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ABSTRACT

This 1s an expository paper which discusses an alterna-
tive to conventional response surface methodology for
use in simulation experiments where the objective is (o
express an output variable (response) as a function of
several input variables. The method is Bayesian in the
sense that uncertainty about the true response function y
is exrressed by the random function Y, defined on the
regioi of interest X in the space of the input parameters.
If Y s Gaussian, straightforward formulas exist for
updating Y given observations of
y(x'), y(x*), - , y(x"), which are available from n
simulation runs at different settings (x'e X) of the input
parameters. The postcrior mean of Y(x), viewed as a
function of x, serves as the estimated responsc function
y. The method is driven primarily by means ol a chosen
spatial correlation function (SCF), which dcfincs the
prior corrclation bctween the responses at any two
points in the spacc of the input parameters. Once the
SCF is chosen, the mcthod is naturally adaptive --
becomes more subtle and complex as more simulation
runs are made, with no intervention required to add
lerms to a paramctric model. Although much of the
focus of this paper is on deterministic simulations,
where we have had most of our cxperience, we shall
show how modifications can be made to handle "ran-
dom" responses. Some ecxamples are discussed to illus-
trate the ideas and the nature of the results.

1 INTRODUCTION

Here we recgard a simulation model as a computer pro-
gram that maps a vector of inputs (systcm paramcters or
independent variables) into a vector of outputs. If one is
intcrested in cxploring the relationship between a
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relatively small set of input parameters (x = x;, - -, X;),
with values in some k-dimensional region of interest X,
and a single "response” y that is computed from the out-
put data, then we can view y as a function y(x) whose
valucs are determined by the model. This function may
be dcterministic or random, the latter occurring when
some of the input variables are produced by random
number generators. Our concern here will be primarily
with the deterministic case; in Section 6, we shall indi-
cate how the method can be easily extended to random
outputs.

Responsc surface methodology (RSM) is based on
the approximation of y over part of its domain X by a
relatively simple function, usually a polynomial of
degrce one or two. Although RSM has various applica-
tions, its use in simulation seems o be primarily for the
purpose of opumizing y over X. (Sce, ¢.g., Kleijnen
1975, pp. 79-80.) One approaches the problem of finding
the maximum response, say, in thc same way that a
myopic person might climb a hill. A local approxima-
tion (usually linear) is made, and the direction of
steepest ascent is determined. After following this path
until it no longer improves the response, another approx-
imation is made, and the climb continues. Eventually, a
morc elaborate approximation (c¢.g., a quadratic func-
tion) is used, and the "final" location of the optimum is
cstimated. For a comprchensive text on RSM and its use
in empirical modcl building, sce Box and Draper (1987).

In spite of the availability of RSM, optimization
problems in simulation are not always tractable. Indeed,
Bratley, Fox, and Schrage (1983, p. 28) assert that "it is
difficult or impossible to optimize systematically via
simulation”, and they seem pessimistic about the useful-
ncss of RSM in this context. They are concerned that
the postulated form of the function may be grossly inac-
curate and that, if it has more than about three
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parametcrs, it may take far 100 many runs 1o cstimate
them well, particularly when y is random. These con-
cemns, although valid, can often be mitigated by using
RSM strategics that involve only local approximation in
low-dimensional subspaces.

The purpose of this paper is to describe another
mcthod of response surface estimation, one which is an
interpolator in the deterministic case, and which adapts
well to functions that arc not well represented by poly-
nomials. In this approach, the function y is not modcled
dirccty. Through the choice of a single "spatial correla-
tion function”, a model term is automatically included
for each data point, so the choice of which terms to
include in a polynomial model is avoided. The method
can be applied in as many dimensions as desired, with
any number of runs, and any configuration of the design
points (points in X at which the simulation model is
run). Of course, the performance of the method depends
on dimension, sample size, design, and correlation func-
tion, as one would expect. Because of their flexibility,
the response surfaces that are produced by this method
arc more useful as a global approximations to y than are
polynomials, which are based on Taylor expansions.

Versions of this mcthodology have been in use for
some time in spatial statistics, especially the "kriging”
methods used in geostatistics. (See Cressie (1991) for a
comprehensive text on spatial statistics.) Only recently
has a literaturc on applications to simulation cxperi-
ments begun to ecmerge, beginning with Sacks, Schiller,
and Welch (1989), Sacks ct al. (1989), and Currin et al.
(1991). Thesc papers provide extensive references (o
rclated work.

Because of its mixed ancestry, there are several dif-
fcrent concepts and philosophics that have been used to
support this method. Here we approach it from a Baye-
sian standpoint, as in Currin ct al. (1991), while noting
that classical frequentist concepts, as in kriging, for
cxample, lead to a similar methodology (Sacks, et al.
1989). The cornerstone of both approaches is the use of
spatial corrclation functions, or more generally, spatial
covariance functions. For the sake of ncutrality and
convenicnce, we shall use the term "SCF method” to
refer generically Lo both approaches. It is the purpose of
this paper o review a basic version of the SCF metho-
dology and to describe some of its recent applications in
simulation expcriments.

2 METHOD
2.1 Random Functions

This mcthod is based on the representation  of

uncertainty about y by a random function Y (also called
a "random ficld" or "spatial stochastic process"). Con-
sider, for cxample, the simple linear model,

y=Bo+Bix;+B2x, (2.1)

where we assign a 3-dimensional probability density
function to the vector B of coefficients to represent our
uncertainty about its value. Then the function (2.1) is
random, and wc could simulate realizations ("sample
paths") of it by drawing from the distribution of B and
substituting into (2.1). Now if we observed thaty = y* at
the point x = x?= (x?, xJ), we would want to disregard
all the sample paths that did not pass through the point
(x° y%; what remains is a set of sample paths from the
posterior random function. This represents our uncer-
tainty about the function after observing it at one point.
By the time we have obscrved it at three points (that do
not all lie on the same line), there is only one sample
path left. We now know the function exactly.

If the distribution of B is a multivariate normal, then
the random function in (2.1) is a Gaussian random func-
tion, or Gaussian process. However, there is a problem
with using random functions like (2.1) in practice. As
we have seen, knowledge of the function value at three
points implics knowledge of the function everywhere;
this is not realistic.

In the SCF approach, onc does not begin with a
parametric model, but with the concept that the prior
corrclation between the values of 'Y at any two points
should dcpend on the spatial relationship between the
points. In particular, we shall require the correlation (o
depend only on the difference between the points. The
prior mean and variance of Y are usually very simple, to
express a form of prior ignorance; here we will always
take E(Y(x)) =p and V(Y(x)) = 62, no matter where x
is. Thus, for any two points x and w in X,

Cov(Y(x),Y(w)) = 6°R(w—x),

where the spatial correlation function R usually depends
on a sct of parameters 6, whose values, like p and G, are
estimated using the data.

2.2 Correlation Functions

Unlike conventional RSM, where the critical choice is a
parametric model for the mean of Y, and there are only a
few "standard" choices (c.g., lincar and quadratic poly-
nomials), here the critical choice is the correlation func-
tion, and nonc have rcally emerged as "standard". It is
important o note that the choice of correlation function
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is not completely arbitrary. It must be valid in the sense
that the variance of any linear combination of the
responses at any set of points in X must not be negative.

A common practice in choosing a correlation func-
tion in several dimensions is to adopt the "product corre-
lation rule", i.e.

k
R(w—x) = [TR;(w;—x;),
=

where R; is a valid correlation function in onc dimen-
sion, and usually depends on one or more parameters.
The choice of R; is usually made based on considera-
tons of smoothness, where smoothness reflects the
number of times the random function Y is differentiable.

Table 1 gives some useful choices for Rj(d)), where
d;=w;—x; and 8;>0. (The subscript j, which indexes
the inputs, is omitted from R, d, and 0 for simplicity.)
All of the correlation functions shown decline o 0 as
Id| increases. We omit processes without derivatives
here because they are less well suited for simulation
models, which (in our experience at least) tend to be
relatively smooth functions of the inputs.

Table 1: Some Useful Correlation Functions

R(d) #derivs
(1)  exp(—(6ld)*) oo
(2)  exp(-6ldh[1+6ldI+62IdI%/3) 2

(3) 1.0 -6(01d1)% + 6(61dN)?, 61dI<0.5
2(1 - 61d1)*, 0.5<81dI<1 1
0, 8ldI>1

(4)  exp(-6ldh[1+6ldI) ]

The Gaussian correlation (1) yiclds sample paths that
are infinitely differentiable. Although it is somctimes
criticized for being "too smooth", we have found its per-
formance 1o be satisfactory enough to warrant its usc as
an automatic first choice in routine applications. (It may
not do so well in cases where some of the data points arc
very close togcther, but this can be casily avoided
through choice of design.) Correlations (2) and (4) arc
from the Matern (1986) class, which is uscful because it
includes random functions having any desired degrec of
smoothness. Correlation (3) is included because it pro-
duces response surfaces that are piccewisc cubic splincs

in any coordinate and because its range of influence (i.e.,
the range over which it is positive), can be controlled by
0.

Note that thc parameters 6 in Table 1 all appear as
multipliers of d, and so come into play as scaling param-
eters. We generally allow each coordinate (input) to
have its own scaling parameter. An exceplion occurs
when a single input is represented by a point in more
than one dimension (like "location” on a two-
dimensional surface); then the meaning of the coordinate
axes for representing that point may be arbitrary. In this
case, one might require the correlation between the
responses at two locations (with the other variables
fixed) to depend, for example, on the Euclidean distance
between them. The correlation functions (1), (2), and
(4) in Table 1 can be used for this purpose, with Idl
taken as Euclidean distance.

2.3 Response Surface Estimation

Like the prior process, the posterior process after obscr-

vation of y at n design points x', x2, -+ | x" is Gaus-
sian; its mean is given by:
500 =+’ (x)C(y - u), (2.2)

where

y is the nx1 vector of observed responses, J is the nx1
vector of 1's, C = {R(x'-x!)} is the nxn matrix of corre-
lations among the design points, and r = {R(x—x")} is the
nx1 vector of correlations between x and the design
points.

It is customary to substitute maximum likelihood
cstimates for the parameters |, G, and 6 in (2.2), recal-
ling that 6 appears both in r and in C. The likelihood is
given by

L =2n) ™ 1C17" exp(=Ya(y-pd) C™ (y-1)),(2.3)

where C = 6°C is the matrix of covariances among the
responses at the design points and depends on ¢ and 6.
Maximization of (2.3) with respect to y, ¢, and 6 must
be done numerically. This is by far the most (computer)
time-consuming part of the method, and its biggest
disadvantage when comparced with polynomial fitting by
lcast squarcs. Some gain is possiblc by noting that,
given 0, well known expressions for p and o? exisL.
(Sce, e.g., Currin et al. 1991.)

Formulas for the posterior variances and covariances
among the responses at arbitrary points in X are given,
c.g., by Currin et al. (1991). It should be noted that
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these are for fixed valucs of the parameters, and there-
fore don’t take into account the variability of the max-
imum likelihood cstimates. Sacks ct al. (1989) give a
formula for the mean squared error (MSE) of y (analo-
gous to the posterior variance of Y), which does at least
account for the variability in .

Here, we shall restrict attention to the posterior mean
function (2.2) which serves as the responsc surface esli-
mator. Note that it is a lincar combination of terms of
the form

k .
r;(x) = R(x=x") = [TR(x~x;).
j=1

Thus, for example, the cubic correlation function (3) in
Table 1 produces cubic splines.

3 DESIGN

There arc various formal design criteria that can be used
to reduce the problem of choosing the design points {x')
1o a mathematical optimization problem. We will not
discuss these here; see Sacks, Schiller, and Welch
(1989), Sacks et al. (1989), and Currin ct al. (1991) for
some examples.

Research is currently going on in this arca, and there
1s not yct a generally accepted design strategy. It
appears that the design issue is not as critical for the
SCF mecthod as it is for fitting polynomials by least
squares, but we know of no research that has examined
this question thoroughly. (There are some anecdolal
examples in Currin et al. 1991.)

More often than not, current practice is to select a
Latin hypercube design because such designs are easily
constructed and seem (o spread the design points reason-
ably well throughout the design space. In the simplest
implementation, an n-run Latin hypcrcube design in k
paramecters is obtained by writing down n cqually spaced
levels of cach input as a column in an nxk matrix, and
then permuting each column randomly. This is similar
to the lattice sampling designs of Patterson (1954). A
more general construction was proposed by McKay,
Conover, and Beckman (1979), who were concerncd
with the estimation of the distribution of the responsc
given a probability distribution on the inputs. Various
refincments have been made since. Latin hypercube
designs have become very popular for certain kinds of
simulation activities, well beyond their original purposc.
They are the designs on which several of the published
applications of the SCF mcthod are bascd.

4 APPLICATIONS
4.1 Screening

Since the SCF approach provides global approximations
of a response surface, a global evaluation of the impor-
tance of the input parameters is possible. Morris (1991)
suggested the mean and variance of the "elementary
effect”

8;‘:)’("1,"‘,Xj+5,"‘,xk)—)’(x)

over randomly selected points x in X as good indicators
of the importance of the j" input. A small mean and
variance ol g; implies that the j* input has liule effect
on the response. A large mean coupled with small vari-
ance implies a linear effect, independent of the other
inputs. A large variance implies either a nonlinear
independent effect or interactions with other inputs.
Morris’s application was directly to the responses from a
heat transfer model, but the same quantities can be
easily computed using an estimated response surface.

In an alternative approach, Sacks et al. (1989) sug-
gested plotung main effect and two-factor interaction
functions. The main effect function for input u is

Fu(xu) = E(y I Xu)—E()’),

where E(y) is the average response over X, and E(y!Ix,)
is the average response when x, is fixed. The fitted
responsc ¥ is used for y here. If F, is approximately
constant over the range of x, this is a good indication
that x, has little effect. The form of F, is often informa-
tive also, especially if x, does not interact with other
inputs.

The two-factor interaction function for inputs u and
vis

Fuv(xu) Xv.) = E(y I Xu» Xv)_Fu(xu)_Fv(xv)_E(y)~

Again, the form of this function is useful if other inputs
do not interact with x,, and x,.

Examplcs of these plots are shown in Bernardo et al.
(1992) and in Welch et al. (1992).

Higher order interactions are obviously more
difficult to represent in this way, and they may be quite
numerous. An aliernative way to assess main effects
and interactions is to make predictions at the corners of
a 2X cube and then analyze the results as one would a 2
factorial experiment (Kleijnen 1975, Ch. 4.3.). An
example of this is described by Mitchell and Morris
(1992) in connection with a deterministic model for a
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combustion process.

There is also information in the maximum likelihood
values of the scaling parameters. Setting 6,= 0 implies a
prior belief that differences in the j* coordinate will
have very little effect on the predictions; when the max-
imum likelihood procedure chooses such a low value for
9;, it is an indication that the j* input is unimportant.
Welch et al. (1992) exploit this phenomenon in their
approach to screening and prediction by the SCF

method.
4.2 Optimization

Bernardo et al. (1992) describe the optimization of an
integrated circuit design using a CAD circuit design
simulator. They used the SCF approach to approximate
the output current y as a function of 11 design parame-
ters (resistances and transistor sizes) and two uncontroll-
able "noise" parameters (voltage and temperature). The
goal of the experiment was to find values of the design
parameters such that y, maximized over the noise
parameters, would be within 3% of 1 mA. The initial
design consisted of 576 points in the 13 dimensional
space. This did not involve as much computing as one
might suppose, since at each of the 48 combinations of
the design parameters, which were chosen according to
a Latin hypercube design, the responses at the 12 combi-
nations of the noise parameters could be produced rela-
tively quickly. Also, this design structure was exploited
to greatly reduce the cost of maximizing the likelihood
in (2.3). After determining the estimate y of the
response surface, and examining main effect and
interaction plots (see Section 4.1), the investigators
identified the two most influential design inputs and res-
tricted further attention to those, plus two more that
were of special engineering interest, plus the two noise
inputs. A second simulation experiment was run, a 24-
run Latin hypercube in the four remaining design param-
eters, restricted to a region where the predicted response
was near the target. Again the responses at the 12 com-
binations of the noise parameters were produced in each
case. After estimating a new response surface from these
288 data points, and validating it at 20 randomly
selected sites in the reduced region, the investigators
searched the surface numerically and found two points
in the design parameter space that minimized their loss
function, which had been chosen to reflect the deviation
from target.
Some interesting fcatures of this approach are:

I. The optimization strategy was an "outside-in"
approach, wherc the response was approximated

globally first, then attention was focused on a reduced
region.

2. The response y and not the loss was approximated
first. Then the loss was optimized using the predicted
response surface for y.

3. The effect of the noise inputs (voltage and tempera-
ture) was modeled directly, rather than by simulating
them randomly and observing the distribution of the
response values. If the response surface approximation
is adequate, simulation experiments can be performed,
with random inputs for these parameters, but using the
approximation (rather than the circuit simulator) to
evaluate the response.

4.3 Inverse Problems

Here we describe a simulation experiment on a model of
groundwater flow, in which the purpose of the experi-
ment was to identify the values of the input parameters
that lead to physically untenable results. This problem
came about as the result of an uncertainty analysis, in
which randomly chosen values of seven inputs (in this
case six conductivities and a "boundary flux"
coefficient) were submitted to the model, yielding distri-
butions for various response values. One response of
interest was the pressure at a particular location; this is y
in this example. One hundred runs of the simulator were
made, and the appropriate plot of the cumulative distri-
bution function of y was produced. It was observed that
in nearly half the cases, the pressure was higher than y”,
the physical upper bound. Attention then turned to try-
ing to determine which combinations of the seven inputs
lead to such unrealistic response values.

We first used the SCF method to fit a response sur-
face (y as a function of the seven inputs) to the data that
had already been generated. The Gaussian correlation
function ((1) in Table 1) was used throughout, with scal-
ing parameters selected by maximum likelihood. The
fitted response § was then evaluated at 4000 randomly
chosen points in X; of the points where § was within
10% of the critical pressure y*, 20 were chosen ran-
domly as a sct of validation points. The rationale was to
focus on the boundary of the surface that separates the
unrealistic results from the realistic ones. The model
was then run at these 20 points, and comparisons were
made with the predictions there. The root mean squared
error (after taking natural logs of pressure) was 0.24,
which corresponds roughly 0 a 24% error. Although
this is not bad in view of the dimension of X and the fact
that the range of y over X is more than two orders of
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magnitude, we did not feel it was adequate for our pur-
pose. (By way of comparison, thc root mean squared
error at the 20 validation points, for a lincar polynomial
fit by least squares to the original data, was 0.52; surpris-
ingly the corresponding crror for a quadratic polynomial
was 0.67.)

We then added the results from the validation runs to
the data basc, re-cstimated the response surface, and
chose 20 new validation runs in a similar way. The
results were disappointing: the root mcan squared error
of prediction at the 20 new validation points was 0.28, a
bit larger than before. Again, we plodded ahead, adding
the validation points to our data base, re-estimating the
response surface, and choosing 20 new validation points.
The results this time were much better: all the predic-
tions at the validation sites were within 21% of the true
values, and most of them were within 6%. The root
mean squared crror (after taking natural logs of pres-
sure) was 0.09. The validation points were then added
lo the data base, and the responsc surface was re-
estimated. This can now be used to screen out unrealis-
tic combinations of inputs in future unccrtainty analyscs
with this simulation model.

5 ADDITIVE MODELS

When X has more than a few (three or four) dimensions,
good global approximation te y in an affordable number
of runs is likely to be impossible, unless there is some
simplicity of structure in y. Onc approach is to seek an

additive model for y. In the SCF approach, for example,
we can let

k
Y=3Y[x) (CRY
1

where the Y;’s arc onc-dimensional Gaussian processcs,
independent of one another, with E(Y (x)) = i, and

Cov (Y)'(XJ)-YJ(WJ)) = O'jsz(Wj—Xj).

Then Y is a Gaussian proccss, with

L=3H
1

and

k
Cov(Y(x), Y(w)) = T0/R (W-x)).
1

The estimated response surface is again given by
(2.2), but with C replaced by C, the matrix of covari-
ances among the responses at the design points, and r
replaced by F, the vector of covariances (rather than
correlations) between x and the design points. The likel-
ihood (2.3) must be maximized over the o;’s, as well as
over p and 6.

The individual components of the response surface
can be recovered (up to an additive constant) by evaluat-
ing the posterior mean of Yj(x;), which is given by (2.2)
with C replaced by C and r replaced by the vector of
covariances between Yj(x;) and the Y(x')’s:

ri(x) = Cov (Y(x)), Y(x)) = 6/R;(x—x).

Technically, the first p in (2.2) should also be replaced
by W, but this is indeterminate (i.e., the likelihood is
maximized for any set of p;’s that sum to ).

Of course, (5.1) can be generalized so that the addi-
tive components are functions of more than one input.

6 RANDOM RESPONSES

In many simulation models, the response y is random.
Under the SCF approach, one assumes the following
additive modcl:

Y, =Z(x") + ¢,

where x' is the point in X corresponding to the i run, Z
is a Gaussian process which represents uncertainty about
thc mean of y(x), as described in Section 2, with
E(Z(x)) = u and

Cov (Z(x), Z(w)) = 6*R(w—x),

and the ¢;’s are Gaussian random variables, with mean 0
and variance o, independent of each other and of Z.
Then

C=0cC+0ok

where C= (R(x'-x’)} is the matrix of correlations
among the Z’s at the design points. Further, since we
want to determinge the posterior mean of Z(x),

7,(x) = Cov (Z(x), Y(x')) = Cov (Z(x), Z(x')) = 6*R(x~x).

The fitted responsc surface is then given by (2.2) with
and C replacing r and C, respectively. The maximum
likelihood estimates of the parameters (L, 62, o, 0) are
again found by maximizing (2.3).
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