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ABSTRACT

A procedure is developed for the construction of se-
quential simulation designs for the estimation of first-
and second-order response surface metamodels. The
first stage of experimentation involves the use of a
fractional two-level factorial design augmented with
replicated center points. Information obtained from
this experimental design is used to estimate the “op-
timal” location of the factorial design points for the
second stage of experimentation. Two types of per-
formance criteria are considered in the specification of
the factor settings: (1) integrated mean squared error
of the predicted response variable, and (2) integrated
mean squared error of the response function slopes.
Additional data is collected in the second stage using
a different fraction of the two-level factorial design.
If quadratic curvature is indicated, a third stage of
experimentation is performed to collect data for the
axial portion of a central composite design. Two per-
formance criteria are considered in the specification of
the optimal aziallevels: (1) integrated variance error
of the predicted response variable, and (2) integrated
variance error of the response function slopes.

The selection of factor levels in the second and third
stages also depends on the strategy used in assign-
ing random number streams to the stochastic compo-
nents of the simulation model. We investigate three
assignment methods (independent streams, common
streams, and the assignment rule blocking strategy),
and we develop sequential design plans for each strat-

egy.

1 INTRODUCTION

Attention in this paper is focused on the estimation
of a response surface metamodel for the approxima-
tion of an unknown functional relationship that ex-
ists between a controllable set of input variables and
a simulated response variable. The final objective
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of the simulation study may be optimization, pre-
diction, sensitivity analysis, or other considerations,
and therefore we develop the sequential design plans
using two different types of experimental design crite-
ria. The first criterion involves minimizing the errors
associated with predicting the wvalue of the response
variable, whereas the second criterion involves mini-
mizing the errors associated with estimating changes
in the value of the response variable. The first cri-
terion is useful when the objective of the simula-
tion metamodeling process is prediction of system re-
sponse. The second criterion, on the other hand, is
applicable when the experimenter’s goal is to study
the effect on system response of changes in the val-
ues of the input variables (sensitivity analysis). In
the context of response surface methodology (RSM),
this second criterion is useful in the early stages of
an RSM study—when the experimenter has not yet
located the region of the factor space that contains
the optimal response. The first criterion is applicable
in the final stages of an RSM study—when predic-
tion of the optimum response and estimation of the
optimum operating conditions are frequent objectives
of experimenters. (See the texts by Box and Draper
1987, Khuri and Cornell 1987, and Myers 1976 for
additional information on RSM.)

Regardless of the purpose and goals of the study,
the simulation metamodeler must choose an appro-
priate region of the factor space for experimenta-
tion. The sequential design procedure assumes that
a first- or second-order metamodel will be adequate
for describing the response variable as a function of
the input factors. Therefore, in defining the region
of interest, the experimenter needs to choose the
ranges of the input factors such that the response
surface, within that region, is approximately linear
or quadratic in nature. We assume that the region of
interest (after coding the input variables) is cuboidal
in shape and specified by the experimenter’s choice
of the high and low levels of each input factor. Note
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that the high and low factor levels associated with the
region of interest are different from the maximum and
minimum factor levels which are typically associated
with a larger operability region.

In addition to selecting the region of interest, the
method of assigning random number streams to the
experimental design points needs to be chosen by the
experimenter. We have developed sequential design
plans for the following three assignment methods:

1. independent random number streams (IR):
the use of independent stream sets for each
stochastic model component on each simulation
run,

2. common random number streams (CR):
the use of independent stream sets for the
stochastic components of the simulation model
(within a run), and the use of a common set
of streams for each nonreplicated simulation run
(between runs), and

3. assignment rule blocking strategy (AR):
the use of the common streams strategy within
one block of an orthogonally blockable exper-
imental design and the use of an antithetic
set of streams in the second orthogonal block
(Schruben and Margolin, 1978).

We assume that the experimenter is collecting the
simulated response data in a manner that would pro-
vide independent response observations if the IR
strategy were used. For example, the response of in-
terest could be the average value of some performance
measure during a terminating simulation or, it could
be the average value of a steady state performance
measure obtained from a simulation in which the ini-
tial transient period was deleted. When the response
data is collected in this manner, and the IR strat-
egy 1s used to assign random number streams to the
stochastic model components, the simulated response
observations are independent and the simulation out-
put can be analyzed using standard statistical tech-
niques. However, when the CR and AR strategies
are used, the common and antithetic stream sets in-
duce correlation among the simulated responses and,
therefore, more sophisticated statistical analysis tech-
niques are required. The potential benefits of these
strategies (e.g., improved prediction of the responses
and reduced variances of some metamodel parame-
ters) may offset the increased computational efforts.
Implementation of either of these correlation induc-
tion strategies requires careful synchronization of the
random number streams in order to maximize the po-
tential benefits of the strategy. Additionally, a pilot

study must be performed to ascertain whether or not
correlation is actually being induced among the re-
sponses, to perform appropriate statistical tests for
the assumed correlation structure, and to estimate
the magnitudes of the induced correlations.

There are many other important issues that simu-
lation metamodelers must address. For example, the
input distributions of the stochastic model compo-
nents, the starting conditions of the simulation, the
length of the simulation run (and possibly the tran-
sient period), the input factors needed to model the
system response, etc., must be determined by the ex-
perimenter. (See Law and Kelton 1991 for a thorough
discussion of these and other related issues.) In this
research, we assume that the experimenter has devel-
oped a valid simulation model of a system that can be
used to generate independent response observations.
This simulation model will generate the data needed
to develop a response surface metamodel of the sys-
tem and, in turn, the metamodel will be used to ef-
ficiently study and/or optimize the system response
variable of interest.

2 PREVIOUS RESEARCH

Many studies have examined the performance of the
three random number assignment strategies noted
earlier. Schruben and Margolin (1978) developed the
AR strategy and investigated its performance rela-
tive to the IR and CR strategies. In the context of
fitting a first-order metamodel, using a single repli-
cation of an experimental design that partitions into
two orthogonal blocks, these authors found that the
AR strategy was the preferred procedure when the
performance criterion was the minimization of either
the trace or the determinant of the estimator covari-
ance matrix. Kiefer (1978) extended these results
to additional variance-oriented criteria, such as the
minimization of the maximum eigenvalue of the es-
timator covariance matrix and the minimization of
the maximum diagonal element of the estimator co-
variance matrix. Three additional variance-oriented
criteria (prediction variance, integrated variance, and
variance of slopes) were examined by Hussey, Myers
and Houck (1987a, 1987b) in the context of fitting
first- and second-order metamodels using single repli-
cations of experimental designs that partition into
an even number of orthogonal (or nearly orthogonal)
blocks. Similar to the earlier research of Schruben
and Margolin, their results indicated a preference for
the AR strategy, and this preference existed regard-
less of the number of blocks and whether the design
blocking was exactly orthogonal.

The IR, CR, and AR strategies were further stud-



Experimental Designs for Metamodeling 541

ied by Donohue, Houck and Myers (1992a, 1992b) us-
ing two integrated mean squared error performance
criteria (MSE of the predicted response and MSE of
the response function slopes). These authors con-
sidered both first- and second-order experimental de-
signs and assumed that the predicted response could
be biased due to misspecification of the metamodel.
Additionally, these authors extended the original for-
mulations of the CR and AR strategies by accom-
modating both replicated center runs and three-block
designs through the use of independent stream sets.
Results of their research indicated a preference for
the AR strategy even when independent stream sets
were used to replicate center runs and/or generate
design points in a third block.

Research has also been conducted to address the
statistical analysis issues assoclated with the CR and
AR strategies. Due to the correlation that is induced
between responses generated using these strategies,
standard statistical procedures that assume indepen-
dent responses cannot be used. Joshi and Tew (1992),
as well as Kleijnen (1992), developed statistical anal-
ysis and validation procedures for the CR strategy.
Nozari, Arnold and Pegden (1987) discussed the va-
lidity of the assumptions used in the theoretical devel-
opment of the AR strategy and presented inferential
procedures for the analysis of response data simu-
lated using the assignment rule. Additional research
on the validation of assumptions underlying the AR
strategy was performed by Tew and Wilson (1992a,
1992b). These authors presented a statistical test for
lack-of-fit to the postulated metamodel and provided
formal inferential procedures for examining a number
of the assumptions associated with the AR strategy.

3 PRELIMINARY INFORMATION

The problem under consideration is the development
of a simulation metamodel for the estimation of a
response variable, Y, as a function of a set of k con-
trollable factors, & (i = 1,...,k), within a specified
region of the factor space. An experimental design
plan consists of N design points which specify the lev-
els of the factors on each simulation run. The N x k
design matrix (N > k) can be written as

&n € - &n
_| bt e (1)
El.N f?lN . 3%

where &, (i = 1,...,k;u = 1,...,N) denotes the
level of the ith factor on the uth simulation run. The
& represent coded values of continuous, quantita-

tive input variables, such that +1, 0, and -1, respec-
tively, correspond to the high, middle, and low levels
of each factor for the specified region of interest. We
denote each row of D, the uth design point, as a k-
dimensional row vector €, (v = 1,...,N). The ran-
dom number streams associated with £/, are denoted

RU:R].U’"')Rn‘lu (2)
where the column vector Rj, (j = 1,...,m;u =
1,...,N) is the jth stream of random numbers used

on the uth simulation run, and m is the number of
stochastic components in the simulation model. Us-
ing the design matrix in (1) and the random number
streams in (2), a set of N simulated responses, Y,
(u=1,...,N) are obtained. The values of Y, would
typically be the average response during the simu-
lation run, possibly after the deletion of a transient
period. The simulation metamodel representing the
relationship between the response variable and the &
controllable input factors can be written as

Y=XB+e )

where Y and € are N-dimensional column vectors of
the response observations and random errors, respec-
tively, 3 is a p;-dimensional column vector of model
coefficients, X is an N x p; matrix of the regressor
terms in the metamodel, and p; (i = 1,2) is the num-
ber of parameters in a response surface metamodel
of order i. In the case of a first-order metamodel,
which includes an intercept term and k linear terms,
we have p; = 1 + k. A second-order metamodel ad-

ditionally includes k quadratic and (’5) second-order

interaction terms, yielding p, = 1 + 2k + (g) We
assume that the expected value and dispersion ma-
trix of the vector of random errors are E(e) = 0 and
cov(e) = ¥, with ¥ positive definite, var(e,) = o2
and cov(ey, €,) = puyo?, where py, is the correlation
between €, and ¢€,, (u,v =1,..., N). Under these as-
sumptions, the covariance matrix of the response vec-
tor becomes cov(Y) = ¥. Additionally, the hypoth-
esis tests for lack-of-fit to the assumed metamodel
require the usual assumption of normally distributed
¢u. The homogeneity of variance assumption is con-
sistent with the previous research discussed in §2,
however, in situations where the assumption is not
valid, we suggest that an appropriate variance stabi-
lizing transformation be applied to the response data
(see Box and Draper 1987, pp. 283-291). For further
discussion on the homogeneity of variance assump-
tion, see Donohue, Houck and Myers (1992b), Nozari,
Arnold and Pegden (1987), Schruben and Margolin
(1978), and, Tew and Wilson (1992a).
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The metamodel parameters in (3) can be estimated
using ordinary least squares (OLS) or generalized
least squares (GLS), assuming the X matrix is non-
singular. These estimators are given by

> [ (X'X)"'X'Y for OLS (4)
A= (X'27'X)"'X'®7'Y for GLS.

The GLS estimator has the disadvantage of being de-
pendent on the covariance structure of the response
observations, and the estimation of ¥ requires repli-
cation of the design points. However, the dispersion
matrices of both the OLS and GLS estimators in (4),

- [(X'X)"1X'EX(X'X)"" for OLS
cov(B)={ (x'z-1x)-1 for GLS,

depend on X. Since the “optimal” sequential designs
that we develop for the CR and AR strategies de-
pend on the cov(ﬁ), a pilot study is needed to esti-
mate the magnitudes of the induced correlations in
Y. Even for the IR strategy, with Xz = 021y, we
recommend that a pilot study be performed in order
to check for violations of the normality and homo-
geneity of variance assumptions.

The following two sections present the experimen-
tal design criteria used to determine the optimal se-
quential design plans and the correlation induction
strategies used to assign random number streams to
the stochastic model components.

3.1 Design Criteria

Response surface models are generally first- or
second-order regression models that are intended to
provide the experimenter with some knowledge about
the nature of the true, but unknown and frequently
complicated, relationship between the response and
the input variables. Box and Draper (1959) presented
a design criterion that protects against model mis-
specification by incorporating both variance and bias
errors of the predicted response. Since the assumed
metamodelin (3) can only approximate the true func-
tional relationship, Box and Draper proposed that the
experimental design plan be developed so as to pro-
tect against biases in the predicted response due to
model terms of order one degree higher than the fit-
ted metamodel. In the case of a first-order model,
protection against bias due to unfitted quadratic and
two-way interaction terms would be desired and, in
the case of a second-order model, the experimental
design plan should protect against bias due to unfit-
ted third-degree terms.

Box and Draper’s design criterion is the minimiza-
tion of the integrated mean squared error of the pre-
dicted response variable, normalized with respect to

the number of experimental design points and the
experimental error variance. Letting = denote the
region of interest, £ denote a point within =, ?(f)
denote the fitted response at the point £ € Z, and
Y( denote the “true” response (assuming the true
metamodel is of order one degree higher than the fit-
ted model), the integrated MSE of response criterion
becomes the minimization of

%%/SE{[?«VE(Y@))]Q} @
= V+8B (5)

-
|

where Q=1 = [_ d€ is the volume of the region of
interest and V and B are the integrated variance and
bias errors of the predicted response, defined as

vV = NQ':‘/Evar (Ye)) de (6)

o2
8 = T [y (Ve) de

An extension of the integrated MSE of response
criterion, involving the partial derivatives, or slopes,
of the response function was developed by Myers and
Lahoda (1975). Similar to Box and Draper, these
authors assume that the experimental design plan
should provide protection against bias due to unfitted
model terms of order one degree higher than those in
the fitted metamodel. The integrated MSE of slopes
criterion, however, considers only the variance and
bias errors that affect the gradient information ob-
tained from the metamodel coefficients. Therefore,
it is a useful criterion when estimating the rate of
change in the response variable is more important
than estimating the value of the response variable.
This criterion, as presented by Myers and Lahoda,
calls for the minimization of

o= N;zzs/;_E{[ﬁ(f)“f(&]l ["(6)"’05)]} %
= V'+8B’ 0

where ;/(f) and Y(¢) are k-dimensional column vec-

tors of the partial derivatives of the fitted and true
metamodels (e.g., the third row of 4 ¢, is partial

derivative of Y(() with respect to the third regressor

variable, £3), and V" and B* are the integrated vari-

ance and bias errors of the response function slopes,
defined as

vt o= iag_:. /5"“ (ve)) ¢ ®)

B" = Ncgs /Ebias2 () &
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The first stage of the sequential design procedure
presented in §4 is performed in order to estimate the
bias error resulting from unfitted second-order terms.
In the second stage, the design is augmented with
additional points such that the combined design plan
minimizes J or J* for a fitted first-order metamodel.
If there is an indication of quadratic curvature in the
response surface, then a third stage of the sequential
design process is performed. The combined, three-
part design plan is a central composite design that
minimizes V or V* for a fitted second-order meta-
model. We call these sequential designs plans “Min-
V/Min-J” and “Min-V*/Min-J*" designs.

3.2 Assignment Strategies

In addition to the selection of a design criterion, the
experimenter must choose a method of assigning ran-
dom number streams to design points. Similar to the
earlier research noted in §2, we consider three assign-
ment strategies: IR, CR, and AR. In this section,
we present the structure of X', the covariance matrix
of the response observations for each strategy. The
basic form of this matrix,

1 P2 Pin
1 :
Y=cov(Y) = = o?,
: . PN-1,N
PNy PNz 1

(9)
1s a result of the homogeneity of variance assumption
discussed in §2.

For the IR strategy, a different random number
stream is assigned to the m stochastic model com-
ponents on the N simulation runs, thereby requir-
ing mN stream sets. This strategy generates in-
dependent response observations (py, = 0, for all
u,v = 1,...,N), and the covariance matrix in (9)
becomes X\x = 02Iy.

For the CR strategy (as applied in this research),
a common set of m streams is used for all non-center
points, and independent stream sets are used for cen-
ter runs. Letting N: denote the number of center
runs, the CR strategy requires m(Nc + 1) stream
sets for the experimental design. Following the as-
sumptions of Schruben and Margolin (1978), we as-
sume that pairs of responses generated with com-
mon streams are positively correlated with a constant
magnitude of p, (0 < p, < 1); that is, cov(Yy,Y,) =
o%p, if Y, and Y, are generated with a common set of
random number streams, say R;. If the response vec-
tor is partitioned as Y’ = (Yy;.|Ypn,), where Y
consists of Nyc non-center points and Yx. consists

of N center points, then the partitioned covariance
matrix for the CR strategy becomes

[ 1 py P4 1
P+ 1 . ONNCO;VC
Yer = : P o?
P Py o 1
| ONc OMC INC ]

(10)
where 0; is an i-dimensional column vector of zeros.
The AR strategy requires that the experimental
design partition into orthogonal blocks. In this re-
search, a common set of streams, say R, is used
in the first block, and the antithetic set of streams,
R, = 1 — Ry, is used in the second block (where
1 is an appropriately dimensioned matrix of ones).
The first and second blocks are different fractions of
a two-level factorial design. Center runs and any ax-
ial points for a central composite design are placed
in a third block and use independent stream sets.
Again, we follow the assumptions of Schruben and
Margolin (1978) and assume that pairs of responses
generated with common streams (within either of the
first two blocks) are positively correlated with a con-
stant magnitude of p,, and pairs of responses gen-
erated with antithetic stream sets (one from each of
the first two blocks) are negatively correlated with
a constant magnitude of —p_ (0 < p_ < 1); that
is, cov(Yy,Y,) = —o?p_ if Y, and Y, are generated
with an antithetic set of random number streams, say
R, and R;. If the response vector is partitioned as
Y' = (Yn,|Yn,|Yn,), where Yy, consists of the N;
points in the ith block, then the partitioned covari-
ance matrix for the AR strategy becomes

[ (1 - p+)IN1 _lNll}V;P— On, 9\/3

+1N119V1P+
Tan = —1n, l?le— (1= p)IN, ON2OIN3 o’
+1N21§V2p+
0N30§V, On, 05\/3 Iy,

(11)

where 1; is an i-dimensional column vector of ones.

4 SEQUENTIAL DESIGN PROCEDURE

The sequential design procedure for the estimation
of a first- or second-order metamodel consists of two
primary stages (stages one and two), an optional third
stage, and a pilot study that is required when the CR
or AR strategy is used. In this section, we present the
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sequential procedures of developing both Min-V /Min-
J and Min-V*/Min-J* experimental design plans.
As an example of the three stages of the design pro-
cedure, consider the three factor experimental design
in Table 1. The right-hand side of the table specifies

Table 1: A k = 3 Sequential Design

& & & IR CR AR

 +1 41 +1 | R R, R

+1 -1 -1 R, R, Ry

D, = -1 +1 -1 R3 R, R,
-1 -1 +1 Ry R, R,

0 0 0 R R, R,

0 0 0 R R;3 Rj3

. 0 0 0 | R R« R

+9 +9 -9 Rs R, Ry

Dyy=| +9 -9 +g Ry R, R,
-9 +9 +g Rio R1 R

| -9 -¢ —¢ | Ru R R

B +a 0 0 ] R12 R] RG

d( 4 0 0 R13 Rl R7

D5 = 0 4a 0 R,y R; Rg
0 —a 0 R15 Rl Rg

0 0 4o Ry¢ R, R

0 0 —«a ] R17 R1 Rll

the random number streams assigned to each design
point for the IR, CR, and AR strategies. The design
matrix for the first stage, D1, is a fractional factorial
design (here, a one-half fraction) with the levels of
the coded input variables, &, at the X1 extremes
of the cuboidal region of interest. The design is also
augmented with replicated center runs (&iw = 0, for
i=1,---,k) in order to estimate the quadratic bias
parameter needed for minimization of J in (5), or J*
in (7), in the second stage. The design matrix for
the second stage, D5, is a different fraction of the
factorial design, and the levels of the input variables
are located at +¢. The combined design plan of the
first two stages is a first-order experimental design
that minimizes the estimated value of J or J* through
an appropriate choice of the factor level g. Utilizing
information from the fitted first-order metamodel, a
statistical test for quadratic lack-of-fit is performed.
If a second-order metamodel is needed to adequately
describe the response surface, then a third stage is
performed in which the factorial design is augmented
with D3, the axial portion of a central composite de-
sign. The value of « is selected so as to minimize

V in (6), or V* in (8), of a second-order metamodel.
The combined design plan, utilizing all three stages, is
a Min-V/Min-J or Min-V*/Min-J* experimental de-
sign.

4.1 Pilot Study

For all three assignment strategies, a pilot study
should be performed to check for violations of the
normality and homogeneity of variance assumptions.
We recommend that the pilot study consist of the
n fractional factorial design points used in the first
stage of the sequential design procedure. (For ex-
ample, n = 4 for the design in Table 1.) Tew and
Wilson (1992a) recommend that the number of inde-
pendent replications for the pilot study, r, be within
the range max{2n, 16} < r < 32. These authors de-
velop a test for multivariate normality based on the
Shapiro-Wilk statistic and they recommend that the
response data at each of the n design points in the
pilot study be checked for univariate normality using
normal probability plots. If the multivariate or uni-
variate normality assumptions do not hold, then the
experimenter should apply an appropriate “normal-
izing” transformation to the response data (see Box
and Draper 1987, p. 281).

The homogeneity of variance assumption can be
checked using Bartlett’s test (1937) when the re-
sponse data is normally distributed or, if slight de-
viations from normality exist, any of the robust tests
investigated by Conover, Johnson and Johnson (1981)
can be used. If the homogeneity of variance assump-
tion is violated, then the experimenter should use
an appropriate “variance-stabilizing” transformation
(see Box and Draper 1987, p. 283).

For the CR and AR strategies, the pilot study is
also used to check for violations of the assumed co-
variance structure in (10) or (11). Morrison (1990,
p. 294) provides a likelihood-ratio test for the as-
sumed structure of ¥ under the CR strategy and
Tew and Wilson (1992a) present a similar likelihood-
ratio test for the AR strategy. If the assumed co-
variance structure appears to be incorrect, then the
experimenter should carefully check the simulation
program for proper synchronization of the random
number streams (see Law and Kelton 1991, p. 619).
When the experimenter has taken the necessary steps
to achieve proper synchronization, yet the assumed
covariance structure under the CR or AR strategy
appears to be incorrect, we recommend that the IR
strategy be used.

For experimenters using the CR or AR strategy,
estimates of the induced correlation magnitudes are
needed for computations performed in stages one and
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two. Silver and Dunlap (1987) note that when av-
eraging a set of correlation coefficients, the average
Pearson correlation coefficient is biased negatively,
whereas the back transform of the average Fisher’s
z-transformation (z = tanh™!p) tends to be biased
positively, but the magnitude of the latter bias is
smaller. These authors, as well as Rao (1973), rec-
ommend the use of Fisher’s z-transformation for es-
timating an average correlation coefficient. Using the
2-transformation, the estimate of p, for the CR strat-
egy becomes p, = (e?* — 1)/(e% + 1), where Z is
the average of the n(n — 1)/2 z-transformations of
the pairwise correlations in a pilot study of n design
points. The estimates, j, and p_, for the AR strat-
egy are similarly computed, using n(n — 2)/4 posi-
tive correlations and n?/4 negative correlations. Rao
(1973, p. 434) also provides a useful statistical test
for the homogeneity of a set of correlation coefficients.
We recommend that this test be performed on the set
of correlations used to compute 5, and p_.

Equation (4) indicates that when the metamodel
parameters are estimated using GLS, an estimate of
X is also required. Since the pilot study only repli-
cates design points in the first stage of the three-stage
experimental design, we cannot estimate X for the
entire experimental design unless we assume that the
structure of X will be the same in each stage. Em-
pirical results of the research studies noted in §2 indi-
cate that this assumption appears to be reasonable.
Therefore, we suggest that the experimenter compute
Ycn and ¥, using equations (10) and (11), replac-
ing p,, p_, and o? with their estimators 4., p_, and
2. In following section, we provide an appropriate
estimator of 02 using response data collected from the
center points in the first stage of the design.

4.2 First Stage

The purpose of the first stage of the sequential de-
sign procedure is to estimate the quadratic bias pa-
rameter needed for minimization of J in (5) or J*
in (7). A fractional two-level factorial design, aug-
mented with replicated center runs, is used in this
stage (see the design matrix D; in Table 1). The
center runs use independent random number streams
for all three strategies, but the factorial points use a
common set of streams for the CR and AR strate-
gies. For the AR strategy, this fractional factorial
design is one of two orthogonal blocks (the second
block is the design used in stage two).

Box and Draper (1987, pp. 72, 189), Khuri and
Cornell (1987, p. 167), and Myers (1976, p. 116) in-
dicate that independently replicated center runs pro-
vide estimates of both o2 and the quadratic bias pa-

2 .
rameter ¢ = N(Zfﬂ Bii) /o?. The pure experi-
mental error variance is computed from the indepen-
dently replicated center runs as

Nec T \2
2, Yy =Y.
5% = Z“‘IA(, - 1 ) for u € {center runs}
L —

where Y is the average response at the N center
points. If we assume that the true response surface is
second-order, then an unbiased estimator of the sum
of the pure quadratic coefficients, Zfﬂ Bii, s the dif-
ference Yuc — Ye, where Y;c is the average response
at the N — N non-center (factorial) points. A rea-
sonable estimator of the quadratic bias parameter is

then
N

0¢ = &_Z(YNC - Yc)z-

The optimal levels for the design points in stage
two of the sequential design procedure, ¢, can then
be determined from the Min-J or Min-J* values of
the pure second-order design moment, defined as
A= ZuNzlfii/N, fori =1, -- k. For the combined
design of stages one and two, this design moment,
denoted Mg, is computed as

N
o= g (L+¢7) (12)
where N is the total number of factorial design points
and Nj is the total number of design points in the
combined design for stages one and two. (For exam-
ple, N; = 8 and N3 = 11 for the design in Table 1.)
The optimal value of A3, denoted A}, is “as large as
possible” for a Min-J* design. For a cuboidal region
in the coded design variables, we specify

M =1 for a Min-J* design. (13)

The optimal value of A(0 < A < 1) for a Min-J de-
sign, obtained by setting the derivative dJ/d), equal
to zero, tends to be smaller than the Min-J* value in
(13). For the CR and AR strategies, this optimal
design moment depends on the induced correlation
magnitudes (p, and p_) and the parameter estima-
tion technique (OLS or GLS). Due to space limita-
tions, we refer the reader to Donohue, Houck and
Myers (1992a) for the equations needed to compute
the Min-J value of A\}. Having determined the value
of A}, we solve equation (12) for the optimal level of
the factorial design points in the second stage,

[2N, A}
t — _
gt = A 1. (14)

In some instances, additional center runs are needed
in stage two in order to achieve the optimal value of
gtin (14).
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4.3 Second Stage

The purpose of the second stage is to estimate a
first-order metamodel using a design that, when com-
bined with stage one, minimizes the estimated mean
squared error (J or J*). The optimal levels of the fac-
torial design points for this second stage are g* (see
the design matrix D2 in Table 1). Independent ran-
dom number streams are used for the IR strategy in
stage two but the CR strategy uses the common set
of streams from stage one again in stage two. For the
AR strategy, the second stage represents the second
orthogonal block (see Myers 1976, p. 180, for the or-
thogonal blocking requirements in first-order designs)
and the stream set that is antithetic to the common
set used in stage one is used in stage two.

An additional objective of the second stage is to
perform a hypothesis test for quadratic lack-of-fit. A
test of the null hypothesis Hg: Ele Bii = 0 versus
H,: Zle Bii # 0 is provided by Khuri and Cornell
(1987, p. 167) and Myers (1976, p. 116). The test
statistic, F' = (NoN;(Yuc—Ye)?/(6%(Ne+ N )) follows
an Fy no—1 distribution. If the null hypothesis can-
not be rejected, then the third stage of the sequential
design procedure need not be performed since a first-
order metamodel appears to be adequate. However,
the experimenter should test for lack-of-fit due to un-
fitted interaction terms (see Box and Draper 1987,
p. 73 and Khuri and Cornell 1987, p. 155) and in-
clude these terms in the fitted first-order metamodel
if necessary.

When the null hypothesis of no quadratic lack-of-fit
1s rejected, indicating the need for quadratic terms in
the metamodel, a third stage should be performed in
order to fit a second-order metamodel. By augment-
ing the design of stages one and two with the axial
points of a central composite design, a second-order
metamodel can be estimated. Since the factorial de-
sign does not provide the estimates of cubic bias that
would be needed to minimize J or J* of a second order
design, we instead minimize V in (6), or V* in (8), in
this third stage through an appropriate choice of the
axial levels, . Similar to approach taken in stage
one, we determine the value of the pure second-order
design moment that results in a minimum value of V
or V* for 0 < A < 1. For the combined three-design,
this design moment, denoted A3, is computed as

2

N 2 2o
/\3—2N3(1+9)+N—3 (15)

where N3 is the total number of design points in the
combined design of stages one, two and three. Dono-
hue, Houck and Myers (1992c) present scalar equa-
tions for V and V* that can be used to iteratively de-

termine the optimal value of A3, denoted A}. These
equations are developed for each of the following sit-
uations: IR strategy; CR using OLS or GLS estima-
tion; and AR using OLS or GLS. Empirical results
show that A} tends to be larger for the Min-V* de-
signs than for the Min-V designs, and it tends to be
larger for OLS estimation than for GLS estimation.
Inserting the optimal value of A3 into equation (15)
and solving for a, we find that the optimal level of
the axial design points for third stage is

N3) N
072\/—;3—f(1+y2).

In some instances additional center runs are needed
to achieve the optimal value of a' in stage three.

4.4 Optional Third Stage

The third stage of the sequential design procedure
augments the factorial design of stages one and two
with the axial portion of a central composite design.
The optimal levels of the axial design points in the
third stage, a', are selected for minimization of the
integrated variance error (V or V*) of a second-order
design (see the design matrix D3 in Table 1). The
IR and AR strategies use independent random num-
ber streams for the axial points, but the CR strategy
uses the common stream set used in stages one and
two. We recommend that this stage be performed
when there is evidence of quadratic lack-of-fit in the
first-order metamodel. The Min-V/Min-J or Min-
V* /Min-J* central composite design provides the re-
sponse data needed to fit a second-order metamodel
with linear, quadratic and two-way interaction terms.

5 SUMMARY

We have presented a method of estimating first- and
second-order simulation metamodels using a sequen-
tial design procedure. The Min-V/Min-J and Min-
V*/Min-J* that we develop can be used with one
of three random number assignment strategies (IR,
CR, or AR) and with either of two parameter esti-
mation techniques (OLS or GLS). Empirical evidence
generated by the authors indicates superior perfor-
mance of the AR strategy, particularly when GLS
estimation is used. Since analytical comparisons of
the performance of the designs cannot be made, we
suggest that further empirical research be conducted
using a variety of true response functions.
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