, the time required for servicing the job in
the physical system. The optimization mechanism is
implemented using information explicitly passed from
the application program: on the arrival of an out-of-
order job, the runtime system checks if the server
was continuously idle for the duration corresponding
to the requested job service time. If so, the rollback
optimization for executing associative sequence can
be applied.

Different configurations of the CQNF-A model
were executed to measure the effectiveness of the roll-
back optimization. For a given configuration, let D
refer to the total rollback distance without imple-
menting the rollback optimization, and D’ refer to
the rollback distance in the optimized implementa-
tion. The reduction in the rollback distance is ex-
pressed as a ratio R = (D — D')/D. Figure 12 plots
R (expressed as percentage) as a function of the num-
ber of jobs in the system. The other parameters were
kept constant as N=32, Q=10, P=0.5, T=40000; the
Jjob service time was sampled from a random number
with uniform-distribution in the interval [20, 40]. As
seen from the figure, the optimization is useful in a
relatively under utilized system where the idle periods
of a server are more likely to overlap with the service
time of an out-of-order job. As J increases, the idle
period is less frequent, and hence this optimization is
less effective.

7 CONCLUSION

This paper described a performance study of the
transparent optimization mechanism implemented in

Transparent Optimizations of Overheads in Optimistic Simulations 645

(N =32,Q = 10,T = 40000)

6 —T—T—T1T T T T T
14
12
R 10
(%) g
6
4
2

2 4 6 8 10 12 14 16 18 20
Number of Jobs

Figure 12: CQNF-A: Rollback distance reduced

the Maisie simulation language. The experiments
demonstrated that a number of optimizations can be
performed transparently by the runtime system to re-
duce the rollback and state-saving overheads for opti-
mistic executions of Maisie programs. First, the selec-
tive receive primitive of Maisie can be used to ensure
that an entity accepts a message only when it is ready
to process the message, thus reducing both context-
switching and state-saving overheads. Second, by not
storing the message internally in an entity, less mem-
ory space 1s required in a sequential execution, and
thus less state-saving overhead in a parallel execution.
Finally, by identifying artificial rollbacks, the parallel
runtime system can eliminate unnecessary recompu-
tation and obtain significant performance improve-
ment.

ACKNOWLEDGMENTS

The experiments reported in this paper were executed
on a Symult S2010 at Caltech. We are grateful to Pro-
fessor Chuck Seitz for providing access to the Symult
S2010.

REFERENCES

Baezner, D., J. Cleary, G. Lomow, and B. Unger.
1989. Algorithmic optimizations of simulations on
Time Warp. In Proceedings of 1989 SCS Mults-
conference on Distributed Stmulation, pages 73-78,
Tampa, Florida, January 1989. SCS.

Bagrodia, R.L., K.M. Chandy, and W.T. Liao. 1991.
A unifying framework for distributed simulations.
ACM Transactions on Modeling and Computer
Simulation, October 1991.

Bagrodia, R.L., K.M. Chandy, and W.T. Liao. 1992
An experimental study on the performance of the
Space-Time simulation algorithm. In the Proceed-
ings of 6th Workshop on Parallel and Distributed
Simulation, pages 159-168, January 1992.

Bagrodia, R.L., and W.T. Liao. 1990. Maisie: A lan-
guage and optimizing environment for distributed
simulation. In Proceedings of 1990 SCS Multicon-
ference on Distributed Simulation, 205-210, San
Diego, California.

Bagrodia, R.L. and W.T. Liao. 1992. A language for
iterative design of efficient simulations. Technical
report no. UCLA-CSD-920005, Computer Science
Department, UCLA, CA 90024, March 1992.

Chandy, K.M. and R. Sherman. 1989. Space-Time
and simulation. In Proceedings of Distribuled Sim-
ulation Conference, pages 53-57, March 1989.

Fujimoto, R.. 1990. Parallel discrete event simula-
tion. CACM, pages 30-53, October 1990.

Gafni, Anat. 1989. Rollback mechanisms for opti-
mistic distributed simulation systems. In Proceed-
ings of 1988 SCS Multiconference on Distribuled
Simulation, pages 61-67, February 1988.

Jefferson, D. 1985. Virtual Time. ACM Transaction
on Programming Languages and Sysiems., pages
404-425, July 1885.

Jefferson,D., B. Beckman, and F. Wieland et al. 1987.
Distributed simulation and the time warp operat-
ing system. In Symposium on Operating Systems
Principles, Austin, Texas, October 1987.

Lin, Yi-Bing, and Edward.D. Lazowska. 1989. The
optimal checkpoint interval in Time Warp paral-
lel simulation. Technical Report TR 89-09-04, De-
partment of Computer Science and Engineering,
University of Washington, September 1989.

Misra, J. 1986. Distributed discrete-event simu-
lation. ACM Computling Surveys, pages 39-65,
March 1986.

Nicol, D.M.. 1988. Parallel discrete event simula-
tion of FCFS stochastic queueing networks. ACM
SIGPLAN, pages 124-137, July 1988.

Sokol, L.M., P.A. Mutchler, and J.B. Weissman.
1992. The role of event granularity in parallel sim-
ulation design. In Proceedings of 6th Workshop
on Parallel and Distributed Simulation(PADS92),
Marc Abrams and Paul Reynolds, editors, volume
24:3, pages 178-185. SCS, January 1992.

Wagner, David. 1991. Algorithmic optimizations of
conservative parallel simulations. In Proceedings of
Advanced in Parallel and Distributed Simulation,
V Madisetti, D. Nicol, and R. Fujimoto, editors,
volume 23:1, pages 25-32. SCS, January 1991.

