Proceedings of the 1992 Winter Simulation Conference
ed. J. J. Swain, D. Goldsman, R. C. Crain, and J. R. Wilson

SIMULATION OF POISSON PROCESSES WITH TRIGONOMETRIC RATES

Huifen Chen
Bruce W. Schmeiser

School of Industrial Engineering
Purdue University
West Lafayette, Indiana 47907-1287, U.S.A.

ABSTRACT

We develop logic and a subroutine (RCOSPP) to
generate the next event time, given the previous event
time, of a Poisson process whose given rate function
is cyclic, being composed of a constant and a trigono-
metric component. The event time is generated using
the inverse transformation method, which requires a
numerical search. We develop easy-to-compute and
accurate bounds to initiate the search. RCOSPP is
compared to off-the-shelf algorithms, also using these
bounds.

1 INTRODUCTION

We consider the nonhomogeneous Poisson process
{X(t),t € (—o0,00)} with rate function

A(t) = p+ acos(2m(ct + b)), (1)

with given constants u, a, b and c. Since A(¢)
must be nonnegative, |a| < p. This simple pro-
cess is of interest to create simple nonhomoge-
nous systems (e.g., Taaffe and Schmeiser (1992) and
Church and Uszoy (1992)), for use in some frequency-
domain experimental-design methods (Schruben and
Cogliano (1987), Mitra and Park (1991)) and occa-
sionally for modeling real-world processes. Klein and
Roberts (1984) used inverse transformation to de-
rive a nonhomogeneous Poisson generator whose rate
function is continuous and piecewise-linear. More
general rate functions are considered in Johnson, Lee
and Wilson (1991) and Lewis and Shedler (1976,
1979a).

Three approaches can be used to generate ran-
dom points from the process (for example, Devroye
(1986)). Thinning (for example, Lewis and Shedler
(1979b)) from the homogeneous rate A = p + |a| is
easy to implement. Composition from the homo-
geneous rate g — |a| and the nonhomogenous rate
|a] + acos(27(ct + b)) is also easy to implement, us-
ing thinning from the nonhomogeneous rate and the

609

closed-form inverse transformation for the homoge-
neous rate.

The third approach, which we pursue, is the inverse
(or time-scale) transformation, which is required for
some variance-reduction and frequency-domain meth-
ods. Let

m(s,r) = /r A(t) dt.

Then, the number of events occurring in time inter-
val [s, 7] is X(r) — X (s), which is Poisson with mean
m(s,r). If T; denotes the occurrence time of the
ith event, then the distribution function of T: given
Ti_1=ticy1s

FT-|T--1=1-'-1 (tl) = l_exp{ _m(ti—lrti) }

Then to generate T; by the inverse-transformation
method, set v = Fp1,_, =i, , (t;), where v is a uni-
form (0, 1) random number, and solve for ;.

In Section 2 we discuss ideas and bounds and state
algorithm RCOSPP for efficiently solving for t; in
the inverse transformation. In Section 3 we analyze
the sensitivity of RCOSPP to parameter values. In
Section 4 we compare RCOSPP to a good-quality
general-purpose inversion algorithm.

2 METHOD

We now discuss solving the equation u =
Frr,_,=t,_, (t;) for t;. We develop bounds for ¢; and
state algorithm RCOSPP, based on the bounds and
Newton iterations.

The Poisson process is homogeneous if either a = 0
or ¢ = 0, since then the rate function A(t) is a constant
with respect to t. The mean number of occurrences
in [ti_l,t,'] is then

m(t,-_l,t,-) = [/J + acos(27rb)] (t,' - i,'_l)

and the inverse transfcl>r1('ria.tion has the closed-form
n(l —u

lution t; = ¢,y - ———— .
sotiHon 1 i + acos(2mb)

610 Chen and Schmeiser

When ac # 0, the process is non-homogeneous.
The distribution function of T; given T;_; = t;_ is

FT.IT.-|=1.-| (tg) =1- exp{—m(t,-_l,ti)}
=1-exp{—p(ti —ti-1) -
2—(71r—c{sin(27r(ct,- + b)) — sin(2n(cti_1 + b))}).

The inverse-transformation method requires us to
solve equation u = Fr,7,_,=1,_, (ti). The root t; is
unique, since F(-) is increasing. Collecting constants
and simplifying, we solve f(t;) = 0, where

a

flz) = px+ sin(2m(cz + b)) + 6(ti—1,u) (2)

27e

and
S(ticr,u) =In(l—u)—pt,_1 — 2 sin(27(cti— +b)).
2me

Given v and t;_1, 6(¢ti—1,u) is a constant, but nev-
ertheless the solution for t; is not closed form. We
pursue a numerical solution, which requires an initial
solution, a method of iterating to t;, and a stopping
rule.

In Subsection 2.1 we develop bounds for ¢; based on
the known values of v and ¢;_,. From these bounds
an initial point sufficient for Newton iterations to con-
verge is derived in Subsection 2.2. A stopping rule is
proposed in Subsection 2.3. The Newton-iteration al-
gorithm RCOSPP is in Subsection 2.4.

2.1 Bounds

Here we establish an interval [z, z;] that bounds the
root t;. We know that

F(ti) = pti + —— sin(2m(ct; + b)) + 6(ti_y,u) = 0.
2me
Then,
a a
I/‘tz +‘S(t1——11u)| |27I'C 31n(27r(c +))I = |27I'C|
and hence,
—I'QaTcl_é(ti—l)u) . < |#l_5(tl‘—l1u)‘
H - p

Furthermore, by the properties of the Poisson pro-
cess, the next arrival time should be larger than last
arrival time; that is, ¢; > t;—;. Then the root t; is
bounded by the points

—l5azl — 6(ti-1,)

T = max(yti—l)»
I
and .
oy = |32 | - 6(t,‘_1,u).
"

2.2 Initial Solution

We now find an initial point z¢ that guarantees con-
vergence of Newton iterations. Since f(z) is twice
continuously differentiable on [zi, z], the guarantee
follows from either Condition 1 or 2.

Condition 1 The point z¢ satlisfies t; < zo < z3
and for all ¢ € (ti,zn) : (a) f(z) 2 0, (b)
f'(z) > 0, and (¢) f(z) > 0.

Condition 2 The point z¢ satisfies 1 < zg < t;,

and for allz € (z1,t;) : (a) f(z) <0, (b)f'(z) >
0, and (c) f'(z) <0.

Under Condition 1 convergence is monotonic from
the right; under Condition 2 convergence is mono-
tonic from the left. A proof of the sufficiency of Con-
dition 1 is in Wendroff (1969, p. 36); Condition 2 has
a similar proof.

The first derivative is f'(z) = A(z); therefore
f'(z) > 0 and f(z) is nondecreasing. The second
derivative is

f'(z) = —2macsin(2n(cz + b)).

We now proceed to find an initial solution zg that
satisfies one of the two conditions. We consider two
cases: the second derivatives at the bounds (1) have
the same sign or zero and (2) have different signs.

Case 1: f"(z;)f"(zn) > 0
We first argue that if the second-derivative signs
at the bounds are the same, then the second
derivative at every point z within the bounds
has the same sign.

The period of the sine function in f(z) is 1/||
and the length of the interval [z;,zp] is

’ <9 a 1 1

Th— 21 < lmlsln—cl<2—lc‘l,
since |a|] < u. Hence, the distance between zi
and z is less than an half period of sine function.
Note that sin(27(cz + b)), and hence f"(z), has
constant sign for z in [z;, z4), if f(z1)f"(zn) 2
0. That is, either

f'(z) >0 forallz € [z, zh)

or

f'(z) <0 forallz € [z, zh] -
The constant sign of the second derivative im-
plies the monotonic first derivative in the inter-
val. There are three subcases based on the first
derivative.

Poisson Processes with Trigonometric Rates 611

(1) If f'(z:)f'(zn) # 0, then
f'(z) > 0 for all £ € [z;,z4] due to the
monotonic property. Since f(z;) < 0 and
f(zn) > 0, then by Condition 1 and 2 set

po={ T if f'(z) > 0forallz € [z, zp)
= = if f'(z) < Oforallz € [z1, z4]

(i) If f'(z;) = 0, then
f'(z) is positive and increasing for all z €
(z1,z4), since f'(z) is monotonic in the
interval and can not decrease to a nega-
tive value from z,. This also implies that
f"(z) > 0 for all z in the interval. Since
f(zn) > 0, then z, satisfies Condition 1.
So, set £g = zp.

(iii) If f'(zn) = 0, then
similarly f'(z) is positive and decreasing for
all z € [z1,z5). Hence, f”(z) < 0 for all z
in the interval. So, satisfy Condition 2 by
setting z¢ = ;.

Case 2: f"(z;)f"(zn) <0
Define the time
[2(cz; + b)) +1—2b
2c

[2(cz; + b)] —2b
2c

fex;+6>0
y:

ifex;+b<0

Then, y € (z1,z5) and f”(y) = 0. The second
derivative f”(z) has constant but different signs
for z € [z1,y) and z € (y, zx]. The signs depend
on whether f”(z;) is positive or negative. The
Intermediate Value Theorem (e.g., Rudin (1976,
Theorem 4.23)) implies whether the root t; is
greater or less than y. If t; € [z, y], replace xp
by y; otherwise t; € [y, z1], then replace z; by y.
Since the new interval satisfies Case 1, use the
Case 1 rules to find the initial solution.

2.3 Stopping Rules

The choice of stopping rule is problem and context de-
pendent. However, we need to choose some rule for
the empirical comparisons in the next section. Our
implementation refines the value of t; until its ac-
curacy is known within +¢/p; that is, the algorithm
g M (zi-1)/ S (2-1)]
1/p
where ¢ is a given tolerance constant. We use the
relative error, instead of the step size, so that the
stopping rule is not a function of the choice of time
unit. In addition, we restrict the maximum number
of iterations to a fixed limit.

stops and returns ¢; = z;, < €,

2.4 Algorithm RCOSPP

Our Fortran implementation of Algorithm RCOSP P
is listed in Appendix B. Double precision is used to
avoid numerical error in computing the stopping rule,
as well as to allow times with many digits.

Algorithm: Given y,a,b,c, t;_; and €, find ¢;.
Step 0: Generate u ~ U(0,1).

Step 1: Bound ¢; with

—|5= —6 ti—)
z; = max(lzrel = 8Ctios u),ti-l)
"
and
— |2—;:—Cl—5(t,'_1,u)
p)
where 6(ti-y,u) = In(l — u) — pt;o; —

a .
ore sin(2m(cti—1 + b)).
Step 2: Find the initial point zo using the logic of

Figure 1. Setj = 1.

Step 3: Find the next iterate using
S
f(zj-1)

Step 4: Stopping rule.
i f(i-0/F(2i-0)]
1

Tj = 2j-1 =

< ¢, thenreturn t; = z;.

o
Otherwise, j = j + 1 and go to Step 3.

No

calculate y

<
x
=

\f
v
v

X0=Xh X0=X‘ Xy = X

Figure 1: Flow Chart for Finding the Initial Point z,

612 Chen and Schmeiser

3 ANALYSIS

Here we investigate the robustness of RCOSPP to
changes in the parameter values of the five parame-
ters, u,a,b,c, and t;_;. As a location parameter of
rate function A(t), b has no influence on the efficiency
of RCOSPP; hence, we arbitrarily set b = 1 in this
and the next section. Theorem 1 says that p is also
irrelevant, in that we can transform the parameter
values and the result so that 4 = 1.

Theorem 1 Given ﬁ,&,l}, ¢ and ti_y, let p =
plp=la=a/p,b=b,c=¢/a,ti-1 =ti- 11
Substitute the new parameter values p,a,b,c, and t;_
into RCOSPP 1o generate t;. Seli; = t;/fi. Then
i; is the arrival time that would be obtained using
RCOSPP with parameter values ji,a,b,é, and t;_,.

Recall that z is positive for positive rate function
and so the transformations above are applicable. The
theorem is about the mathematics of RCOSPP, not
the computing, since numerical error might cause mi-
nor differences between the two sets of parameter val-
ues. The proof of Theorem 1 is in Appendix A.

We further reduce the parameter space by consid-
ering only nonnegative values of the three remaining
parameters a, ¢, and t;_,, and we restrict cand t;_; to
satisfy 0 < ct;_; < 1. Although each can be negative,
zero, or positive, the various combinations of signs are
redundant in that the values of the rate function, and
therefore computational performance, do not change.

The Monte Carlo experiment considers 25 design
points, corresponding to g = 1, b = 1, ¢ = 1075,
a € {051},c € {0.001,1,100,10% },and t;_; €
{0,0.25/¢,0.5/¢,0.75/c }. When ¢ = 10%, the length
of interval [z, z,)] is so small (less than 511?[) that every
point in [z;, z,] satisfies the stopping rule, in which
case we arbitrarily return ¢; as the middle point of
[zi,zn]. No, or almost no, iteration is taken. Hence,
the levels of a and t;_; make no difference on CPU
time. Therefore, only @ = .5 and ¢;—; = 0 1s used
for ¢ = 10°. Recall that in RCOSPP, the length of
the interval [z}, 1], which brackets the root, depends
on ¢ (see Case 1 in Subsection 2.2). Furthermore,
the initial point zg is in [z, zs]. Therefore, the zg is
very close to the root t; when ¢ is particularly large,
causing Newton’s method to converge fast.

At each design point (as defined by the levels of the
three factors), twenty macroreplications of ten thou-
sand arrival times with the same last arrival time are
generated. We estimate the expected CPU time and
the expected number of iterations to generate one ar-
rival time on a Sun 4/390 under OS 4.1.1. The empir-
ical estimates of expected CPU time are listed in Ta-
ble 1 and the expected number of iterations in Table

2. All the standard errors for the empirical expected
CPU times and expected number of iterations are less
than .03, so the second decimal digit is meaningful,
but not necessarily correct. The value of a has little

Table 1: Empirical Expected CPU Time (in millisec-
onds): p=1,b=1,e=10"%

ti—1

c 0 0.25/c 0.5/c 0.75/c
.001 .16 .18 .28 .19

1 .22 .23 23 .23
100 .20 .19 .19 .19
105 .08 - - -
.001 .16 .20 43 .19

1 .22 .23 .23 .23
100 .21 21 21 .20

== o o | B

Table 2: Expected Number of Iterations: p =1,b=
1l,e =105

ti—1

¢ T 0 035/c 05/c 0.75/c
.001 2.08 1.92 4.00 1.92

1 2.83 2.86 2.85 2.82
100 2.03 2.03 2.03 2.03
10° 0 - -
.001 2.05 1.96 7.69 1.96

1 293 297 2.94 2.91
100 2.35 2.33 2.35 2.34

practical influence on the expected CPU time and ex-
pected number of iterations, except for ¢ = .001 and
tioy = .5/c = 500.

The effect of t;_; is not obvious when ¢ = 1 or
¢ = 100 over all values of a. The initial bias of ¢;_1
is negligible when the expected elapsed time crosses
at least one cycle of rate function. Recall that the
expected number of arrivals in one time unit is g = 1;
therefore, the average elapsed time is 1 time unit.
One rate-function cycle length is 1/|c|. Then if |¢| > 1,
the expected elapsed time is longer than one cycle an
the effect of ¢;_; is negligible. When ¢ = .001 (the
smallest ¢ studied), RCOSPP performance is worst
at t;_; = .5/c = 500 (at the valley of rates), especially
when a = 1.

Regardless of the cases with ¢ = .001 at which
RCOSPP depends on t;_,, the performance of
RCOSPP increases with the values of ¢c. When
¢ = 105, no iteration is taken and RCOSPP con-
verges very fast, as mentioned before. In extreme

Poisson Processes with Trigonometric Rates 613

cases, such as ¢ and ¢ both very small, numerical
error can cause unnecessary infinite looping. Our im-
plementation restricts looping to fifty iterations.

4 COMPARISON

We compared three other algorithms with RCOSP P:
bisection search, subroutine zrealin the IMSL (1989)
library, and the combination of bisection and Newton-
Raphson discussed in Press, et al. (1986, p. 258).
We found that of these reasonable off-the-shelf al-
gorithms, the combination of bisection and Newton-
Raphson performs better than the other two. After
describing the combination of bisection and Newton-
Raphson algorithm here, in Section 4.1 we compare
it to our algorithm RCOSPP.

The combination of bisection and Newton-Raphson
takes a bisection step whenever Newton’s Method
would take the solution out of bounds z; and z, or
whenever Newton’s Method is not reducing the size
of the brackets rapidly enough. Here, z; and zj are
the bounds bracketing ¢; and defined as those in step
1 of RCOSPP. Its initial point is the center of the
interval [z;,z,]. We use the same stopping rule as
that in RCOSPP. This algorithm always converges.

4.1 Results and Analysis

In this section, at each design point, twenty
macroreplications of ten thousand consecutive arrival
times are generated. We estimate the expected CPU
time and the expected number of iterations to gener-
ate ten thousand consecutive arrival times on a Sun
4/390 under OS 4.1.1. We have mentioned in Sec-
tion 3 that g can be transformed to 1 and b is ir-
relevant. Futhermore, if the replication number is so
large that the generated comsecutive t;’s cross many
cycles of the rate function, the initial bias of t;_; is
negligible. Therefore, we arbitrary set p = 1,b =1
and t;_; = 0. Then, only two factors, a and c, affect
the goodness of algorithms. We use the same sample
spaces of a and ¢ here as the last section except we
delete ¢ = 105, which makes no difference for these
two algorithms because of the short length of [z, z4).
Six design points with different random numbers are
taken to make the experiment. Each row uses com-
mon random numbers to compare the goodness of
two algorithms. The numbers in Table 3 show only
meaningful digits; the last digits are not reliable.
The columns CPU and iteration show the empiri-
cal estimates of expected CPU time and the expected
number of iterations needed to generate ten thou-
sand consecutive arrival times. RCOSPP converges

faster than the combination of bisection and Newton-
Raphson, especially when ¢ = .001.

Table 3: Empirical Expected CPU Time (in seconds)
and Expected Number of Iterations (in ten thou-
sands): p=1,b=1,¢t_,=0,e=10"°

RCOSPP Bisection/Newton
a c CPU 1teration CPU iteration
b 001 26 3.19 4.1 5.75
5 1 2.5 2.84 3.3 4.02
5100 23 2.04 3.0 3.42
1 .001 26 3.30 4.4 6.22
1 1 2.5 2.94 3.9 5.06
1 100 23 2.34 3.5 4.38

As discussed earlier, RCOSP P’s performance de-
pends on ¢, but less on a. The combination of bisec-
tion and Newton-Raphson is more sensitive to a.

ACKNOWLEDGEMENTS

The authors received support from NSF grant DMS-
8717799 to Purdue University.

APPENDIX A: PROOF OF THEOREM 1

We prove Theorem 1 only for non-homogeneous Pois-
son processes, since the proof for homogeneous Pois-
son process is trivial. Given fi, &,b,¢, and t;_1, let ¢;
denote the next arrival time. Then, the mean number
of arrivals occurring in time [t;_, ;] is

i,)
mliy i ﬁ,a,b,e):/ A a5, ¢) dt
1

= ﬂ({, — {i—l) - - . -
223 [sin(27(eli + b)) — sin(27(efi-y +B))]

= ([fii__ /1{1'—1) '_— N : o ~
okl [sin(2n(£ i + b)) — sin(2r(£Ati—1 + b))
=(ti —ti-1) —
72 [sin(2n(ct; + b)) — sin(2w(cti-1 + b))]

= m(ti—lyti; ﬂvavb)c)'
Hence, for t; = t;/i the cdf of ’f“,-|fl.}_l is the same as

the cdf of T; given T;_; of the Poisson process with
the corresponding parameter values.

614

APPENDIX B: RCOSPP CODE

O 0O 0 00 0 0 0 0

O

O 0 0 00 0 o0 0

reference: huifen chen and bruce
schmeiser, simulation of poisson
processes with trigonometric rates,
proceedings of the winter simulation
conference, 1992.

purpose: generate the next arrival time
of a Poisson process, given the last
arrival time, with rate function
lambda(t) = xmu+a*cos(two_pi*(c*t + b))

..... example main program
double precision a,b,c,eps,t,xmu

..... test parameters

n: number of points to generate
iseed: random number seed

eps: accuracy tolerance

t: previous event time

Xmu: process mean rate

a: process amplitude

process phase
c: process frequency

= 100
iseed = 111222333
eps = .0001

Xmu =

o]
n

O O~ N O
= o

..... generate next arrival time
do 100 1 = 1,n
call rcospp(xmu,a,b,c,eps,iseed,t,ier)
print *, t
if (ier .ne. 0) then
print *,’error indicator =’,
endif
continue
stop
end

ier

100

O 0O 0O 00 0 0 0 00 0 0 0 a0 o0

o o o0 o o

&

Chen and Schmeiser

subroutine rcospp(xmu,a,b,c,eps,

iseed,t,ier)
purpose: generate next arrival time
input:
Xmu: process mean
a: process amplitude
b: process phase
c: process frequency
eps: accuracy tolerance
iseed: current random-number seed
t: previous arrival time
output:
iseed: new random-number seed

t: next arrival time
ier: error indicator
==> no error
1 ==> too many iterations
2 ==> rate function < 0
common/xinp/delta,para
double precision a,b,c,delta,eps,
para,rtnewt,t,theta,two_pi,
u,x_high,xlambda,x_low,xmu
data two_pi/6.283185307/, maxit/50/

generate U(0,1) random variate
u = rand(iseed)
for homogeneous case (a=0 or c=0),
generate next arrival time
if (a*c .eq. 0.) then
xlambda = xmu + a*dcos(two_pi*b)
if (xlambda .le. 0.) then
ier = 2
return
endif
t =t - dlog(l. - u) / xlambda
return
endif

otherwise, for nonhomogeneous case,
solve the following equation for
x, the next arrival time.
0 = xmu*x + delta +
a/(two_pi*c)*sin(two_pi*(c*x+b)),
where delta is defined as below.

bracket the root in [x_low, x_highl.
para = a / (two_pixc)
call convert(b,c,t,theta)

delta = dlog(1l.-u) - xmu*t -
para*dsin(theta)

x_low = (-dabs(para) - delta) / xmu

x_high = (dabs(para) - delta) / xmu

if (x_low .1t. t) x_low = ¢t

o 0o 0 0 0 0 0 0 0 0 0 0 o0

Poisson Processes with Trigonometric Rates

if the length of [x_low, x_high] small,

return middle point.
use newton’s method.
if (((x_high-x_low)*xmu).lt.eps) then
t = (x_high+x_low) / 2.
else
t =

otherwise,

rtnewt(xmu,a,b,c,x_low,x_high,

& eps,maxit,itr,ier)

endif
return
end

function rtnewt(xmu,a,b,c,x_low,

& x_high,eps,maxit,itr,ier)

purpose:
solve f(x)=0 using newton’s method.
input:
xmu,a,b,c: process parameters
x_low: 1lower bound on the root
x_high: upper bound on the root
eps: accuracy tolerance
maxit: maximum # of iterations
output:
itr:
ier:

iteration number
error indicator

0 ==> no error

1 ==> too many iterations
rtnewt: root of f(x) = 0

double precision a,b,c,df,dx,eps,

& error,f,rtnewt,x_high,x_low,xmu

ier = 0
call initial(xmu,a,b,c,

& x_low,x_high,rtnewt)

10

start newton’s method
do 10 itr = 1, maxit
call funcd(xmu,a,b,c,rtnewt,f,df)
dx f / df
rtnewt = rtnewt - dx
error dabs(dx) * xmu
if (error .lt. eps) return
continue

itr = maxit
ier = 1
return

end

o 0 o0 o o

&
&

615

subroutine initial(xmu,a,b,c,
x_low,x_high,x0)
purpose: find an initial solution

input:
xmu,a,b,c: process parameters
x_low, x_high: bounds on the root
output:
x0: initial solution

common/xinp/delta,para

double precision xmu,a,b,c,cycle_h,
cycle_l,delta,para,templ,
temp2,x0,x_high,x_low,y

logical izerofi_l,izerofi_h

data INEG,IZERO,IP0S/-1,0,1/

temp1l = c*x_lowtb
temp2 = c*x_high+b
cycle_1l = templ - idint(templ)
cycle_h = temp2 - idint(temp2)

call SecondDer(cycle_l,a,c,if2_1)

call SecondDer(cycle_h,a,c,if2_h)

call FirstDer(cycle_l,xmu,a,izerofi_1)

call FirstDer(cycle_h,xmu,a,izerofi_h)

if (1f2_1*if2_h .1t. 0) then
...calculate y, in [x_low,x_high],

at which 2nd derivative is O.

y = (idint(2.*(c*x_low+b))

+1.-2.%b)/(c+c)
if ((c*x_low+b) .1t. 0)
y = y-1./(c+c)
if ((xmu*y+delta) .gt. 0.) then
...the root is in [x_low, y]
x_high =y
if2_h = IZERO
else
...the root is in [y, x_high]
x_low =y
if2_1 = IZERO
endif
endif

set initial point

if (izerofi_1l .eq. .true.) then
x0 = x_high
elseif (izerofi_h .eq. .true.) then
x0 = x_low
else
if ((if2_1 .eq. IPOS) .or.
(if2_h .eq. IPOS)) then
x0 = x_high
else
x0 = x_low
endif
endif
return

end

616

O 0 0 0 00 0 0 0

.. .purpose:

Chen and Schmeiser

subroutine FirstDer(cycle,xmu,a,zero)
check whether the first

derivative at point cycle is 0.
input:

cycle: point for evaluation

Xmu, a: process parameters
output:

zero: logical variable.

if true, the first deriv-
ative at cycle is zero;
otherwise, nonzero.
logical zero
double precision cycle,xmu,a

zero = .false.
if (dabs(a) .1lt. xmu) return
if (a .eq. xmu) then

if (dabs(cycle).eq..5) zero=.true.
elseif (-a .eq. xmu) then

if (
endif
return
end

cycle .eq..0) zero=.true.

subroutine SecondDer(cycle,a,c,isign)

...purpose: compute 2nd-derivative sign

input:
cycle: evaluate at (cycle-b)/c
a, c: process parameters
output:
isign: second-derivative sign

double precision a,ac,c,cycle
data INEG,IZERQO,IP0S/-1,0,1/
ac = a * ¢
if ((cycle .eq. 0.) .or.
& (dabs(cycle) .eq. .5)) then
isign = IZERO
elseif (((cycle .ge. -.5) .and.

& (cycle .le. 0.)) .or.
& (cycle .ge. .5)) then
if (ac .gt. 0.) then
isign = IPOS
else
isign = INEG
endif
else
if (ac .gt. 0.) then
isign = INEG
else
isign = IPOS
endif
endif
return
end

O 60 o0 0o 6 00

[g]

O 0 0 0 0 o0

O o0 0 o

&

&

&

subroutine funcd(xmu,a,b,c,x,f,df)
purpose: evaluate function value
and its derivative at point x

input:
xmu,a,b,c: process parameters
x: point to evaluate

output:

f: function value

df: first derivative
common/xinp/delta,para
double precision a,b,c,delta,df,f,

para,x,xmu,xtheta

call convert(b,c,x,xtheta)
f = xmu*x+para*dsin(xtheta)+delta
df = xmu + a*dcos(xtheta)
return
end

subroutine convert(b,c,x,theta)
purpose: convert the angle (c*x+b)
into theta in [0, two_pi)

input:
b,c: process parameters
X: point to evaluate
output:

theta: converted angle
double precision b,c,temp,theta,x
double precision two_pi/6.28318530/
temp = c*x + b
theta = two_pi*(temp - idint(temp))
return
end

function rand(iseed)

u(0,1) random-number generator.

reference: law & kelton,
simulation modeling and analysis,
mcgraw hill, 1982, p. 227.

integer a,p,b15,b16,xhi,xalo,fhi

data a/16807/, b15/32768/,
p/2147483647/, b16/65536/

xhi = iseed / bi6

xalo = (iseed-xhi*b16) * a

leftlo = xalo / bié

fhi = xhi*a + leftlo

k = fhi / bi1s

iseed = (((xalo-leftlo*bi6) - p)

+ (fhi-k¥b15)*bi6) + k

if (iseed .1lt. 0) iseed = iseed + p
rand = float(iseed) / 2147483647.
return

end

Poisson Processes with Trigonometric Rates 617

REFERENCES

Church, L. and R. Uszoy. 1992. Personal communi-
cation.

Devroye, L. 1986. Non-uniform Random Variate
Generation. New York: Springer-Verlag.

IMSL Library Reference Manual, ed. 1.1 (1989) IMSL
Inc., 7500 Bellaire Boulevard, Houston TX 77036.

Johnson, M., S. Lee, and J. R. Wilson. (1991). Ex-
perimental evaluation of a procedure for estimating
nonhomogeneous Poisson processes having cyclic
behavior. In Proceedings of the 1991 Winter Simu-
lation Conference, ed. B. L. Nelson, W. D. Kelton,
and G. M. Clark, 958-967. Institute of Electrical
and Electronics Engineers, Phoenix, Arizona.

Klein, R. W. and S. D. Roberts. 1984. A time-
varying Poisson arrival process generator. Simu-
lation 42:193-195.

Lee, S., J. R. Wilson, and M. M. Crawford. 1991.
Modeling and simulation of a nonhomogeneous
Poisson process having cyclic behavior. Commu-
nications in Statistics — Simulation and Compu-
tation B20:777-809.

Lewis, P. W. and G. S. Shedler. 1976. Simulation
of nonhomogeneous processes with log-linear rate
function. Biometrika 63:501-505.

Lewis, P. W. and G. S. Shedler. 1979a. Simulation
of nonhomogeneous Poisson processes with degree-
two exponential polynomial rate function. Opera-
tions Research 26:1026-1040.

Lewis, P. W. and G. S. Shedler. 1979b. Simulation
of nonhomogeneous Poisson processes by thinning.
Naval Research Logistics Quarterly 26:403-413.

Mitra, M. and S. K. Park. 1991. Solution to the
indexing problem of frequency domain simulation
experiments. Proceedings of the Winter Simulation
Conference, ed. B. L. Nelson, W. D. Kelton, and
G. M. Clark, 907-915. Institute of Electrical and
Electronics Engineers, Phoenix, Arizona.

Press, W. H., B. P. Flannery, S. A. Teukolsky, and
W. T. Vetterling. 1986. Numerical Recipes: The
Art of Scientific Computing. Cambridge: Cam-
bridge University Press.

Rudin, W. 1976. Principles of Mathematical Analy-
sis. New York: McGraw-Hill Book Company.

Schmeiser, B. 1990. Simulation experiments. Chap-
ter 7 in Handbooks in Operations Research and
Management Science, Volume 2: Stochastic Mod-
els. ed. D. P. Heyman and M. J. Sobel, 295-330.
Amsterdam: North-Holland.

Schruben, L. W. and V. J. Cogliano. 1987. An exper-
imental procedure for simulation response surface
model identification. Communications of the As-
soctation for Computing Machinery 30:716-730.

Taaffe, M. R. and B. W. Schmeiser (1992). Correlated
decomposition for analyzing dynamic stochastic
systems. In Proceedings of the First Industrial
Engineering Research Conference, ed. G. Klutke,
D. A. Mitta, B. O. Nnaji, and L. M. Seiford, 457-
462. Institute of Industrial Engineers, Chicago, Illi-
nois.

Wendroff, B. 1969. First Principles of Numerical
Analysis. New York: Addison Wesley.

AUTHOR BIOGRAPHIES

HUIFEN CHEN is a Ph.D. student in the School
of Industrial Engineering at Purdue University. She
received a B.S. degree in accounting from National
Cheng-Kung University in Taiwan in 1986 and an
M.S. degree in statistics from Purdue University in
1990. Her research interests include simulation and
numerical analysis applied to quality control and re-
liability.

BRUCE SCHMEISER is a Professor in the School
of Industrial Engineering at Purdue University. His
research interests include input modeling, random-
variate generation, output analysis, and variance re-
duction. He is the current Simulation Area Editor of
Operations Research and a Member of the Council of
the Operations Research Society of America. He is
an active participant in the Winter Simulation Con-
ference, including being Program Chairman in 1983
and Chairman of the Board of Directors during 1988-
1990.

