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ABSTRACT

Exponentially tilted distributions often arise as im-
portance sampling distributions which are derived us-
ing large deviations theory. In this paper we present
simple and efficient methods for generating some ex-
ponentially tilted random variates when the input dis-
tribution is either a Weibull or a positive normal. In
particular, our methods are acceptance-rejection al-
gorithms, and we prove that the expected number
of iterations tends to 1 as the tilting parameter in-
creases to infinity. We also provide empirical results
from using our proposed techniques.

1 INTRODUCTION

Exponential tilting (also known as exponential twist-
ing or shifting) transforms a given distribution into a
new one. Tilted distributions are often used in im-
portance sampling schemes derived with the aid of
large deviations theory; e.g., see Siegmund (1976),
Cottrell, Fort, and Malgouvres (1983), Dupuis and
Kushner (1987), Asmussen (1985), Parekh and Wal-
rand (1989), and Sadowski and Bucklew (1990). This
previous research showed that when using importance
sampling, an exponentially tilted distribution min-
imizes the variance of the resulting estimator over
some class of possible changes of measure.

While exponential changes of measure have been
studied from a theoretical standpoint, there has not
been substantial research that investigates how to ap-
ply them in practice. In particular, techniques for
generating exponentially tilted random variates need
to be developed.

For certain distributions, exponential tilting only
alters the parameter values of the input distribu-
tion. This holds for the exponential family, which
includes the exponential, gamma, and normal distri-
butions. However, when exponential tilting is applied
to other distributions, the resulting distribution is not
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the same as the initial one (and often not one of the
“standard” distributions). For example, this situa-
tion occurs with the Weibull and positive (or trun-
cated) normal distributions. In this paper we describe
acceptance-rejection algorithms for generating expo-
nentially tilted random variates based on these two
input distributions.

The proposed acceptance-rejection schemes have
several desirable properties. First, the only inputs to
our two algorithms are the parameters of the original
distributions and the tilting parameter. This is ad-
vantageous as the exponentially tilted distributions
themselves depend on the input distributions’ mo-
ment generating functions and there are no closed
form expressions for these quantities. Also, the ma-
jorizing densities in both cases are from “standard”
distributions for which many fast and simple vari-
ate generation techniques are available. Furthermore,
our algorithms become more efficient as we increase
the tilting. In particular, we prove that the expected
number of iterations in our procedures tends to 1 as
the amount of tilting increases to infinity.

The rest of the paper is organized as follows.
In Section 2, we give a brief review of exponen-
tially tilted distributions. We discuss our acceptance-
rejection algorithm for generating exponentially tilted
Weibull random variates in Section 3, and Section 4
contains the same for the exponentially tilted posi-
tive normal distribution. We present some empirical
results in Section 5, and conclude with Section 6.

2 EXPONENTIALLY TILTED DISTRIBU-
TIONS

Let random variable X > 0 have distribution func-
tion F and mean p. Define

06 =Bl = [

0

e % F(dz),

which is the moment generating function of X. Let
A = {0 : ¢(0) < co}. For § € A, the exponentially
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tilted distribution corresponding to F is given by
e %2 F(dz)
¢(6)
for £ > 0, and 0 otherwise. Thus, exponential tilt-
ing shifts increasingly more mass of the distribution

towards 0 as 6 gets larger.
The mean of the distribution T} is

v(6) = f0°° ze % F(dz)

Tg (d:l:) =

¢(6) '
Using the notation ¢'(6) = £¢(6), if 6 € A, then
v(0) = —¢'(0)/4(0), assuming that we can inter-

change the order of the derivative and integral op-
erators.

3 WEIBULL DISTRIBUTION

The Weibull distribution is often used for modeling
the time to complete a task or the time to failure
of a piece of equipment; see Law and Kelton (1991),
pp.- 333-335. Depending on the choice of the shape
parameter, the distribution has either an increasing
or decreasing failure rate.

Suppose that the random variable X has a Weibull
distribution with shape parameter « > 0 and scale
parameter 3 > 0. Its distribution function is given
by

F(z) =1— exp{—(B8z)*}

for £ > 0 and 0 otherwise, and its density is

f(z) = af*z* t exp{—(Bz)*}

for £ > 0 and 0 otherwise. The mean of a Weibull is
I'(1/a)/(aB), where I'(+) is the gamma function, and

#(0) = /0°° af*z* ! exp{—(Bz)* — Oz }dz

is its moment generating function. The density of the
exponentially tilted Weibull distribution is

af*z*~1exp{—(Bz)* — 6z}
$(9)

to(:c) =

for £ > 0 and 0 otherwise.
Assume 6 > 0. Since exp{—(Bz)*} < 1 for all
z >0,
aﬁawa—le—oz
¢(6)
Hence, we will use gy as a majorizing function in an
acceptance-rejection algorithm. To this end, define

_ [ _ af*T(a)
Cyp = /0 gg(:c)d:c = W.

to(z) < go(z) =
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Note that ¢4 > 1 for all 8 > 0. Thus, the majorizing
density is given by

gama—le-az

_go(z) _
hO(w)_ 060 - I‘(a)

for z > 0 and 0 otherwise, which is a gamma density
with shape parameter « and scale parameter 6. Our
acceptance-rejection algorithm to generate exponen-
tially tilted Weibull random variates is as below.

Algorithm for Generating Exponentially

Tilted Weibull Variates

1. Generate Y ~ gamma(«, 6).

2. Generate U ~ uniform(0, 1), independent of Y.

3. If U < exp{—(BY )%}, then return X =Y.
Otherwise, reject (Y, U) and return to step 1.

There are many fast and simple methods for gener-
ating the gamma random variate needed in step 1 of
our algorithm; e.g., see Devroye (1986). In addition,
note that in the algorithm, we do not need to know
the value of ¢(6). This is desirable since there is no
closed form expression for ¢(), and we would other-
wise have to evaluate it numerically.

The following result shows that the expected num-
ber of iterations in our algorithm converges to 1 as
the tilting parameter increases to infinity.

Theorem 1 For an ezponentially tilted Weibull dis-
tribution, cg — 1 as 6 — oo.

Proof. We need to show that 6*¢(8) — af8°T(a)
as 8 — o0o. To this end, note that

0°4(8) = A(6) + B(6),

where

A(6) = 6= /0

and

(2alog8)/6 ,
aff*z® ! exp{—(Bz)* —0z}dz

B(#) = 6* / af®z*" ! exp{—(fz)* — bz }dz.
(2alog8)/6

First observe that

B(#) < 0°‘exp{—02a100g0}

: /( o2 exp{~(fa)* }dz

2alog )]0

e ()"

— 0

as 0 — oo.
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Thus, we must show that A(4) — af°T(a) as § —
0. Note that 0 < 7 < 1 for all ¢ > 0 implies
af*z*~texp{—(Bz)* - 6z} < f(z) for all z > 0,
where f is the density function of the Weibull. Since
I3 f(z)dz = 1 and af*z*~ ! exp{—(Bz)* — 6z} — 0
as 6 — oo for all z > 0, we have ¢(6) — 0 as 6 — oo
by the dominated convergence theorem. Hence,

(2cxlog8)/8
/ af*z®* ! exp{—(Bz)* — Oz}dz — 0
0

as 0 — oo, so

by L’Hopital’s rule, where
d (2alog8)/6
G(6) = @/ af%z% ! exp{—(Bz)* -0z }dz.
0

We now want to evaluate the limit of G(6). To
do this, suppose we have a function h(z1,z2) that
has anti-derivative H(z, ©3) with respect to z,, and
H(zy,z3) is differentiable in z;. Then, letting k(6)
be some differentiable function of §, we obtain

d k(6) N
E/o (8, z)dz

(0, k(0)) - H(6,0)
= H.(6,k(6)) + (6, k(6))K'(8) — Hi(8,0)

k(@) 4 ,
/0 2510, 2)dz + h(6, k(6))k'(6),

where we use the notation H(z, z;) = %H(ml, z3)
and k'(6) = £k(6). Thus, in our setting, we have
h(0,z) = af*c*!exp{—(Bz)* — 6z} and k(0) =
(2alog 8)/8, so

Jim A(6) = Jim [C(6) + D(6)),

where
gat+l p(2alog)/é
cw) =" | &f%s" exp{ ()" ~0a}de
0
and
6o+t (2alogf) ' 2a(1 - logf)
D(0) = —Taﬁ < ) ) 62

2aflogf\*  2alogh
- expy — A -0 9 .

Note that D(6) — 0 as § — oo, and

ﬁaea+l exp {_ <2aﬂal°ge>a}

(2alogd)/e
. / z%e %% dy
0

ol ()}

- ¥(a+1,2alogh),

c(9)

v

where (-, ) is the incomplete gamma function (see
Gradshteyn and Ryzhik 1981, p. 940) and is given by
Y(A, z) = [y e~**~1. For large values of 2],

¥(Az) = T(A) =2z*"1e?

M-1 mpey m
'[23(‘” M=)+ >+0(RVM4

zmT(1 - )

m=0

for M = 1,2,... (see Gradshteyn and Ryzhik 1981,
P- 942). Hence, for large 6,

c(9)
2 oren{-(2520) )

freon- 22 (k)
— B°T(a+

as 6 — oco. Thus, limy_ 8°4(8) > B%T(a + 1).
Finally, ¢y = af*T(a)/(6°¢(6)) > 1 and al(a) =
I'(a + 1) imply that 0%4(8) — af*T(a) as  — oo,
proving our result. B

4 POSITIVE NORMAL DISTRIBUTION

Suppose that Z is a normally distributed random
variable with mean 0 and variance o2, and define
X =|Z|. Then X has a positive (or truncated) nor-
mal distribution with scale parameter o. The density
of X is given by

fle) = — { ﬁ}
z) = exp{ ——
ov2or P 202
for ¢ > 0 and 0 otherwise. Its moment generating
function is

#(9) _/°° 2 ex{ =’ Ga:}d:c
" Jo ov2nm P17 207

0.202 oo 2 y2
= — —_— — = tdy.
xp { 2 } ,/a:o oV2rn xp { 202} v (1)

Differentiating ¢(6) and evaluating at 6 = 0 gives us
that the mean of a positive normal is y = 20/v/27.




606

The density of the exponentially tilted positive nor-
mal distribution is

_ 2 Ty
to((l?) = mexp {'—F - 911)}

for £ > 0 and 0 otherwise.
Assume € > 0. Since exp {—%} < 1lforallz >0,

to(z) < go(z) = #e_“.

$(0)ov2m

Hence, we use gy as a majorizing function in an
acceptance-rejection algorithm. Define

_ 2
“ = / e = v

Note that ¢4 > 1 for all § > 0. Our majorizing den-
sity is given by he(z) = 0e~%®, which is an exponen-
tial density with parameter . Thus, our acceptance-
rejection algorithm to generate exponentially tilted
positive normal random variates is as follows:

Algorithm for Generating Exponentially

Tilted Positive Normal Variates

1. Generate Y ~ exponential(f).

2. Generate U ~ uniform(0, 1), independent of Y.

3. IfU < exp{—Y?%/(20?%)}, then return X =Y.
Otherwise, reject (Y, U) and return to step 1.

We can easily generate the exponential random vari-
ate in step 1 by using inversion. In the above algo-
rithm, we do not need to know the value of $(6). This
is desirable since there is no closed form expression
for ¢(6), and we would otherwise have to evaluate it
numerically.

The next theorem shows that the expected number
of iterations in our algorithm converges to 1 as the
tilting parameter increases to infinity.

Theorem 2 For an exponentially tilted positive nor-
mal distribution, cg — 1 as 8 — oo.

Proof. We need to show that 84(0) — 2/(o+v/27) as
6 — oo. Recall our expression for ¢(8) given in (1),
and note that

o 2 y2 }
—— - d
/029 oV2w P { 202 y
= P{|N(0,0%)| > 0?0} — 0

as § — oo, where N(0,0%) denotes a normal ran-
dom variable with mean 0 and variance o%. Also,
6! exp{—(026%)/2} — 0 as § — oo. Thus, using
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L’Hopital’s rule, we obtain

foo 2 — exp —1:—, dy
lim 64(6) = lim 0oV { - )
68— 00 8 — 00 o—l-exp{_a2 }
. 20 2
= lim

0—00 (02 + 02)V/27 - oV

proving the result.

5 EMPIRICAL RESULTS

We now present some empirical results generated us-
ing the algorithms presented in the previous sections.
The goal of the experiments was to determine how
various choices of the tilting parameter 8 affect the
mean of the tilted distribution and the efficiency of
our acceptance-rejection procedures (as measured by
the expected number of iterations). Since there are
no closed form expressions for these quantities, we
estimated them by replicating our algorithms 10,000
times, and we provide 95% confidence intervals for
the estimates. We let (6) denote the estimate for the
mean of the tilted distribution with tilting parame-
ter 6, and let &y be the estimate of the expected num-
ber of iterations in the acceptance-rejection scheme.

First we consider the Weibull distribution with pa-
rameters a and 3. We varied the values of a and § so
as to keep the mean of the original distribution fixed
at u. We selected p = 1 in Table 1 and p = 10% in
Table 2, and varied o between 0.5 and 2.0. To keep
the mean fixed, 3 must decrease as « increases.

Table 1: Results for Weibull Distribution with Orig-
inal Mean 1

a f 0 (8) &

0.5 20 10-1 0.716+ 4% 4.3+ 2%
0.5 2.0 1 0.237+3% 1.9+1%
05 20 10 0.039+3% 1.3+1%
0.5 2.0 10 0.005+3% 1.1+1%
0.5 2.0 10® 0.001+3% 1.0 + 0%
1.0 1.0 10~' 0.908+2% 10.9+2%
1.0 1.0 1 0.500+2% 2.0+ 1%
1.0 1.0 10 0.092+2% 1.1+ 1%
1.0 1.0 102 0.010+2% 1.0+ 0%
1.0 1.0 10® 0.001%+2% 1.0+ 0%
2.0 0.89 10! 0.965+1% 170.1+2%
20 089 1  0.766+1% 3.8+2%
2.0 0.89 10 0.192+1% 1.1+ 0%
2.0 0.89 102 0.020+1% 1.0+ 0%
2.0 0.89 10° 0.002+1% 1.0+ 0%



Generating Exponentially Tilted Random Variates 607

We now examine the results in Table 1. (All of the
following observations also apply to Table 2, showing
their robustness.) For each fixed value of a and f3,
the average number of iterations in our acceptance-
rejection scheme diminishes as # grows, which agrees
with Theorem 1. In addition, the estimated mean
of the exponentially tilted distribution decreases as 6
increases. As a gets larger, we need to tilt the distri-
bution more in order to make the new mean smaller.
This arises from the fact that as @ — oo, the Weibull
becomes degenerate at 1/3. Thus, more of the mass
of the (original) distribution is tending toward larger
values as « increases (and [ decreases). Finally, for
the larger values of 6, D(6) is approximately «/6,
which can be explained as follows. Note that ép is
almost 1 for large 6, implying that the tilted distri-
bution is close to the majorizing distribution. (This is
essentially what Theorem 1 states.) The majorizing
distribution is a gamma(«, 6), which has mean «/9,
thus showing the desired property for large 6.

Table 2: Results for Weibull Distribution with Orig-
inal Mean 103

a J¢; 6 (6) éo

05 2.0x10"° 10°% 721.3+4% 4.3+2%
0.5 2.0x10"% 1073 236.7+3% 1.9+1%
0.5 20x10"% 1072 393+3% 1.3+1%
05 2.0x10"3 107! 46+3% 1.1+1%
0.5 2.0x10°3 1 05+3% 1.0+ 0%
1.0 1.0x10"% 10~* 915.3+2% 10.9+2%
1.0 1.0x107% 1073 506.0+2% 2.0+1%
1.0 1.0x107% 1072 90.9+2% 1.1+1%
1.0 1.0x10"% 10! 10.0+2% 1.0+0%
1.0 1.0x 1073 1 1.0+£2% 1.0+ 0%
2.0 89x10"% 10°* 966.0+1% 169.8+ 2%
2.0 89x10% 10°% 769.0+1% 3.8+2%
20 89x10"% 1072 190.8+1% 1.1+0%
20 89x10-% 107! 20.1+1% 1.0+0%
2.0 8.9x10°* 1 20+1% 1.0+ 0%

Table 3 contains the results from generating expo-
nentially tilted random variates when the input distri-
bution is a positive normal with parameter o. We let
o take on the values 1, 10, and 100. The same types of
observations which we made before also apply in this
setting. In particular, as 0 increases, é approaches 1
(which agrees with Theorem 2) and () converges to
0. Also, #(8) is approximately 1/6 for large 6 since our
majorizing distribution is an exponential(6), which
has mean 1/6.

Table 3: Results for Positive Normal Distribution
o o [} 0(6) )

1.0 0.80 10°2 0.80+2% 78.8+2%
1.0 0.80 10°1 0.76 + 2% 8.6+ 2%
1.0 0.80 1 052+2% 1.5+1%
1.0 080 10 0.10£2% 1.0+ 0%
1.0 0.80 100 0.01+£2% 1.0+ 0%
10 80 1072 760+1.5% 8.6+1.9%
10 80 107! 519+1.7% 15+1.6%
10 8.0 1 0.98+1.9% 1.0+0.2%
10 80 10 0.10+2.0% 1.0+0.0%
10 80 100 0.01+20% 1.040.0%
100 80 102 53.22+1.7% 1541.2%
100 80 107' 9.87+1.9% 1.0+0.2%
100 80 1 1.01+2.0% 1.0+0.0%
100 80 10 0.10+2.0% 1.0+ 0.0%
100 80 100 0.01+2.0% 1.0+0.0%

6 CONCLUSIONS

We have proposed some simple and efficient algo-
rithms for generating exponentially tilted random
variates for two different input distributions. An area
for future research is to develop variate generation
schemes for other tilted distributions.
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