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ABSTRACT

The construction of confidence intervals for discrete-
event simulation parameters must account for the cor-
related nature of simulation output. Through the de-
termination of system equations and application of
the Kalman filter to simulation output data, a new
confidence interval construction technique has been
developed. The technique uses Multiple Model Adap-
tive Estimation (MMAE) to obtain a nonsymmetric
confidence interval for the mean estimator of a uni-
variate output sequence. A Monte Carlo analysis of
data generated from simulations of M/M/1 queues
was used to compare the performance of the proposed
techniques with other published techniques.

1 INTRODUCTION

This paper is organized in four sections. The first sec-
tion discusses output analysis for discrete-event sim-
ulations, including a brief description of several pub-
lished techniques for confidence interval construction.
The next section develops a proposed Kalman filter
confidence interval construction technique. Included
are discussions on the Kalman filter, model formula-
tion, Multiple Model Adaptive Estimation (MMAE),
and the steps involved in the proposed confidence in-
terval construction technique. The third section re-
ports the results of a Monte Carlo analysis on data
from simulations of M/M/1 queues. The final sec-
tion provides a brief summary. The research pre-
sented in this paper draws heavily upon results found
in Howard (1992) and Gallagher (1992).

1.1 Discrete-Event Simulations

In discrete-event simulation, a typical output analysis
objective is to obtain estimates of various output pa-
rameters. Often, a confidence interval is constructed
to give the analyst a better measure of an estimate’s
reliability. This research concentrates on constructing
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confidence intervals for parameters of discrete-event
simulations. One class of discrete-event simulationsis
infinite-horizon simulations, in which one is interested
in estimating steady-state parameters. Although it
is possible that these parameters may be cyclic, we
focus on output sequences that attain a stationary
steady-state probability distribution. Often simula-
tion output contains transient data which may bias
parameter estimates. In this research, the effect of
the start-up problem was diminished by truncating a
large part of the simulation output.

Typically, the simulation output sequence is posi-
tively correlated, and classical statistics for indepen-
dent observations do not apply. Several techniques,
each of which deal with the correlation problem in dif-
ferent ways, have been proposed for estimating con-
fidence intervals based on one long simulation run
(Fishman 1971, Fishman 1978, Law 1983, Meketon
and Schmeiser 1984, and Schruben 1983). The pro-
posed Kalman filter technique offers a novel approach
for addressing the correlation issue and constructing
confidence intervals. Before discussing this approach,
brief descriptions of four popular techniques are pro-
vided. These techniques will be used in the Monte
Carlo analysis to provide comparisons for the devel-
oped technique.

1.2 Confidence Interval Construction Tech-
niques

Four popular techniques for confidence interval con-
struction were chosen for comparison in this study.
These techniques are nonoverlapping batch means,
overlapping batch means, standardized time series,
and autoregressive time series. Let {Y3,Ya,...,Yn}
be a sequence of univariate simulation output. An
estimate of the grand mean can be obtained using

Fm=-Y % 1)
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With an estimate of the variance of the sample mean,
a confidence interval can be constructed using

V() + ta1-as2 /3% (2)

where t4,1_4/2 is the upper 1—a/2 critical value for a
t distribution with d degrees of freedom. The differ-
ence in the four confidence interval techniques is the
estimation of &f-,.

Nonoverlapping batch means (NOBM) seeks to
eliminate the problem of correlated observations by
dividing the simulation output into b batches, each of
m sequential observations (Law 1983). Batch means
are calculated using
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and the grand mean is:
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The batch means are assumed uncorrelated and an
estimate of the sample mean variance is found using

where

A confidence interval is obtained using Equations (1),
(2), and (3) with degrees of freedom d of b — 1.

Overlapping batch means (OBM), introduced by
Meketon and Schmeiser (1984), is very similar to
nonoverlapping batch means. They contend that the
number and size of batches is more important than
the independence between batches. Therefore, they
allow the batches to overlap and calculate n —m —1
batch means. The OBM estimator of the mean esti-
mator variance is:

m " (¥ - ¥(n))?
:Z Z:: n—2m+1

where Yj(m) = X377V, is the batch mean
of size m beglnnmg w1th observation Yj. In the
same manner as nonoverlapping batch means, a con-
fidence interval can be constructed. They suggest
d =152 — 1is the appropriate number of degrees.

Schruben (1983) introduced several techniques for
confidence interval construction based on standard-
ized time series. We used Schruben’s standardized
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sum methodology (STDS) in this paper. This method
separates the run into b batches, exactly as in the
method of batch means, and calculates individual
batch means Y;(m) and a grand mean Y(n) in the
same way. This presentation follows Law (1983).
If n is large, then Y(n), will be unbiased and ap-
proximately normally distributed with variance 72/n,
where 72 = limp, .o 1 Var[)_’(n)]. Define A as:

A:(m3—m Z{ZZ —Yz‘+(j—1)m]}

7=1 Ul=1 =1

For a fixed number of batches b, 4 will be asymp-
totically (as m — oo) distributed as 72 times a chi-
square random variable with b degrees of freedom and
asymptotically independent of Y (n). The A statistic
is calculated, and a variance estimate of the sample
mean is: 2

2

Oy = bn (4)
A confidence interval is obtained using Equations (1),
(2), and (4) with degrees of freedom d of n.

Fishman’s (1971, 1978) autoregressive methodol-

ogy (AUTO) fits the simulation output to a pth order
autoregressive process, AR(p):

= 1Mot + Gamica + o Ppmip + walts)  (5)

where {wq(t;)} is a sequence of discrete white shocks
that are normally-distributed with mean zero and
variance of Q4. Linear least squares is used to obtain
estimates for the autoregressive coefficients ¢; and the
variance Q4. The method uses a statistical test, with
user-specified significance, to determine the smallest
order p that will adequately represent the data. The
variance of the mean estimator is (Fishman 1978):

22 Qad
gy = 6
Y n(l—¢1—¢2—...—¢p)2 ()
A confidence interval is obtained using Equations (1),

(2), and (6) where d is the degrees of freedom and is
given by

n(l—¢1—¢2—...—dp)
237 _o(2s — p)os

2 PROPOSED METHODOLOGY

d=

This section develops the proposed multiple model
adaptive estimation (MMAE) confidence interval
construction technique. First, we provide a basic dis-
cussion on the Kalman filter. Then, we provide a
discussion on the formulation of a model for simula-
tion output. Next, we discuss Multiple Model Adap-
tive Estimation (MMAE). Finally, this section con-
cludes with the steps in the proposed confidence in-
terval construction algorithm.
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2.1 The Kalman Filter

A state vector is a set of variables such that the
present state vector along with future inputs describe
the system behavior completely. In a state-space rep-
resentation, system equations depict the state dy-
namics and measurement relationships. The Kalman
filter is a recursive, state-estimation algorithm based
on these relationships. Beginning at a specific time,
the state estimate is propagated to the next time in-
dex. Using the information from a measurement, the
state estimate is updated. The steps in the Kalman
filter algorithm iterate between the propagation and
the measurement update stages.

This section’s development of the Kalman filter
follows Maybeck (1979, 1982). Alternative Kalman
filter notation and descriptions include those given
by Meinhold and Singpurwalla (1983) and Harvey
(1989).

In this section, we assume a system which can be
described or approximated by a linear stochastic dif-
ference equation,

X(tig1) = R(tipr, to)x(ti) + G(ti)wa(ts)  (7)

where x is the state vector, ® is the transition ma-
trix, G is the dynamics noise input matrix, and wy
is discrete-time dynamics noise. The sequence of dy-
namics noise {wg4(t;)} is assumed to be white (uncor-
related in time) and normally distributed, with mean
zero and variance Qg(t;).

Similarly, the measurement model is:

2(t:) = H(t:)x(t:) + v(t:) (8)

where z is the measurement, H is the measurement
matrix, and v is the measurement noise. The se-
quence of measurement noises {v(¢;)} is assumed to
be white and normally-distributed, with mean zero
and covariance R(t;). In addition, the noise sequences
{wa(t:)} and {v(¢;)} are assumed to be uncorrelated
with each other. With appropriate system matrices
choices, this Kalman filter formulation can include
any autoregressive-moving average (ARMA) model.
However, in the Kalman filter formulation, the states
may be observed with the addition of measurement
noise. This paper deals only with univariate simula-
tion output sequences. Therefore, the dynamics noise
and its associated variance, the measurement noise
and its associated variance, and the measurements
are all scalars. The notation throughout this paper
reflects this univariate case, but the Kalman filter
concepts can easily be extended to the multivariate
case (Gallagher 1992).

The discrete-time Kalman filter algorithm is shown
below for a time-invariant, linear system with no

control inputs, and normally-distributed (Gaussian)
zero-mean discrete dynamics noise and measurement
noise (Maybeck 1979). Discrete-time implies that the
propagation and measurement updates occur only at
set intervals, and linear implies that the values of the
filter-design system states x(t;) do not affect the val-
ues of the transition matrix @, dynamics noise disper-
sion matrix G, or the measurement matrix H. Time-
invariant means that the filter-design system matrices
@, G, and H do not change throughout the stochastic
process. Since process stationarity is assumed for this
application, the variances of the noises, Q4 and R, do
not change throughout the stochastic process.

Before showing the two stages of the Kalman fil-
ter algorithm, some notation must be explained. The
notation’s use will be demonstrated in the following
discussion of the propagation and measurement up-
date stages. Estimates are indicated by “hat” over
the variable, such as the estimated state vector x. At
each point in time, two estimates of the state vector
are encountered. The first is the estimate based on
the propagated output of the dynamics equation, be-
fore the measurement information is incorporated at
that sample time. These estimates from the propaga-
tion stage are labeled with a superscript minus sign,
%X(t]). In contrast, the state estimate resulting from
incorporating the latest measurement information are
labeled with a superscript plus sign, %(t}). The as-
sociated covariance matrices of these state estimates
have similar notation: P(¢;) and P(t]) respectively.
At time to, the initial state estimate x(to) and associ-
ated covariance P(tp) must be available or assumed.

The first stage in the Kalman filter, the propaga-
tion stage, is comprised of two equations. The prop-
agation equation takes the best state estimate at the
previous time )‘((tf_l), and moves it through time by
multipling by the transition matrix ®. Therefore, the
propagation equation is

x(t;) = ®x(tf,) (9)

The associated covariance matrix P(t;) is calculated
with the following formula:

P(t7) = @P(t} ,)8” + GQ.GT

These two equations, one for the state estimate and
the other for the associated covariance, complete the
propagation stage.

The second stage in the Kalman filter is the mea-
surement update. The measurement update stage in-
corporates the information available from a measure-
ment z;. The Kalman filter gain K(¢;) is given by

K(t;) = P(¢t; )HT [HP(¢] )HT + R]™!
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The residual r; is the difference between the current
measurement and the best prediction of the measure-
ment before it arrived:

T = 2Z; — Hf((t:) (10)

Multiplying the Kalman filter gain times the resid-
ual results in the new information which is added to
the previous state estimate X(¢; ) in order to obtain
the updated state estimate %(¢]). Therefore, the up-
dated state estimate is:

X(t) = %(¢7) + K(t:)[z: - HX(t7)] (1)

Along with an updated state estimate, an up-
dated covariance matrix is also calculated. Since the
Kalman filter gain K(t;) is the relative weight based
on comparing the variances of the estimate from the
propagation stage and the measurement model, it is
reasonable that this same gain is used to determine
the reduction in variance resulting from incorporating
the measurement information:

P(t}) = P(t;) - K(t:)HP(t])

Each measurement update stage is followed by a
propagation stage, as the two-stage cycle of the
Kalman filter begins again.

An important observation is that the state esti-
mate covariances P(t;) and P(t}) do not depend
on the actual measurements. If the system model
{®, G, H} are known, and the dynamics driving noise
variance @4 and the measurement noise variance R
are known, then the Kalman filter gains K(¢;) and
the covariances P(t; ) and P(t;") are completely de-
termined. Therefore, these values can be precom-
puted and stored prior to the actual running of the
Kalman filter.

In addition, the Kalman filter gain K(t;) and the
covariance matrices P(¢;) and P(t}) are functions of
the initial estimate P(to) and the dynamics noise vari-
ance Q4 and the measurement noise variance R. Since
Qq and R are constant (as are €, G, and H) in these
applications, K(t;), P(t]), and P(t}) attain steady-
state values as the contribution of P(to) decays. The
steady-state values of K, P~, and, P* are used in
this application.

2.2 Model Formulation

Before applying a Kalman filter to simulation out-
put, the system dynamics and measurement equa-
tions must be determined. For this formulation,
®, G, Q4, H and R are time-invariant and are es-
timated from the simulation output. The following

discussion follows a methodology developed by Gal-
lagher (1992).

Both Kelton and Law (1983) and Schruben (1982)
model the steady-state output as a constant mean
plus noise

Y: = py + n; for observations i = 1,2,...,n (12)

where 7; is noise with E[n;] = 0. Let the sequence of
Kalman filter measurements be the simulation output
minus a mean estimate. Using this model for the
simulation output, the dynamics and measurement
models must account for the correlation in the noise.

Assume that the noise correlation can be approxi-
mated with an AR(2) process, shown in Equation (5)
with p = 2. If the state vector is defined to be the
last two noise terms,

x = Ui ]
[ -1

then equivalent dynamics model, Equation (7), ma-
trices are

=0 o= 4] o]

Since the assumed model for the simulation output
is given by Equation (12), the measurements of the
first filter-design state, z1(¢;) = ;, are modeled by

2(t:) =Y, —py fori=1,2,...,n (13)

Therefore, the measurement matrix in Equation (8)
isH= [ 10 ] However, pure autoregressive mod-
els do not include measurement noise v(t;), so ei-
ther v(¢;) = 0, or equivalently, since the measure-
ment noise already has a mean of zero, its variance
could be zero, R = 0. While not a pure autoregres-
sive process, nonzero measurement noise v(t;) may
be incorporated into model (Harvey 1989). In this
application, since the simulation output Y; is known
exactly, the measurement noise v(t;) may represent a
“lack of fit” from assuming the noise correlation is an
AR(2) process. Inclusion of measurement noise re-
quires that the variance R of the measurement noise
v(t;) must also be estimated.

In order to implement this formulation of the
Kalman filter, the system parameters must be esti-
mated. The AR(2) plus measurement noise model
formulation has five unknown parameters to estimate,
which are the steady-state mean py, the autoregres-
sive coefficients ¢, and ¢, the variance Q4 of the
dynamics driving noise wy(t;), and the variance R of
the measurement noise v(t;). Since the Kalman filter
gain is determined by the ratio of Q4 and R, simul-
taneous estimation of these two noise variances leads
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to an indeterminate system. Therefore, the first term
of the Kalman filter gain is estimated instead of Q4
and R .

Mehra (1971) reviews numerous schemes for esti-
mating the necessary Kalman filter parameters. The
applied estimation routine was based on a hybrid of
least squares estimation and Mehra’s (1971) correla-
tion technique. The use of least squares estimation
is suggested by the fact that the “best” Kalman fil-
ter should provide a minimum value for the sum of
the squared residuals, calculated with Equation (10).
In contrast, the correlation technique equates sam-
ple correlations with the theoretical values for the
assumed system model. This method provides an es-
timate of the Kalman filter gain K, the output mean
uy, and the autoregressive coeflicients, ¢;, and ¢,.
The filter-computed residual variance HP-HT + R
is estimated as the mean squared residual. Using K
and HP-H” + R, the noise variances, Q4 and R, can
be estimated. A complete description of the estima-
tion routine can be found in Howard (1992).

2.3 Multiple Model Adaptive Estimation

Multiple Model Adaptive Estimation (MMAE) as de-
scribed by Maybeck (1982, 1986) can be applied to
obtain variance information of the mean estimator.
MMAE estimation discretizes the parameter space
and runs a Kalman filter for each combination of dis-
crete parameters. Based on each filter’s residuals,
the probability of that filter’s parameter values be-
ing correct can be calculated. In this application, the
MMAE technique is applied with various estimates
for the mean.

For application of MMAE with a single unknown
“a” denote the parameter to be esti-
mated. The continuous range of values for a will be
discretized into L representative values. After the dis-
cretization of the parameter space is complete, let the
probability that the parameter a assumes the value a,

parameter, let

conditioned on the measurement history prior to and
including time ¢; be p;(t;) = Prob (a = a;|Z(t;) =
Z;), where Z; is the measurement history up to time
t;. Assuming a is limited to the L discrete values a;,
the probability is calculated as (Maybeck 1982):

fz(t,)la,Z(t._l)(zila‘]’ Zi_1) - pj(ti-1)

Yy Faeianz ey (zlar, Zio1) - pi(tica)
(14)
The probabilities are calculated using the Kalman
filter residuals r] = 2! — H;&;(t;) and the filter-
computed residual variance A; = Hij_Hf + R;.
Since these residuals are assumed jointly normally
distributed and the measurements, z;, are univariate,

p;(ti)

we have

Faoaz(en)(zilag, Zio1) = (2m) M2 45712

exp {—%(Tf)z(ti)Afl} (15)

The residuals 7] for the “best” a; should be small
relative to filter-computed residual variance A4;, so
the “best” value of a; will have a high probability
assigned by the preceding p;(t;) computation. Simi-
larly, the residuals for a “mismatched” model should
be large and the associated probability should be
small (Maybeck 1986).

Before implementing this technique and construct-
ing a confidence interval, several tactical issues must
be decided. These issues are all interrelated and can
have a significant impact on the MMAE estimate of
a parameter’s mean and variance. These issues are:

1. The spread between the filters with the smallest
and largest mean estimate.

2. The number of discretized levels of the parame-
ter, which is the number of filters.

3. The spacing between the filters.
4. The initial or a priort MMAE filter probabilities.

In most engineering applications, an extensive and
detailed model, known as the “truth model”, can be
generated. With the “truth model”, several mathe-
matical techniques provide answers to the tactical is-
sues (Lainiotis 1971, 1976, Maybeck and Hentz 1987,
Sheldon and Maybeck 1990). However, discrete-event
simulation is most often applied when no analytical
solution is apparent. Therefore, no “truth model”
is obvious, and heuristics were used to answer these
questions (Howard 1992).

2.4 Confidence Interval Construction Steps

In this application, the unknown parameter a varied
in the MMAE bank of filters is the mean. The simu-
lation output is processed through L Kalman filters,
each with a different assumed mean, a; = p},. Each
state vector is initiated as a vector of zeros. The
realizations of the measurements for each filter are
zl = Y; — i}, based on Equation (13). In this ap-
plication, the filter-computed residual variance based
on the estimated Kalman filter parameters was used
in all of the filters. For each simulation observation,
the state estimates are propagated with Equation (9)
and updated with Equations (10) and (11).

After processing the simulation output through
each of the MMAE filters, a confidence interval is
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Table 1: Actual Coverage Rates

Data NOBM OBM STDS AUTO | MMAE PI
Size 5 10 20 5 10 20 5 10 20

1280 | 0.815 0.784 0.730 | 0.801 0.781 0.735 | 0.747 0.672 0.531 | 0.792 0.757
2560 | 0.857 0.843 0.814 | 0.852 0.826 0.802 | 0.820 0.765 0.674 | 0.830 0.842
5120 | 0.881 0.868 0.844 | 0.878 0.869 0.850 | 0.843 0.827 0.762 | 0.845 0.898

Note: With nominal rate of 0.9, estimation accuracy is &~ £0.016 for 1000 runs.
Table 2: Average Half Widths

Data NOBM OBM STDS | AUTO | MMAE PI
Size 5 10 20 5 10 20 5 10 20

1280 | 1.520 1.219 1.009 | 1.378 1.177 0.992 | 1.187 0.888 0.595 | 1.455 1.301
2560 | 1.201 1.018 0.884 | 1.096 0.971 0.866 | 1.056 0.823 0.621 | 0.990 1.061
5120 | 0.898 0.776 0.713 | 0.830 0.755 0.700 | 0.806 0.710 0.576 | 0.700 0.822

constructed. To construct the confidence interval we
used the final filter probabilities from Equation (14).
These filter probabilities serve as a discrete approx-
imation of the underlying distribution. Therefore,
the confidence interval end points are calculated such
that the sum of the filter probabilities in each tail
is @/2. We used a linear interpolation between the
discrete filter locations, and call this new technique

MMAE PI (Probabilistic Interval).

3 MONTE CARLO RESULTS

The baseline confidence interval construction tech-
niques of nonoverlapping batch means (NOBM), over-
lapping batch means (OBM), standardized time series
(STDS), and autoregressive time series (AUTO) were
compared, against the new Kalman filter technique
(MMAE PI) in a Monte Carlo analysis.

Numerous Monte Carlo analyses were run using
data generated from discrete-event simulations of
M/M/1 queues. These analyses involved the use of
different strategies for the tactical issues involved in
implementing the MMAE techniques (e.g., number of
filters, a priori filter probabilities, etc.). A complete
review of the results is given by Howard (1992). This
section provides results from a representative simula-
tion of an M/M/1 queue.

This representative case looked at the average wait-
ing time in the queue for an M/M/1 queue with
a traffic intensity of 0.8 and the first 5000 observa-
tions truncated to diminish the initial transient bias.
1000 confidence intervals were constructed for three
sample sizes (1280, 2560, and 5120) and three batch
sizes. For NOBM and STDS, the number of batches

was 5, 10, and 20. For OBM, the same batch sizes,
é, 11—0, and % of the sample size, were used, but more
batches resulted from overlapping. MMAE PI used
24 evenly-spaced filters centered on the grand mean
Y (n) with a total spread of + 1.6 times &y,. The vari-
ance of the output Y; for an AR(2) with measurement

noise model is (Gallagher 1992):

(i+4)

The actual coverage rates for the techniques are found
in Table 1. The average half widths and the associ-
ated standard deviations are found in Table 2 and
Table 3, respectively.

1 —¢2
1+ ¢2

Q4
{(1 - ¢2)% — ¢1}

ol =

+ R

Table 1 indicates that, for a large sample size, the
MMAE PI technique provides the highest actual cov-
erage rate of any of the techniques. At a sample
size of 2560, the MMAE PI technique offers coverage
rates similar to those provided by the better baseline
techniques (e.g., NOBM and OBM). At the small-
est sample size, 1260, the coverage rates provided by
MMAE PI were significantly below those provided by
NOBM and OBM with large batches.

Table 2 indicates that the Kalman filter technique
offers small average half widths for the levels of cov-
erage it provides. In particular, with a sample size of
5120, MMAE PI had an average half width of 0.822.
This half width is smaller than the average half width
(0.898) provided by the baseline technique with the
highest coverage (NOBM with 5 batches). Table 3 in-
dicates that, for the levels of coverage provided by the
Kalman filter technique, not only are the average half
widths smaller, as seen in Table 2, but their standard
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Table 3: Standard Deviation of Half Widths

Data NOBM OBM STDS AUTO | MMAE PI
Size 5 10 20 5 10 20 5 10 20
1280 | 1.165 0.755 0.508 | 0.959 0.701 0.492 | 0.730 0.374 0.167 | 2.246 0.877
2560 | 0.807 0.592 0.429 | 0.648 0.526 0.405 | 0.677 0.398 0.193 | 0.804 0.607
5120 | 0.525 0.391 0.314 | 0.435 0.357 0.297 | 0.471 0.342 0.206 | 0.365 0.333
deviations are also smaller. Under some conditions, REFERENCES
the MMAE PI was best by all three criteria.
Another advantage of the Kalman filter technique Fishman, G.S.. 1971. Estimating Sample Size in

i1s that it does not require the selection of a batch
Table 3 illustrates that the choice of a batch
size 1s generally a tradeoff between obtaining high
coverage with high variability or low coverage with
low variability. The Kalman filter technique does not
require the analyst to make this choice.

MMAE PI appears to provide the best results for
large (5120) sample sizes. However, 5120 observa-
tions is not really large for a method based on one
long simulation run. MMAE PI’s performance de-
grades as sample size decreases. This may be due to
assuming the state estimates can be modeled as an
AR(2) process observed with additive measurement
noise. Another possibility is that M/M/1 output is
extremely noisy and the MMAE filters might simply
require a large amount of data to stabilize.

size.

4 SUMMARY

In summary, a new technique, MMAE PI, has been
proposed for constructing confidence intervals using
information provided by the Kalman filter. The re-
sults obtained by the MMAE PI method were ex-
cellent. However, these results may not be the best
results obtainable with this method. As discussed in
the previous section, the number of filters used, the
spacing between the filters, and the total spread of the
filters are three critical parameters affecting MMAE
performance. The results demonstrate that the tech-
nique based on the Kalman filter offers a novel and
efficient way to construct meaningful confidence in-
tervals for steady-state parameters of discrete-event
simulations.
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