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ABSTRACT

The appropriate use of antithetic random variates
has been shown to improve the precision of response
surface model estimation for simulation. We apply
this approach to simulation experiments designed to
determine operating conditions that reduce response
variability by using Genichi Taguchi’s parameter de-
sign framework. Antithetic random number streams
can be viewed as another level of complexity in the
experiment design: we call this class of simulation-
specific factors artificial factors. A simple example il-
lustrates how antithetic random variates may be ben-
eficial for robust design in simulation settings.

1 INTRODUCTION

Genichi Taguchi pioneered a strategy for deliberately
incorporating sources of variability into the evalu-
ation of alternative manufactured product designs
(Taguchi 1986, Taguchi and Wu 1980). He found that
1t was often more costly to control causes of manu-
facturing variation than to make a process insensitive
to these variations.

Taguchi’s three-stage approach for quality improve-
ment activities consists of system design, parameler
design, and tolerance design. In the manufacturing
setting, system design is the application of scientific
and engineering knowledge to produce a functional
prototype model. This prototype model defines the
product/process design characteristics (parameters)
and their initial settings. In parameter design set-
tings that reduce the variability in the response are
identified; at the same time, the mean response may
be maximized, minimized or adjusted to a target
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value. Tolerance design is a method for scientifically
assigning tolerances in order to minimize total prod-
uct manufacturing and lifetime costs. We concentrate
on parameter design (also known as robust design) in
this paper.

As part of parameter design, factors which are ex-
pected to affect the response of interest are classified
into control parameters and noise factors. Control
parameters are those factors which can be controlled,
or set, during normal operating conditions in order
to influence the response. Noise factors are sources
of variability which are either not controllable or are
too expensive to control under normal operating con-
ditions, but can be controlled during experimenta-
tion. Parameter design is a methodology to reduce
variability in the response by finding settings of the
control parameters that are robust, or insensitive, to
variations in the noise factors. Noise factors may ei-
ther be internal sources of variation (such as drill bit
wear, raw material composition, variations in opera-
tor skill and/or timing) or external sources (such as
variation in temperature or humidity in a customer’s
environment over the lifetime of the product).

Taguchi advocates experimentation using noise fac-
tors to span the space of the noise—an active intro-
duction of noise which is more effective than reph-
cation (Nair, 1992). Taguchi’s use of loss functions
to convert engineering deviations into costs has also
made an important, although often underestimated,
contribution by motivating management to carry out
the robust design process and other quality improve-
ment activities (Lucas 1985, Pignatiello and Ramberg
1991).

Although Taguchi’s arena of application has been
manufacturing, these concepts may also be applied to
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investigate the behavior of simulated systems (Ram-
berg et al. 1991). In the simulation context, system
design might correspond to building and validating a
functional model of an existing real-world system or
a prospective new facility, process, or product. Pa-
rameter design is appropriate for attempting to “op-
timize” or “improve” performance of the simulation
model by judiciously selecting settings for some of
the decision factors in the model. Once these set-
tings have been selected, a tolerance design experi-
ment could be performed to provide further insight
into the nature of the relationship between the noise
factors, their interactions, and the response.

It might initially appear that the experiment design
and analysis methods could be transferred directly to
simulation environment. Product designers have per-
formed parameter design experiments using computer
models (CAD/CAM tools) in place of physical proto-
types because of cost considerations, particularly in
the semiconductor industry (Sacks et al. 1989). How-
ever, the concept of robust design presents both new
challenges and new opportunities for many simulation
analysts unfamiliar with the robust design philoso-
phy. The use of a loss function, which incorporates
the response variability as well as the response mean,
challenges simulation analysts to view variability as
an important characteristic of the system, rather than
solely as a nuisance factor which complicates the com-
parison of mean responses. It is also an opportunity—
it has the potential for improving the decision-making
following experimentation on a simulated system.

Another opportunity arises because discrete event
simulation output is typically a response stream
rather than a single number. Thus the system vari-
ability for any specified combination of parameter
settings can be estimated from a single run, using
methods such as variance estimates computed from
overlapping batches (Ramberg et al. 1991, Sanchez et
al. 1992) or standardized time series (Schruben 1982,
1983). (Note that we need an estimate of the vari-
ance of an individual response, rather than an esti-
mated variance of the mean of output stream.) These
provide alternatives to the run-oriented variance esti-
mation methods, such as replicating the entire exper-
iment, or pooling effects associated with high-order
interaction terms (which are deemed unimportant) to
estimate error sums of squares. The former may be
extremely costly for complex simulation experiments,
while the latter may result in a misspecified model if
lack-of-fit tests are not possible because of confound-
ing. The usefulness of estimating system variability
from a single run is even more apparent in the Taguchi
context, where heterogeneity of variance across design
points plays a crucial role in the final design selection.

Finally, additional opportunities arise from the in-
creased control the analyst has of the experimental
environment. In simulation, everything is control-
lable. This means that the classification of factors
into parameters and noise factors must be based on
controllability in the real-world, not the simulation
environment. There is also another layer of con-
trollability. For example, in addition to the param-
eter and noise factor settings, the analyst controls
the initial state of the system (e.g., empty or capici-
tated queue), the warm-up period (truncation point),
termination conditions (run duration), and random
number stream(s) (seed, antithetic switch). We call
all simulation-specific variables such as these the class
of artificial factors.

2 RESPONSE SURFACE METAMODELS

We now consider response surface metamodels and
their relation to the three factor classes: parameters,
noise factors, and artificial factors. If a designed plan
for the artificial factors is used, this complicates the
overall design. This additional complexity is only jus-
tified if it improves the metamodeling capability.

Consider first a response surface metamodel in
which the response (perhaps after suitable transfor-
mation) is a function only of the parameters with
additive error. Mathematically, we have

Y = fi({Xi}) + € (1)

where Y is the response vector, the {.\;} are the inde-
pendent variables, and ¢ is the error vector with mean
zero. In response surface analysis, several assump-
tions are typically made. The errors are assumed to
be iid normal random variables, a common error vari-
ance o2 is postulated, and f,({.\;}) is a linear func-
tion, 1.e.,
AN} =X

where the columns of X represent the model terms
(including the intercept and any polynomial or in-
teraction terms) and [ is a column vector of the as-
sociated (constant) coefficients. Natural estimators
of B and o? are the least-squares estimators B and
mean squared error (MSE), so the metamodel of the
response mean at a point x = {\} is

Yx = XB3

and the MSE provides the metamodel of the response
variance for all parameter settings. Response sur-
face methodology is often concerned with identifying
the parameter values which lead to the ‘optimal’ re-
sponse. In most applications, optimality means ei-
ther the highest or lowest value of Y, thus we seek to
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find the z leading to high (low) values of jiy,. Using
Taguchi’s terminology for the model of equation (1),
the {X;} represent the parameters under investiga-
tion. No (controlled) noise factors exist.

Different metamodels result from a parameter de-
sign experiment, where some or all noise factor levels
are controlled by design, rather than allowed to vary
randomly. The underlying model is

Y = fL({Ni AW + ¢ (2)

where the {W;} are the controlled noise factors and
the {¢} are independent random variables with mean
zero. (Note that the addition of the {W; } has affected
the error term.)

Two points merit further discussion. First, in the
ideal situation where all sources of noise have been
enumerated, Var(§) = 0 and the model becomes com-
pletely deterministic. While this is extremely unlikely
in a real-world application, it may apply to certain
situations in discrete event simulation (e.g., tolerance
design example in Ramberg et al. 1991.). However,
If any important noise factors have been included in
the set {W;}, then the variance of ¢ in equation (2)
is less than the variance of € in equation (1). The
second point is that we are not interested in assum-
ing additive models when the noise factors are con-
trolled. Interactions between the noise factors and
the parameters lead to unequal error variances across
parameter configurations. It is precisely this set of
interactions which we hope to exploit in order to find
robust parameter settings.

The analysis is also slightly different. Since the an-
alyst is interested in a metamodel which contains only
the parameters, the results can be averaged across the
noise design before a metamodel is fit to the data.
To illustrate, consider a simple example with a single
parameter (X;) and a single noise factor (W) con-
trolled at one of w levels. For each design point z, we
average across the noise factor space, e.g.,

oy, z.}71 =

z

g~

> f2(X1, W),
k=1

An estimate of the response variance at z can also be
obtained:

sy, = L Zw: (fz(«\'l) Wik) —7x>2-

k=1

Regression can then be used to estimate linear meta-
models for Y and log(s?). (The logarithmic transfor-
mation is a variance stabilizing transformation.)

In parameter design problems involving physical
experimentation, Taguchi uses saturated or nearly

saturated orthogonal designs for the noise factors.
The use of saturated designs may reduce the amount
of experimentation required. Each noise factor that
can be controlled during the experiment leaves less
randomness to deal with. In this context, the ideal
situation would be no remaining randomness associ-
ated with product performance. However, in the sim-
ulation environment, 1t may not be possible to remove
all randomness from the system without changing it
in a qualitative sense.

To clarify this distinction, we present a simple
queueing example. The parameters are the number of
servers and the service discipline (FIFO, LIFO). The
noise factors might be the interarrival times of the
customers and the service times, both random vari-
ables. Although it is typically impossible to control
these noise factors in the real world setting, it would
be possible to control these noise factors by removing
all their variability while running a queueing system
simulation. This would be extremely poor practice
from a modeling perspective. It is a well-known fact
that the behavior of queueing systems with determin-
istic interarrival and service times is radically differ-
ent than when the inputs are stochastic. If we are
interested in designing a robust queueing system, it
may be appropriate to vary the nominal arrival rate
and service rate (e.g., ‘low’ and ‘high’) and consider
these as the noise factors.

In this scenario, it appears that (unlike Taguchi’s
strategy for product design using physical experimen-
tation) the ideal situation is not one in which all ran-
domness has been removed. However, the apparent
remaining randomness is deceptive: it results from
the use of pseudo-random number streams. Once a
simulation run is fully specified (parameter settings,
noise factor settings, initial conditions, run length,
and random number streams) there is no more ran-
domness in the system. The response can then be
modeled as

Y = fs({Ni 1 AW, {Ae}) +¢ ®3)

where {Ay} denotes the class of artificial factors. As
we shall show, the {Ax} can be treated as a secondary
category of noise factors. If we modify the data col-
lection and analysis appropriately, we may be able to
further improve the precision of the estimated coeffi-
cients.

The qualitative appeal for including artificial fac-
tors in the experiment design is readily apparent.
Orthogonal experiment designs (a subset of which
Taguchi popularized as “orthogonal arrays”) have
been around for many years. Taguchi realized dra-
matic gains in variability reduction by explicitly in-
cluding noise factors that are varied systematically
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during physical experimentation. Since the noise fac-
tors are chosen to span the noise space, the analyst
can gauge the sensitivity of the response to fluctua-
tions in these factors. A designed noise plan, rather
than simple random sampling, keeps data require-
ments from inflating too rapidly, particularly if satu-
rated or near-saturated noise plans are used. We ad-
vocate an analogous step for simulation experiments:
we will impose control over some artificial factors by
specifying a designed data collection plan. This offers
potential benefits in metamodel identification, partic-
ularly if the response is very sensitive to the random
number stream(s) selected or if time and budget con-
straints prohibit extensive ad hoc sampling over the
artificial factors.

3 DATA COLLECTION AND ANALYSIS

The impact on manufacturing of Taguchi’s approach
to variability reduction has been widely acknowl-
edged. However, his implementation of some statisti-
cal techniques has sparked controversy in the statis-
tical community (Kackar 1985, Box 1988, Pignatiello
and Ramberg 1985, 1991, Nair 1992). While we fol-
low Taguchi’s philosophical approach in this paper,
we recommend the well established statistical analy-
sis methods presented by Sanchez et al. (1993) (see
also Box, Hunter and Hunter 1978, Vining and My-
ers 1990, Ramberg et al. 1992). These methods uti-
lize response surface methodology and modern graph-
ical and data-analytic techniques for improved model
identification.

Factorial and fractional factorial designs are often
used for data collection. Two-level or three-level de-
signs are selected for each factor based on the antic-
ipated role for first-order and second-order terms in
the metamodel. Parameter levels can be set to cover
the region of interest. A noise factor with mean pp
and variance 0% can be sampled equally at p, £ on
for two-level plans, which results in a two-point dis-
tribution with mean gy and variance o%,. For three-
level factors, equal sampling can be performed at
{un,un £on}.

The parameter plan and noise plan (which Taguchi
calls inner arrays and outer arrays) can be crossed
to obtain an overall experiment plan. However, the
number of runs required by such a crossed plan may
be prohibitively large. One alternative is to fraction-
ate the parameter and/or noise plans in order to econ-
omize on observations. Fractional factorials can be
used to reduce the size of the parameter plan if high-
order interactions are thought to be unimportant. In
such cases, a center point can be added to the design
to assess lack-of-fit. The noise factor plan will gener-

ally be more highly fractionated because noisexnoise
interactions are not of direct interest. For example,
an experiment involving 2 parameters and 7 noise fac-
tors could be conducted as a 22 full factorial crossed
with a 27 factorial, requiring a total of 128 runs for
each of the four parameter configurations, or 512 runs
in total. However, if a saturated eight-run design is
used for the noise factors, the total number of runs
required is 32. Alternatively, a combined plan can
be used to accomodate both types of factors (pa-
rameters and noise). For the above example, a total
of 9 factors are present so potential plans include a
29 full factorial, a 2°~! half-fraction, etc., depending
on the degree and nature of interactions to be mod-
elled. Combined plans may be more economical than
crossed plans unless the cost of a control run is much
larger than the cost of a noise run (Shoemaker, Tsui
and Wu 1991).

We remark that “replication” has two different
meanings in the simulation setting. The output
stream from any particular run can be reproduced
exactly if identical inputs (parameter and noise fac-
tor settings, artifical factor settings) are used. In the
robust design terminology, this means that replica-
tion error is zero. However, simulation analysts also
use the term replication to refer to a single run of the
simulation. Multiple replications for a particular set
of parameter and controlled noise factors are made
by changing some or all of the random number seeds.

A loss function should also be specified. For our
example in the next section, we assume the goal of
the parameter design process is to make the response
as close as possible to a target value 7, and we use
a quadratic loss function. The loss associated with a
particular observation Y; (taken at parameter config-
uration z) is

b (Yz) = c[(Ye = 7)),

where ¢ is a constant which converts the loss to mon-
etary units. The expected loss, or risk, associated
with parameter configuration z is then obtained by
taking the expectation of the loss over the noise space.
Mathematically,

R(z) = E&(Y:)] (4)

clod + (py, = 7)°

We refer to R(z)/c as the scaled loss associated with
parameter configuration z. This scaled loss can
be used to compare alternatives when the response
means cannot all be adjusted to the target value.
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4 VARIANCE REALLOCATION

We now consider one type of artificial factor—the ran-
dom number stream— and indicate how it can be
incorporated into a robust design experiment. Con-
sider a generic discrete-event simulation. One or more
seeds are transformed algorithmically into sequences
(streams) of (assumed) i. i. d.  Uniform pseudo-
random numbers. These streams are then trans-
formed into sample paths for stochastic processes.
Let R; = {Ri;,j = 1,...} denote aset of such streams
sufficient to execute a run of the simulation (i is a
countable infinite index for the seed). Then let R}
denote the antithetic set for R;, where Rfj =1-R;
The use of common and/or antithetic random number
streams has received a great deal of attention in the
simulation literature as a means of improving the esti-
mation of a mean response or mean differences across
alternative systems. (See Law and Kelton 1991 for
an overview.)

We now illustrate the use of common and/or an-
tithetic random number streams for robust design in
simulation. Consider one independent variable X cor-
responding to a response Y and the first order model

Yx =60+ /X +¢, (5)

where ¢ ~ N(0,0%). Suppose we are considering two
alternative parameter settings, £ and —z, and we col-
lect n/2 observations at each of the two points.

If all independent random number streams are
used, then the variances of the § in equation (5) are
given by
2

A 2
Var(fo) = =Var(Yo,+Y)= %

. 2 2
Var(B) = Var(Yo,-vo) =2

These variances change if common or antithetic ran-
dom number streams are used. Following the nota-
tion of Schruben and Margolin (1979), let p* denote
the correlation induced by common streams for dif-
ferent systems and —p~ denote the correlation in-
duced by antithetic streams. (The magnitudes of
the induced correlation are unknown, and model de-
pendent, although typically |p~| < |p*|.) Then if
common random numbers (i.e., streams {R;, ¢ =
1...,n/2}) are used for both —z and z, we find

o2

Var(fy) = —(1+p")
-~ 02
Var(f) = —(1-p*).

An alternative is to use antithetic sampling: streams
{Ri;i = 1,...,n/2} are used for —z, and streams

Bo+B1x
antithetic

-X +X

Figure 1: Comparison of Common and Antithetic
Sampling for a First Order Linear Model

{R¢,i=1,...,n/2} are used for z. This yields

Var(B) = Z(1-p7)
02
Var(f) = —(L+p7).

This means it is not possible to reduce the vari-
ability of both coefficient estimates simultaneously.
If common random numbers are used, we have a bet-
ter estimate of the slope but a poorer estimate of the
mean. If antithetic random variates are used, then
we have a better estimate of the mean response but
a poorer estimate of the slope. This relationship is
illustrated in Figure 1 for the model of equation (5).
When common random numbers are used for an ob-
servation at each of +z and —z, the responses are
either both above or both below the true mean re-
sponse. Since the error is additive and the error dis-
tribution is identical at the two points, the slope can
be estimated exactly from such a pair of responses:
the solid thin lines (joining pairs with common ran-
dom numbers) are parallel to the underlying response
(shown as a solid thick line). However, there is vari-
ability associated with the intercept estimate, partic-
ularly if the total sample size n is small. Conversely,
antithetic random numbers pair positive errors at —z
with negative errors at +z and vice versa. The dashed
lines joining antithetic paired response have slopes
that differ from the underlying model, but the inter-
cept is much closer to the true value. (If the error
distribution is symmetric, the intercept can be esti-
mated exactly.)

Now consider two factors X; and X9, and the cor-
responding first order model:

Y=04+8X1+B82X2+¢ (6)
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Figure 2: Common/Antithetic Sampling Strategy for
Two Factor Model

where ¢ ~ N(0,02%). Suppose we wish to make a to-
tal of n runs covering 4 design points: (—z, —z3),
(=z1,z2), (z1,—x2) and (z1,z2). One way of de-
signing the experiment is to break the design into
two half-fractions: one half-fraction uses the streams
R; (i =1,...,n/4) and the other uses the the anti-
thetic set R (i = 1,...,n/4). This correlation in-
duction strategy, which is shown graphically for the
points Y7, ...,Yy in Figure 2, yields coefficient esti-
mates with the following variances:

Var([i’o) = Var (i(Y1+Y2+Y3+Y4)>

2
o _
= J(1+p"=207)

Var(,él) = Var (%(Yl — Yo+ Ys— )/4))

2
= %(1—/)*)
Var(f) = Var (i(yl +Y,—Y3 - Y4))
2
= %(1—/)*)

If 20~ > pt then the variance of all estimated co-
efficients has been reduced. However, the reduction
is at the expense of reallocation (Schruben and Mar-
golin 1978, Schruben 1979, see also Tew and Wilson
1991): the estimated variance of the coefficient of the
interaction term which we chose not to include in the
model has increased. In the full 22 factorial analysis,

Var([§12) = Var (%(Y, -Y,-Y3+4 Y4)>

0,2
= T(l +pt +2p7).

Schruben (1979) proved that the sum of coefficient
variances is constant for any saturated, orthogonal
design.

This reallocation has interesting implications for
parameter design. Consider the crossed data collec-
tion plan (parameter plan x noise plan x artificial
factor plan). The artificial factor plan should be cho-
sen in order to induce correlations which reallocate
variance from the interesting terms (parameters) to
the uninteresting terms (noise factors). Since we will
average the results over the noise space, obtaining
precise estimates of the coefficients corresponding to
the noise factors is unnecessary. Variance realloca-
tion can also be conducted when a combined data
collection plan 1s used.

The linear models in equations (5) and (6) are ana-
lytically tractable, and motivate the use of antithetic
random number streams in general. However, they
are not of particular interest in the robust design
framework since the additive error has the same dis-
tribution at all parameter settings. As we illustrate
in the next section, when the {W;} interact with
the parameters this leads to nonhomogeneous vari-
ance across design points. Least-squares estimators
of the fs in equations (5) and (6) may still be es-
timated more precisely if antithetic random number
streams are used, but the response variances should
be estimated separately at each design point from
the stream of output available. Recall that the Y’s
analyzed in the response surface models above are
themselves likely to be averages, (such as the average
waiting time for a customer in a queueing system) for
particular parameter configurations.

5 EXAMPLE

We illustrate the use of antithetic random variates
for a simple, hypothetical system. We have a sin-
gle parameter, X, which we will sample at one of
three values: low (.\' = 2), middle (.\" = 4), and high
(X =6)). Our noise factor is the range of a Uniform[-
¢,c] random variable and represents the variability in-
herent in the system. Suppose we are uncertain of the
range, but feel that it is equally likely to be any value
between 0.5 and 3.5 (e.g., ¢ equally likely between
0.25 and 1.75).

The response surface we model is given in equa-
tion (7) and shown in shown in Figure 3.

100 — 50z ifz <2
Yz{(x—z)2 ifr>2 (7)
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Figure 3: Response Surface for the Example

Note that the only source of variability is the uni-
form noise factor. Its variability is transmitted dif-
ferentially to variability in the response, depending
on the shape of the response surface near the value of
X. For every one of the three .X values, the response
variability increases (though not necessarily by the
same proportion) as c increases.

Although this is a hypothetical scenario, we stress
that the classification of parameters, noise factors,
and artificial factors cannot be done in a vacuum.
In this example, we assume that all variability in W
cannot be removed without qualitatively changing the
system. For instance, we would not want to change
interarrival times from stochastic to deterministic in
a queueing application, but we might be unsure about
the exact parameterization of the underlying distri-
bution.

We sample from this system under three sets of
conditions, using a common total sample size of 24
runs. First, we sample as though the parameter .\ is
the sole factor of interest, and generate 8 samples (us-
ing independent random number streams) for each of
the three design points. This is done in a two-stage
process: a value of ¢ is first generated from a Uni-
form[0.25,1.75] distribution, and then the noise W is
generated from a Uniform[—c,c] distribution. This
value X + W is then transformed according to equa-
tion (7) to yield a realization of Y. This corresponds
to the model of equation (1), where we are only mod-
eling the effect of the parameter.

Second, we consider both the parameter and noise
factor, and select different random number seeds for
all 24 runs: 4 runs for each of the six combinations of
parameter and noise factor levels. This corresponds
to the model of equation (2), which incorporates the

noise factor into the design. The results obtained are
averaged across the noise design to yield estimates of
the mean response.

Finally, we combine the use of antithetic and com-
mon random number streams as discussed in the pre-
vious section (replicated twice): two pairs of anti-
thetic streams are used for each of the six design
points. Resulting values of Y are averaged over the
noise factors and artifical factors for each design point
to yield estimates of the mean response. This corre-
sponds to a model of the form in equation (3), with
parameters, noise factors, and artificial factors in-
cluded.

The results for all three experiments are summa-
rized in Table 1. Recall that our primary goal is the
identification of robust design points. In our exam-
ple, this corresponds to determining values of X for
which the response is relatively insensitive to noise
variation, while the mean response is close to a tar-
get value 7. The risk R(z) of equation (4) (or the
scaled loss R(z)/c) can be used to rank the alterna-
tives. Which is better? That depends on the target
value. Suppose we wish to make the response as small
as possible (r = 0). From figure 3 it would appear
that X = 2 yields the optimal design. However, for
this design the response variability is extremely high.
From Table 1, the loss associated with = =4 (L4), is
an order of magnitude lower than L, and Lg. This
indicates that z = 4 is clearly the best design in terms
of overall performance.

The regression coeflicients and associated standard
errors provided in Table 1 indicate that the control of
the random number stream has increased the predic-
tive ability of the regression equation, and decreased
the standard errors of all coefficients, despite the de-
crease in the degrees of freedom for error estimation.
(24 independent observations are used to fit the first
model; pairs of independent observations are aver-
aged for low and high ranges to obtain 12 points for
fitting the second model; the third model is fit using
6 points, obtained by averaging across low and high
ranges and antithetic pairs.) This illustrates the ben-
efit of using correlation induction strategies on the
artificial factors.

6 CONCLUSIONS

The robust design approach mandates a new out-
look on the response surface metamodeling prob-
lem. While ordinary least-squares regression and
ANOVA techniques assume equal variance across de-
sign points, the success of Taguchi’s robust design
philosophy indicates the need for methods which in-
corporate variance heterogeneity into the analysis.
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Table 1: Experiment Results: Metamodel is py. = By + iz + Baz?

Y = f(\) Y = f(X, W) Y = f(X, W, 4)
Data z=2 r=4 z=26 z=2 z=4 z=6 z=2 z=4 z=26
Y. 16.78 4.12 14.20 27.63 3.92 14.91 11.12 4.25 16.29
5Y. 20.48 4.58 5.61 30.66 2.77 5.61 16.64 2.38 4.64
L 701.0 38.0 233.1 || 1703.5 23.0 257.8 400.5 23.73 286.9
Metamodel Bo B Be Bo 2 Ba Bo A B
Fitted Value 4.199 | -1.292 | 11.290 3.922 | -6.361 | 17.352 4.294 2.586 9.414
Std. Error (4.434) | (3.135) | (5.430) || (4.695) | (3.320) | (5.750) || (3.418) | (2.417) | (4.186)
R? 0.1762 0.5867 0.6739
One reason that robust design has only recently been ACKNOWLEDGMENTS

discussed in the statistical literature is that primary
attention has been given to transforming data until
the standard assumptions are met—thus, heterogene-
ity of variance is considered a nuisance which com-
plicates the ability to compare alternatives based on
their means. This view has carried over in simula-
tion as well although it is well-recognized that com-
plex systems may have different variability at differ-
ent model configurations (Law and Kelton 1991). We
reiterate that variance estimation is not a nuisance
for robust design identification. In fact, for many
systems the differences in variability may overwhelm
any differences in the mean responses.

Although the use of antithetic random variates
holds promise for robust design experiments in the
simulation setting, there are still some problems
which need to be addressed. First, the extent to
which this approach will improve the decision-making
process for higher-order models is not readily ap-
parent. The use of antithetic streams for quadratic
models is a nontrivial problem even for traditional
response-surface metamodeling (Tew 1989), although
identifying good designs for higher-order metamodels
is of special interest (Sargent 1991).

However, certain aspects of this variance reallo-
cation problem are worth mentioning again. Every
time a factor can be controlled in an experimental
design, rather than sampled randomly, this decreases
the underlying variance associated with all remaining
sources of noise. As long as the noise factors chosen
to be controlled do transmit variance to the response,
the precision associated with estimating the parame-
ter coefficients should improve.
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DDM 9110573 from the National Science Foundation.
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