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ABSTRACT

Higher-order cumulant spectral based tests of
Gaussianity, independence, lincarity, and stationarity
are used to analyze the higher-order statistical
properties of pseudo-random number generators. The
tests are applied to three uniform and four Gaussian
pseudo-random number generators.

1 INTRODUCTION

In the simulation of systems with stochastic
characteristics, one needs to be able to generate
sequences of random variables from prescribed
probability distributions. This need is fundamental to
all simulation models that require some form of
stochastic innovation, input, or shock. Algorithms
are required to generate random variates from
probability distributions with statistical characteristics
that facilitate the needs of the simulation model under
analysis. The typical procedure for generating a stream
of random variables consists of first, generating a
scquence of uniform(0,1) variates, and then oblaining a
sequence of variates with the desired statistical
characteristics by an appropriate transformation.

The decision not to reject the appropriatcness of
the statistical properties of a generated sequence of
pseudo random variates is driven by the level of
reliability required to validate the accuracy of the
generator. Today, many practitioners assume this
issue has been addressed and answered adequately, i.e.
there are "good" sources of pseudo random variate
generators capable of generating sequences of random

variates with the required statistical properties. This
acceptance may have been driven by the frequent use of
the Gaussian distribution as a variate generating
source. Also, the fact that most statistical tests of
random variate generators use mean- or covariance-
based measures of statistical reliability has helped
increase the acceptance. These tests may not be
sufficient even with Gaussian variates where the
acceptance of the null of Gaussianity is based on the
ability to show that the cumulants of orders greater
than two are statistically equal to zero. This is
especially true in the generation of sequences of non-
Gaussian/nonlinear variates that require statistically
reliable estimates of higher-order cumulants of orders
three and greater.

The higher-order statistical properties of available
pseudo random variate generators may not be reliable
enough to ensure that their inherent shortcomings are
not the causes of deviations in the simulation model or
statistical test from the expected behavior. Also,
existing tests of pseudo random variate generators that
consider moments of orders greater than two are either
theoretical or difficult to implement. With the
extension of power spectral techniques to higher-
orders, there are tests that can address the issue of the
appropriateness of random number generators and their
higher-order statistical properties.

Statistical tests analyzing the higher-order
statistical characteristics of pseudo random variate
generators are developed and implemented using
higher-order cumulant spectral functions. The specific
statistical issues to be addressed concerning pseudo
random variate generators include: 1) the independence
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of the generated variates , 2) the stationarity of the
variates, and 3) the inherent randomness of the
variates. What is meant by the last issue is that the
Fourier transform of the particular cumulant of a
distribution function of interest is equal to zero not in
a statisical sense, but in a determinisitc sense with
probability one. The statistical properties of generated
Gaussian variates resulting from transforming the
pseudo uniform variates will also be studied.

2 CUMULANTS, MOMENTS,
CUMULANT SPECTRAL FUNCTIONS

AND

Let {X(t): te T} denote a univariate random process
such that all moments are assumed to exist and to be
bounded, where T is an index set on the non-negative
integers. The n-th order moment (cumulant) function
is defined as the coefficient of the n-th order term in
the Taylor series expansion of the joint characteristic
function (of the logarithm of the m-th order joint
characteristic function). From their “parallel”
definitions, the n-th order joint cumulant function can
be expressed in terms of joint moment functions of
order n or less. Relationships between moments and
cumulants of any order can be derived [David and
Barton (1962)]. Let Cp(X(t}),....X(1)) = Cp(ty,...t,)

= C,(t") denote the n-th order cumulant function,

where t™ = {t;eT,....t,€ T} is a vector of equally

spaced time points and n £ m. The n-th order moment
function can be expressed as

Mp(X(tp), X (1)) = My(t)=E(X (1) X (1) X(1y,)).

The Fourier transform of the n-th order cumulant
is the n-th order cumulant spectrum. The latter can be
expressed as the the n-th order moment spectrum and
terms which are products of moment spectra of order
less than n. Assuming the integrability of the n-th
order cumulant as a function of the evolution times,
the n-th order cumulant spectrum is defined as:

-] e

n
(_izn(fl[1+f2[2+...+fnln))ndli‘ (1)

i=1

where f" = (f1> f9 £ ) is the n-th order frequency

set, R" is the n-dimensional real frequency space, i.e.

(-oo.oo)n, and the subscript C on the left hand side
denotes a cumulant spectral function. The strict
stationarity assumption and the requirement of a
cumulant mixing condition (Brillinger [2]) form the
basis for the use of the asymptotic properties of the n-
th order cumulant spectral estimates under the various
null hypotheses. From this, the n-th order cumulant

function can be written as a function of the n-1 time
differences uj.p = (tj- 1), J=2,..,nas Cu(0,.....t -

tp) = Cn(uporns uy.p) = Cu™ ). The (n-1)-th order
stationary spectrum is the Fourier transform of the n-
th order cumulant function where the support is
constrained to the stationary manifold, f ]+f2+ et

fn=0:
SSn-l(fn-1):IRn-1Cn("n_l)
n-1
exp(-i21t(flu1+f2u2+...+fn N 1))1—[dui. 2
I S |

where the subscript S on the left hand side of equation
(2) denotes a stationary spectral function.  The

support set is the principal domain of an n-th order
cumulant spectral function. The principal domain is

the minimal region in R" necessary for a complete
representation of the specific n-th order spectral
function of interest (Dalle Molle and Hinich [1991]).
Calculation of any n-th order spectral estimate defined
not in the n-th order principal domain, but still within

R" is not required. The subset of the principal domain
that is the intersection of the support sets of the n-th
order cumulant spectrum and the n-th order stationarity
constraint is called the stationary set. The set
theoretic difference between the support sets of the
principal domain of the n-th order cumulant spectrum
and the corresponding (n-1)-th order stationary set is
called the n-th order transient set. The transient sets of
orders greater than two that are used in the stationarity
tests correspond to the transient sets of the Hinich-
Wolinsky [1988], which are subsets of the
corresponding transient sets of the higher-order
cumulant spectra.

3 N-TH ORDER
SPECTRAL-BASED TESTS

CUMULANT

A framework is outlined for an n-th order joint
cumulant spectral based set of tests for Gaussianity,
independence, linearity, and stationarity. The
statistical framework for detecting positive support of
an n-th order cumulant spectral estimate is an
extension of the Hinich bispectral-based Gaussianity
test (Hinich [1982]). The version of the linearity test
used in this paper is from Dalle Molle and Hinich
[1989]. The different tests result from how the
support of the n-th order cumulant spectral function is
decomposed (Dalle Molle and Hinich [1991]). The
conceptual foundations for the stationarity test are a
generalization of the Hinich-Wolinsky [1988] test for
transients and are extended to the n-th order in Dalle
Molle and Hinich [1991].

The n-th order cumulant spectral-based test statistic
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A
can be defined as €_M=210, (M1 where

A n A n A A n. . al l .
V(F)=Sc ()6 10 Scpf) is calculated using an
A2
arithmetic frame average, and sn] is an estimate of the
s

large sample variance which is derived in Rosenblatt
[1985] and is defined by:

2 LI:n-2
(e =
nig NE

Ba(f"). rjl ISsl(fi)(HO(L'—F)) ).

where N is the number of partitions of a frame size
LF that a sample of size N can be partitioned into.

Bn(fn) is a scale factor which is a function of when

any of the possible subsets of the set of n frequency
indices in equation (3) are either the same or complex
conjugates of one another. An estimate of the large
sample variance is determined by substituting
estimators for the 1st-order stationary spectrum (i. e.
the power spectrum) at each of the n frequencies.

A global test statistic for the nulls of Gaussianity or
stationarity can be thought of as a test for positive
support and defined as a collection of realizations of

A
the test statistics &n(fn) belonging to the n-th order
stationary or transient sets, depending on the test. The
application of the asymptotic properties of the n-th
order cumulant spectral estimates to the large sample

A
properties of the statistic &, (f Misa straightforward
extension of the heuristic derivation in Hinich [1982].

A
The asymptotic properties of the estimate Scn(fn) are

examincd in Rosenblatt [1985]. If the random process
{X(t): t e Z) is strictly stationary, then each n-th order

A .
cumulant spectral estimate Scn(fn) in the n-th order

transient set should not be significantly different from
zero. Under the null hypotheses of Gaussianity or
stationary, the global test statistic is:

=Y X - X En(f™ @)

where the realizations take values over all frequency
sets in the appropriate n-th order support set. The
estimate of equation (4) is asymptotically distributed
as a central chi-squared variate with 2r degrees of
freedom where r is the number of frequency sets in the
n-th order support set.

For large sample sizes, it is convenient to use a
normal approximation for the sum of the chi-squares

in equation (4). The chi-squared variate defined in
equation (4) can be transformed to a standardized
Gaussian random variate using the Fisher

transformation ;
z=‘\/2§§- Var1. ©)

The rejection of the null hypothesis is a function of
the significance level required.

Under the null hypothesis of Gaussianity,
estimates of the n-th order cumulant spectrum in the n-
th order stationary set for n > 3 should have an
expected value of zero. An n-th order Gaussianity test
is developed from a global statistic derived from the
properties of the collection of n-th order cumulant
spectral estimates in the n-th order stationary set.

Under the null hypothesis, if a random process is
stationary, then any n-th order cumulant spectral
estimate defined in the appropriate n-th order transient
set has an expected value of zero. An n-th order
cumulant spectral-based stationarity test is a global
statistic derived from properties of the collection of n-
th order cumulant spectral estimates in the n-th order
transient set.

The null hypothesis that a random process is
linear, although not necessarily Gaussian, implies that

the non-centrality parameter 2IUf1m__fn12 of any order
cumulant spectra is a constant, say, AQ which is the
mean of the r estimators of the form 2| 1] nlz. Under

the null hypothesis of linearity, each observation of
the statistic 2I1)f1 _____ f nI2 is an independent sample from

a non-central chi-squared distribution x2(2,
2 2. .
2l0f1 .... f n| ), where 2I0f1 _____ f nI is the non-centrality

parameter. A sample of size p of these statistics

should have the sample dispersion as a x2(2, r0)
distribution. Each observed 2h)f1 _____ f n12 is an
independent sample from a non-central chi-squared
distribution, each with a the non-centrality parameter
2I1)f1 _____ f nlz. To reject linearity, the sample dispersion
should be greater in value than the dispersion required
under the null.

The test statistic for linearity is based on a
comparison of the magnitude of the dispersion in the
sample fractiles from the empirical distribution of the
individual Gaussianity test statistics relative to the

actual fractiles that are required under the null
hypothesis, i.e. (&,S-ﬁa)/oq where &, are the actual

fractiles and &g the sample fractiles of the CDF of
x2(2, AQ), 1 the sample size, and oq the standard
deviation of the uniform order statistic and is defined as
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0°=(Ea(1-Ea))/p. The test statistic is a standardized
normal variate (i.e. N(0,1)) within a 100(1-c) percent
symmetric confidence interval about the mean. The
null hypothesis is rejected if the values of the test
statistic are outliers of the standardized normal
distribution. The fractile used is the 80-th fractile and
was chosen based on previous simulations.

The test for independence is a joint test. If the
variates of a random process are generated
independently, then for any n-th order cumulant
spectral estimate defined in an n-th order stationary set,
the real part is constant and the imaginary part is equal
to zero. This is shown in Brillinger and Rosenblatt
[1967]. Thus, first we test for a constant real part
using the linearity test statistic, and then, if linearity
is not rejected, we test if imaginary part of the
Gaussianity statistic is zero valued in the n-th order
stationary set.

4 TESTING PSEUDO
NUMBER GENERATORS

RANDOM

As test cases, algorithms for three uniform and four
Gaussian variate generators are examined. Two
different implementations of the linear congruential
generator (LCG) and a Tausworthe generator are the
uniform generators considered. The algorithms for the
Gaussian variate generation are Box-Muller, inversion,
acceptance-rejection, and the sum of twelve
uniform(0,1) random variates.

The first of the LCG's considered can be found in
Bratley, Fox, and Schrage [1987]. The recursion is

Z:= (16807+Z; )mod(2>1-1) where Z; = 1,2,..., is a
sequence of positive integers with 0 < Z; < m-1 for

all i. The motivation for choosing this generator is its
widespread use and prior extensive testing of its
statistical properties. This uniform(0,1) generator is
also used as the feed for the Gaussian variate
generation. The second LCG is the infamous RANDU

version, Z;= (65539+Z;_1)mod(2>!), which produces

an observably nonrandom scquence of variates. The
algorithm for Tausworthe generator is the version
found in Bratley, Fox, and Schrage [1987]. Although
Tausworthe generators are not as widcly employed as
the LCG's, they are commonly used because of their
superior performance with respect to their potential to
generate cycles of variates with a large period,
independent of the word-size of the computer.

For the Gaussian variate generation, three of the
more commonly used generation schemes are used: 1)
Box-Muller, 2) an inversion, and 3) an acceptance-
rejection. The Box-Muller procedure is an exact
transformation which utilizes all uniform(0,1) variates
generated. The usefulness of the inversion procedure is
its potential for provable variance reduction. The
acceptance-rejection scheme can gencrate variates in a

rapid fashion. Additionally, the approach of summing
twelve uniform(0,1) random variates is included even
though it is typically not recommended for use. The
implementations for all four Gaussian variate
generators are found in Bratley, Fox, and Schrage
(1987]. The LCG generator found in Bratley, Fox,
and Schrage [1987] and used in the tests of the uniform
generators is used as the feed for the Gaussian variate
generation.

5 ANALYSIS OF PSEUDO RANDOM
NUMBER GENERATORS

For the 2nd-order cumulant spectrum estimation
procedures see Dalle Molle and Hinich (1989). The
simulation study consists of running 250 realizations
of each of the seven generators. The sample sizes
studied are 1000 and 10000. The results are presented
in the form of z-statistics derived from the fractiles of
the empirical distribution of the realizations of the
individual tests statistics. The z-statistic is a
standardized normal variate (i.e. N(0,1)) within a
100(1-a) percent symmetric confidence interval about
the mean. The z-statistics derived from the
Gaussianity and stationarity global test statistics and
the decomposition of the test statistics into its
imaginary part are one-sided. This is because the
Gaussianity and stationarity global test statistics
(under the null hypotheses) are transformed chi-squared
which are non-negative. The individual linearity test
statistics are two-sided. The significance of the last
two statements comes from the interpretation of the z-
statistics from the empirical distribution of the 250
realizations. The interpretation for large negative
values of the Gaussianity and stationarity z-statistics is
that the generator of interest may not have higher-order
random characteristics, i.e. the process is deterministic
with respect to that order cumulant spectral function in
the sense that the level of random noise is almost non-
existent. For the linearity test statistic, the
interpretation of the large negative values is analogous
to that of the large positive values, i.e. one rejects the
null hypothesis. The two-sided z-statistics that will be
referred to in this section are £1.96 (5 % level), and
+2.325 (1 % level). In the tables prescnted, four
fractiles, i.e. 0.60, 0.69, 0.77, and 0.89, are reported,
and were chosen since they are fairly robust to small
samples.

The results for the 2nd-order cumulant spectral test
for stationarity are in Table 1. For the sample size of
1000, all the uniform generators do not reject
stationarity, but all Gaussian generators do. For the
sample sizes of 10000, all generators reject
stationarity. Table 2 contains the results for the
stationarity test using the Hinich-Wolinsky 3rd-order
transient set, a subset of the complete 3rd-order
transient set. For the sample size of 1000, all uniform
generators reject stationarity. The stationarity test
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Table 1: Second Order Cumulant Spectral Stationary Test Statistic

Frac

Z-value

1000 Obs

10000 Obs

Taus

LCG

RAN

Sum

B-M

AR

Inv

Taus

LCG

RAN

Sum

B-M

AR

Inv

0.60

1.38

1.69

-0.08

6.82

6.01

6.69

7.30

3.61

3.96

3.57

8.64

7.58

7.65

7.64

0.69

0.91

1.52

0.00

5.98

4.33

5.52

5.85

3.04

291

3.67

7.65

6.41

6.80

7.23

0.77

0.87

1.01

1.49

5.27

2.93

5.26

5.16

1.81

2.23

1.64

6.49

5.53

6.09

6.33

0.89

-1.17

0.39

-0.30

4.30

3.23

3.53

3.81

1.36

1.19

0.56

4.24

3.57

4.11

4.72

Table 2: Third Order Cumulant Spectral Stationary Test Statistic

Frac

Z-value

1000 Obs

10000 Obs

Taus

LCG

RAN

Sum

A/R

Inv

Taus

LCG

RAN

Sum

B-M

AR

Inv

0.60

-6.72

-7.93

-7.13

-2.21

-2.67

-2.48

-2.84

-6.05

-7.28

-6.82

-0.11

0.55

-0.36

-0.28

0.69

-6.20

-8.35

-7.44

-2.78

-2.24

-2.16

-2.66

-6.10

-6.67

-7.12

0.24

0.43

-1.01

-0.45

0.77

-6.54

-9.21

-8.36

-2.00

-2.30

-2.72

-2.85

-5.41

-6.62

-7.25

0.51

0.79

0.49

0.28

0.89

-6.36

-10.1

-9.32

-3.93

-3.42

-4.10

-3.21

-4.36

-5.52

-7.00

-0.33

-1.17

-1.12

-2.50

Table 3: Fourth Order Cumulant Spectral Stationary Test Statistic

Frac

Z-value

1000 Obs

10000 Obs

Taus

LCG

RAN

Sum

B-M

A/R

Inv

Taus

LCG

RAN

Sum

B-M

AR

Inv

0.60

11.8

11.4

11.4

0.04

3.34

2.31

0.91

-19.3

-19.3

-19.3

-2.51

-1.47

-0.59

0.03

0.69

9.90

9.57

9.49

0.22

3.70

2.46

0.88

-23.7

-23.7

-23.7

-2.90

-1.12

-0.56

0.60

0.77

8.14

7.96

8.00

-0.33

2.26

2.36

0.93

-29.2

-29.2

-29.2

-2.84

-1.85

-1.10

0.62

0.89

5.31

5.22

5.29

-0.73

2.19

2.30

0.22

-46.0

5.43

5.43

-3.28

-2.83

-1.45

-1.70

Table 4:

Fourth Order Cumulant Spectral Stationary Test Statistic (Imaginary Part)

Frac

Z-value

1000 Obs

10000 Obs

Taus

LCG

RAN

Sum

B-M

A/R

Inv

Taus

LCG

RAN

Sum

B-M

AR

Inv

0.60

-12.6

-12.5

-12.5

0.42

2.53

2.45

-0.19

-16.1

-18.0

-17.8

-3.35

-0.73

0.61

-0.17

0.69

-13.4

-14.5

-13.6

-0.20

2.69

3.33

0.54

-18.6

-21.4

-21.1

-2.68

-0.41

1.15

-0.36

0.77

-15.0

-16.7

-16.2

0.49

1.63

2.19

0.74

-22.1

-25.6

-25.0

-3.30

-0.56

0.45

-1.15

0.89

-18.8

-19.7

-19.5

-1.28

241

1.85

-1.25

-30.3

-36.7

-35.9

-4.23

-1.87

-1.09

-2.75
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Table 5: Third Order Cumulant Spectral Gaussianity Test Statistic

Frac Z-value
1000 Obs 10000 Obs
Taus | LCG | RAN| Sum | B-M | A/R |Inv | Taus | LCG | RAN]| Sum [ B-M [ A/R | Inv
0.60)-119]-124[-11.5]-3.48]-3.36| 0.00|-3.59] -104]-9.21]-11.3] 0.99]-1.31] 0.68] 0.35
0.69]-13.2]-1341-129]-2.82]|-1.75] -0.33| -2.71] -10.0] -10.9] -11.2] 1.20] -1.08] 0.96] 1.51
0.77]1-14.7]1-14.71-12.7] -2.431-1.87] -0.41] -2.62] -11.2] -11.3] -11.3] 0.55]-0.09] 0.49] 1.34
0.89]-16.0] -13.2] -12.5] -3.45] -2.86| -0.80 -3.10] -11.1] -11.8] -15.3] -1.33] 0.07] -0.65] -1.14
Table 6: Fourth Order Cumulant Spectral Gaussianity Test Statistic
Frac Z-value
1000 Obs 10000 Obs
Taus | LCG | RAN| Sum | B-M | A/R | Inv Taus | LCG | RAN| Sum | BM | A/R | Inv
0.60] 129] 129] 12.9]-13.3)-13.5]-13.3]-13.8] -19.3]-19.3]-19.3]-10.5] -7.22] -9.72] -8.51
0.69] 10.5] 10.5| 10.5f-15.3}-14.2]-14.9]-15.5| -23.7| -23.7{-23.7] -11.2] -7.22] -9.40] -8.22
0.77] 8.55] 8.54| 8.55[-15.8|-15.0]-15.2]-16.0] -29.2] -29.2|-29.2] -12.2] -6.50] -8.19| -6.29
0.89] 5.43] 5.43| 5.43(-169[-12.7]-11.5]-12.4| -46.0] -46.0] -46.0| -8.02] -3.87] -4.50] -5.23
Table 7: Third Order Cumulant Spectral Independence Test Statistic
Frac Z-value (Gaussian Imag Part/Linearity (Frac: 0.8)
1000 Obs 10000 Obs
Taus | LCG | RAN| Sum | B-M | A/R |Inv | Taus | LCG | RAN| Sum | B-M | A/RR | Inv
0.60]-9.03]-9.77|-7.40] -2.90| -2.39| -1.67| -2.04| -9.38 | -8.27] -6.98| 0.28] -2.23]-0.89] -0.59
-12.21-13.6| -11.6|-7.14] -8.54 | -8.17] -9.26] -9.47] -7.53| -8.20| -4.99| -5.12| -3.36| -3.62
0.691-9.32]1-10.5(-8.43]-2.83|-2.18|-1.98]-1.34]-8.85]-7.53|-8.38] -0.60] -1.12| -0.42] -0.42
-13.9]-16.1] -12.4] -8.30] -8.98] -9.11] -9.63] -9.56| -6.98] -8.96] -5.98 ] -3.69] -4.03] -3.63
0.771-10.1]-10.51 -9.55] -2.33| -1.17| -1.21| -0.63] -7.29] -7.13| -8.78| -0.22| 0.61}| 0.23] -0.50
-15.1}-16.2]-13.9] -8.57| -10.5] -9.18 | -10.4] -10.3] -6.84] -9.80| -6.73| -4.48] -5.33] -4.18
0.89|-11.0]-10.1| -11.3|-3.16] -1.42| -2.49] -295] -9.31| -5.64| -8.08 | -2.77| 0.48] 0.49]-1.19
-209]-219]-17.8]-11.5|-11.3]-11.3| -13.4] -11.0] -596] -12.1| -6.41] -6.23] -7.26] -5.19
Table 8: Fourth Order Cumulant Spectral Independence Test Statistic
Frac Z-value (Gaussian Imag Part/Linearity (Frac: 0.8)
1000 Obs 10000 Obs
Taus | LCG | RAN|[ Sum | B-M | A/R |Inv | Taus | LCG ] RAN| Sum | B-M | A/R | Inv
060]-19.1]-19.2]-19.1]-18.6|-18.5]-18.4|-18.7] -19.31-19.3| -19.3]-19.3| -19.2| -19.3] -19.3
-021]-160]-196]-10.5] -8.37] -9.42] -11.3} -2.06] -4.32] -3.51] -8.77[ -5.12] -4.06} -5.19
0.691-233]-23.5(-23.4]-22.4]-22.0] -22.0] -22.7] -23.7] -23.7| -23.7| -23.6| -23.6| -23.6] -23.6
1941 -295]-344]-108]-8.89]-10.2] -12.6] -1.89] -4.80] -4.17] -8.39] -5.45] -4.56| -4.67
0.771 -28.6 -289| -28.8] -26.6| -26.1]-26.2]1-27.31-29.21-29.2|-29.2| -29.1| -29.0| -29.1] -28.9
3701 -4.51| -4.83]-11.5}-9.99] -11.3] -12.4] -2.25] -5.78] -4.16] -7.96] -5.92] -4.93] -4.41
0.89]-443]-448] -448]-36.8]-36.5]-37.1]| -37.4| -46.0| -46.0| -46.0| -45.3| -44.8( -45.1| -44.6
-5.58]-8.18] -8.04|-13.4] -11.4] -13.1| -12.5] -3.87] -6.15] -6.72] -5.98{ -6.08 ] -5.82] -4.64
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using the Gaussian generators is generally rejected at
the 1% level, but always at the 5 % level. For sample
size of 10000, all the uniform generators do not reject
stationarity; the negative magnitude of the z-statistics
indicates the absence of random characteristics.
However, all the Gaussian generators do not reject the
3rd-order stationarity at either significance level.

The results for the 4th-order cumulant spectral test
of stationarity using the Hinich-Wolinsky 4th-order
transient set are presented in Table 3. For a sample
size of 1000, all generators reject stationarity. For a
sample size of 10000, all the uniform generators do
not reject stationarity, but the negative magnitude of z-
statistics suggests a lack of randomness. All the
Gaussian generators, except the sum of twelve
uniform(0,1) scheme, do not reject at either
significance level. Table 4 reports results of the
imaginary part of the 4th-order cumulant spectral test
of stationarity. It is important to note that for both
sample sizes, the negative magnitude of the test
statistics derived from the uniform generators imply
the lack of random characteristics. The implication of
this observation is that as the variates are generated,
the random structure, initially only in the real part of
the 4th-order cumulant spectral estimate, vanishes
completely.

Table 5 presents results for the 3rd-order
Gaussianity test statistic. Note that since the 3rd-order
Gaussianity test statistics is a decomposition of the
skewness function, it can be interpreted as a test to
detect a symmetry in a distribution function. The
Gaussian and uniform distributions are symmetric.
For both sample sizes, all the uniform generators
should not and do not reject Gaussianity, i.e. the
symmetric property of the uniform generators is not
rejected. The negative magnitude of the z-statistics
suggests the absence of randomness. For a sample
size of 1000, all the Gaussian generators do not reject
Gaussianity. Only the magnitude of the z-statistics of
the acceptance-rejection scheme has values that are not
on the borderline of being considered absent of random
characteristics. For a sample size of 10000, all
Gaussian generators do not reject Gaussianity at either
significance level. The results from the imaginary part
of the 3rd-order Gaussianity test statistic are presented
in Table 7. Note that Gaussianity is not rejected, but
there is an indication that the generators lack random
characteristics because of the negative magnitude of the
z-statistics.

In Table 6 the results from the 4th-order
Gaussianity test statistic are reported. For the sample
size of 1000, all uniform generators reject Gaussianity,
as expected. For the sample size of 10000,
Gaussianity is not rejected, but the negative magnitude
of the z-statistics imply the absence of random
structure in the generated variates. The Gaussian
generators using both sample sizes do not reject
Gaussianity, but the negative magnitude of the z-

statistics is in accord with the notion that the
generators may not produce a random process. Table 8
presents the results from the imaginary part of the 4th-
order Gaussianity test statistic. The negative
magnitudes of the z-statistics indicates the lack of
randomness

Tables 7 and 8 present the results for the 3rd- and
4th-order tests of independence, i.e. first if the linearity
test statistic is not rejected, then examine the
imaginary part of the Gaussianity test statistic. If the
imaginary part is statistically not different from zero,
then the independence cannot be rejected. The analysis
of the results in these two tables is straightforward: for
both the 3rd- and 4th-order tests and for both sample
sizes, independence is rejected for all generators.

6 CONCLUSION

Using higher-order cumulant spectral functions, a
study of the higher-order statistical characteristics of
pseudo random variate generators was undertaken.
Statistical properties of uniform and Gaussian
generators were examined. Results of these analyses
are summarized as follows: 1) The commonly
assumed property of independence between the
generated variates is rejected for all generators; 2) The
negative magnitude of the z-statistics indicates that
these generators generally may not have the statistical
properties required by the specific distribution of
concern, i.e. the generators lack random characteristics;
and 3) stationarity, a crucial assumption with respect
to the reliability of the statistics of the simulation
output, is in general rejected. Finally, a question open
for further investigation concerns what happens to the
random characteristics of the generated sequence, as the
number of variates generated is increased.
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