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ABSTRACT

We consider the model £(v) = [Ey, {L(Y,,v2)}, v =
(v1,v2), in a Monte Carlo simulation context with
particular emphasis on queueing models with TES
input sequences. Here L is the sample performance
driven by an input sequence Y, = (Y'1,...,Y), each
Y;, j =1,...,t, being a sample from a probability
density function (pdf) f(y,v:),
a vector of parameters (the subscript v; in [Ey, L in-
dicates that the expectation is taken with respect to
the pdf f(y,v1)); TES is a versatile class of Marko-
vian processes which can be used to model empiri-
cal time series by simultaneously approximating their
empirical marginal (histogram) and leading autocor-
relations.

and v = (v,v2) 1s

To estimate the performance /(v) and the associ-
ated sensitivities V¥ f(v) = {V% #(v), Vi (v)}, k=
0,1, we consider the so- called push out” and “push
in” (infinitesimal perturbation analysis) approaches.
We show that the “push out” technique merely re-
places the ongmal sample function L(v2) by an aux-
iliary one L while “pushing out” the parameter vector
vy from L(vsy) to an auxiliary pdf f(y,v ). We also
show that the IPA method, introduced by Ho and
his co-workers, corresponds to the “push in” tech-
nique; the latter can be viewed as a dual of the push
out” technique. We finally show that the “push in”
transformation = x(y, v;) typically leads to a non-
smooth sample performance function, violating the
interchangeability conditions of expectation and dif-
ferentiation.

1 INTRODUCTION

This paper deals with sensitivity analysis of DES (dis-
crete event systems) for the model

[(v):lEvl{L(X,,vg)}. (1.1)

521

Reuven Y. Rubinstein

Faculty of Industrial Engineering and Management
Technion — Israel Institute of Technology

Haifa 32000, ISRAEL

Here L is the sample performance driven by an input
sequence Y, = (Y,...,Y,), eachY;, j=1,...,¢,
being a sample from a probability density function
(pdf) f(y,v1), and v = (vi,v2) is a vector of pa-
rameters (the subscript v; in IEy, L indicates that the
expectation is taken with respect to the pdf f(y,v1)).
We assume that f depends on »; and not on wg,
whereas L depends on v, and not on v;. Note also
that the standard model £(v) = [Ey{L(Y,)} can be
considered as a particular case of the model (1.1) with
L independent of v2 and v = v;.

Our goal is to perform sensitivity analysis, namely,
to estimate the expected steady-state performance
f(v), v = (v1,v2) and the associated sensitivities
V*¢(v), k > 1. We focus on queueing models, with
particular emphasis on autocorrelated TES arrival
processes; TES is a versatile class of Markovian pro-
cesses which can be used to model empirical time
series by simultaneously approximating their empir-
ical marginal (histogram) and leading autocorrela-
tions (see below).

Assume that the output process {L; : t > 0} is
driven by an autocorrelated input sequence {X; :
t > 0}; that is, L) = L«(X,), where X, =
(X1,X2,...,X¢) and Ly(-) is a sequence of real-
valued functions. As an example one may think of au-
tocorrelated interarrival times and service time ran-
dom variables in a G/G/1 queue with {L; : t > 0}
being the waiting time process. We assume, for sim-
plicity, that {.\; : ¢ > 0} is a l-dimensional process
and that it can be written recursively as

Xi(vg) = o(N¢oy, Y1, v2) = 2(Y,,v2,), t >0, (1.2)
where z is a real-valued function, and {Y; : t > 0} is
an iid sequence as before. It follows that the sequence
{X, : t > 0} itself is a function of an iid sequence
{Y; : t > 0}; e, Xy() = Xo(Y,, v2), where the
X¢(-) are real-valued functions, Y, = (Y1,Y2,...,¥3),
where Y; ~ f(y,v1), j = 1,2,..., and vz s the
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parameter vector associated with the autocorrelation
function of the sequence X7, X, ..., \;. The param-
eter vector vo will be called the autocorrelation pa-
rameler vector (see examples below). We also assume
that as { — oo, both processes {.X; : t > 0} and
{Ly : t > 0} become stationary and ergodic. As ex-
amples of {.\; : f > 0} consider:

(1) AR(1): First order autoregressive.

Xy =1,
Nera) = (13)
vo Ny + Y7, if t > 1,

where —1 < v < 1, and similarly for higher
order autoregressive processes and ARMA(p,q)
processes.

(2) TES: Transform-Expand-Sample. Consider
random variables of the form

Xi(va) = F"l[m(vg)], (1.4)

where F~! is the inverse function of a cdf
F(y,v). Then X;(vy) ~ F; for example, if
Y ~ exp(v), then X; = (=1/v)In(1 — 7n,), where
7, is uniform on [0,1). There are two basic
classes of TES processes: TES* and TES™ (see
Melamed 1991, Jagerman and Melamed 1992ab).
The class TESt includes the simple processes
{nt(v2)}, given recursively by

[y, if t =0,

0 (v2) =
mt,+ L+ (R- L)), ift>0.
(1.5)
Here vo = (L, R) where —1/2< L < R <1/2,
(r) = 2 — |z] is the fractional part of r, |r| =
max{n intcger : n < r} is the integral part of
r, and {l/;} is a sequence of iid random vari-
ables, uniform on [0,1). It can be shown that
the sequences {nf} cover all positive lag-1 au-
tocorrelations in the range [0,1) by varying the
paramecters L and R. To similarly cover all neg-
ative lag-1 autocorrelations in the range [—1,0)
one may use the class TES™ which includes pro-
cesses {1, (vy)}, defined via the (antithetic) for-

mula _
n if ¢ even

N o= (1.6)
1 —nf, if t odd.

It can be shown that the marginals of both
sequences {n} and {n;} are uniformly dis-
tributed on the interval [0,1), and therefore,
can he readily transformed to general marginal

distributions F' via (1.4). Furthermore, TES
processes possess a variety of autocorrelation
functions, which make them particularly suit-
able for fitting empirical data. In particu-
lar, if R — L — 0, then {X; : t > 0} ap-
proaches the (conditionally) deterministic pro-
cess {F~YWUp), F~Y(Uo),....}; if R— L = 1,
{X; : t > 0} reduces to an iid process with
marginals F; and if 0 < R — L < 1, then
{X: : ¢ > 0} exhibits a variety of autocorre-
lation structures, including monotone, oscillat-
ing and alternating. For more details on general
TES processes see Melamed (1991), and Jager-
man and Melamed (1992a,b).

The rest of the paper is organized as follows. Section
2 deals with sensitivity analysis of the model (1.1).
Special emphasis i1s placed on the smoothness of the
sample function L(y,v2) and on variance reduction.
Here we present two techniques, based on transform-
ing random variables; these are called the “push out”
and “push in” techniques, respectively. The terms
“push out” and “push in” derive from the fact (see
below) that in the first case we “push out” the pa-
rameter vector v, from the original sample perfor-
mance L(Y ,vy) into an auxiliary pdf by a suitable
transformation, and then apply the standard Score
Function (SF) method; in the second case we oper-
ate the other way around, namely, we first “push in"
(by a suitable transformation) the parameter vector
v, Into the sample performance L(Y,v-), and then
differentiate the resulting (auxiliary) sample perfor-
mance with respect to v = (vy,vs). We discuss con-
ditions under which such transformations are useful
in the sense that they either generate smooth sam-
ple performances or lead to variance reduction. We
also show how the nfinitesimal perturbation analysis
(IPA) method, introduced by Ho and his co-workers,
corresponds to the “push in” technique; the latter
can be viewed as a dual of the “push out” technique
and fits into the paradigm described below. Section
3 presents numerical results.

2 “PUSH OUT” AND “PUSH IN” ESTI-
MATORS

2.1 Smoothness and Variance Reduction

This subsection presents some background material
on two techniques, called “push out” and “push in”.
We shall show below that the first technique typl-
cally smooths out the sample performance function
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L(y,v2) with respect to v by making it independent
of v,, while the second technique can lead to variance
reduction. Both techniques are based on the standard
change of variables method.

(a) The “Push Out™ Technique. To demonstrate
the idea of the “push out” technique, first described
in Rubinstein (1992a), consider a simple DES and
suppose that there exists a vector-valued function
z = x(y,v-) and a real-valued function L(z) inde-
pendent of va, such that L(y,v2) can be represented
as

L(y.,v2) = L[z(y. v2)]. (2.1)

Furthemore, suppose that for Y ~ f(y,v,), the
corresponding random vector X = x(Y,v:z) has a
known pdf f(a',vl,vg). We can then write £(v) as

(v) = /L(y,mf(y.vl)dy

/L(m f(z,v)de = EH{L(X)}, (2:2)
where the expectation is now taken with respect to
the pdf f(z, v, v3). Thus, the parameter vector vs is
effectively “pushed out” from L(y, v2) to an auxiliary
pdf f(z, vy, v2).

It is important to understand that the representa-
tion of L(y,vz) in (2.1) and the subsequent trans-
formation (2.2) are not always available, and even
when available, the corresponding random vector X
may not have a density function (with respect to the
Lebesgue measure). Also, even if f(z,v),v2) exists,
it may be difficult to calculate. (For more details see
Rubinstein and Shapiro 1992).

Suppose now that for every v the function = =
z(y,v+) is one-to-one and thus has an inverse y =
y(x,v4), which is assumed to be continuously differ-
entiable in z. In this case we have

dy(x,vz)

= flyle,v2), o] |[L2

f(:l:,'l’], ..' " (23)

where |0y/0x| denotes the absolute value of the de-
terminant of the Jacobian matrix of y(x,v2) with re-
spect to . For example, suppose that v; has the same
dimensionality as y, and that the function L(y,v2)
can be represented as L(y,v:) = L(y + v2). We can
then define # = y + v2, and obtain

f(w,v):f(m—vg,vl), (2.4)

which is typically smooth in v (e.g., exponential fam-
ily).

(b) The “Push In” Technique. This technique
can be considered to be dual to “push out” in the
sense that one searches for a transformation y =
y(x, vy) such that the distribution of the correspond-
ing random vector ¢ = (Y, v;) is independent of vy .
In this case, £(v) can be represented as

f(v) = /L(a:,v)f(:c)d:c =E{L(X,v)}, (25)

where L(z v) = L{y(z,v;),v2], f(=
of vy and vj, and v = (v}, va).

) 1s independent

2.2 Sensitivity Analysis via the IPA Tech-
nique

The main observation of this subsection is that the
infinitesimal perturbation analysis (IPA) method, pi-
oneered by Ho and his co-workers (see, e.g., Ho et
al. 1979, Glasserman 1991), corresponds to the “push
in” technique. Furthemore, the case where f =1on
the interval [0,1) (i.e., X has uniform [0,1) distri-
bution) is of particular interest. Letting F'(y,v;) be
the cdf of the random variable Y, the transformation
x = x(y,v) reduces in this case to

r=r(y,v1) = F(y,v), (2.6)

or, equivalently,

y= F_l(x,vl)_ (2.7)

We point out that the original IPA approach is con-
strained by the fact that the transformation (2.6) typ-
ically leads to a sample performance function L(x,v)
which is nondifferentiable in v (see, e.g., Heidelberger
1986, Heidelberger et al. 1988, L’Ecuyer 1990). As a
result, the required interchangeability conditions for
expectation and differentiation do not hold. Further-
more, when L(wv) is not available analytically, it typ-
ically allows estimation of the sensitivities at a fixed
v only, whereas the SF method allows estimation
of V¥¢(v) everywhere. Consequently, when dealing
with optimization problems, the IPA approach must
rely on slowly-converging iterative algorithms of the
stochastic approximation type, and thus on multiple
simulations; see, e.g., L’Ecuyer (1992) and Kushner
and Clark (1978). In contrast, its SF method counter-
part solves an entire constrained optimization prob-
lem from a single sample path (see Rubinstein and
Shapiro 1992). On the other hand, the IPA approach
enjoys the advantage that its sensitivity estimators
typically have a smaller variance than the standard
SF estimators (assuming the interchangeability con-
ditions hold).
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Example 2.1 Indicator functions. Suppose
that we want to estimate V¢(v), where f(v) =
Py, {L(Y,v2) < a}, L being, say, the waiting time
m a GI/G/1 queue. The IPA approach will not
work, since the inverse transformation (2.7) leads to
a plecewise constant sample function (taking only
0 and 1 values). However, if we represent f(v) as
((v) = Ey, {I -~ o0)[L(v2) — a]}, by combining the
standard SF approach with the “push out” technique,
we can estimate V/l(v), v = (vy,vs), everywhere
from a single sunulation run.

We next show how to apply the IPA technique in
order to estimate the derivative of the steady-state ex-
pected waiting time €(v) in a GI/G/1 queue. To this
end, we shall use Lindley’s recursive (sample path)
equation for the waiting time process L,

L] :0, Lt+1 :max{O,L,+Zt}, t Z 1, (28)
where Z; = Y1, — Yo(;41). Assume first that the input
sequences are independenil, and consider separately
the SF and the IPA approaches. The naive SF ap-
proach based on the representation

VEo(v) = By { L VW) (2.9)

fails, since for large t, the variance of the associ-
ated SF estimators is very large (see, e.g., Rubinstein
and Shapiro 1992). Here W, = [[;_,W;, W; =
f(Z,v)/g9(Z),and Z ~ g(z). Its IPA counterpart
produces, however, an unbiased estimator of V/{(v)
with manageable variance. The corresponding IPA
algorithm for estimating V£(v) 1s:

Algorithm 2.1 :

1. Generale the outpul process Li(v) by using Lind-
ley’s recursive equation
Ly =0, Lipi(v)= max{O,L, +Z,(v)}, t>1,
) (2.10)
where Z,(v) = Fl_l(l/lyt,vl) - FZ-I(U;;‘,H,UQ).

9. Differentiale f(v) = IELt(v) with respect to v (by
taking the derivative inside the expecled value),
where Ly s given in (2.10). Derive Vé(v) =
EV Ly(v).

9. Simulate the GI/G/1 qucue for N customers and
estimate VI(v) as

N
Vin(v)= N~ ZVL,(v). (2.11)
=1

Consider now the autocorrelated case. The corre-
sponding IPA algorithm for estimating V£(v) can be
readily derived by modifying Algorithm 2.1. Specifi-
cally, for a TES sequence we have to replace

Zi(v) = FT YUy g, v1) = By Y(Uz,041, v2)
in step 2 of Algorithm 2.1 by

Zy(v) = FT ' nf (U, o), vai)
— Fy ' nf(Uzig1,v12),v2),  (2.12)

where v; = (vy1,v12), v2 = (v21,v22), and all other
data remain the same. A similar approach can be
applied to other autocorrelated sequences.

Another situation where IPA estimators may out-
perform their standard SF counterparts, is a regen-
erative simulation with long regenerative cycles. The
RSF (regenerative score function) estimators are use-
less here, since the variance of the associated likeli-
hood ratio process W, is large (see Rubinstein and
Shapiro 1992). The IPA approach will produce esti-
mators which have much lower variance (see Glasser-
man 1991, L’Ecuyer 1990), provided the interchange-
ability conditions hold. Note, however, that in this
case we may use the following alternatives to IPA:
the CSF (conditional score function) estimators of
McLeish and Rollans (1992), the DSF (decompos-
able score function) and TSF (truncated score func-
tion) estimators (see Rubinstein 1992b). It is also
important to note that the IPA estimators are con-
sistent, while their CSF, DSF and TSF counterparts
are slightly biased. Finally, we remark that when the
output process is not regenerative, but stationary and
ergodic, we can still use CSF, DSF, TSF and IPA es-
timators.

2.3 Sensitivity Analysis Via the “Push Out”
Technique

In this subsection we apply the “push out” tech-
nique to autocorrelated sequences. Note first that
for an autocorrelated sequence {\; : ¢t > 0} of the
form Xy = 2(\\_1,Y;,v2), t = 1,2,..., we simply
have L(z,) = L(z,), where L(z,) = L(y,, v2), (see
(2.1) and (2.2)). Therefore, application of the “push
out” technique just reduces to finding the joint t-
dimensional pdf f,(z,, ..., z;,v) of the random vector
X, = (Xy,...,X}) in terms of the 1-dimensional pdf
f(y,v2) of the random variables Y;. For Markovian
processes {.\; : t > 0}, the joint pdf fi(z1,...,%1,?)
can be written as

ft(xll...,r,;vz
f(zyv) - f

(-’BQIJ?];’U) A f(l'tll't_l;’v). (213)
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With (2.13) at hand, consider the “push out” esti-

mators for V¥, (v), v = (v, vs). Let gi(z,) =
gi(x1, ..., x:) be a pdf dominating the pdf fi(z,, v) =
fi(z1,...,zs;v), where fi(®1,..., x4, v) is given in

(2.13). Assume that Z, = (Z,,..., Z;) ~ g:(z,) and
the components Z;, j = 1,....t, of the vector Z, are
dependent. In this case we can approrimate {,(v) as
£7(v) (the superscript r is the name of the approxi-
mate estimator),

6v) = Eg{d L(Z)Wi(Z,,v)},  (214)
t=1
where
~ flz,v) _ T
W (z ,v) = = 4%
«(z0v) 9:(2,) 11:[1 ’
and

f(z;lzj-1;v)
9(zjlzj-1)

The estimation of V¥¢7(v), k > 0, is similar.

I/VJ' =

We now proceed to derive an expression for W:,
driven by TES input sequences. It is straightforward
to show that the conditional pdf’s f(z¢|z:—1;v) of
TES sequences can be written in terms of the uncon-
ditional pdf f(y,v,), fort > 1, as

fi(zi|zioi,v) =

%%&m%mammmMA%ﬂm

where vy = (L, R), I{-} is an indicator function, and
C(z,L,R) is a circular interval defined in Jagerman
and Melamed (1992a). In view of (2.15), the resulting

-
W, is

—r ([ 1J(R=L) \ 17 fG,v1)
We = <1/ RO—LO)) Hf(lj»”m)x

j=1

[T 1{F (2, v1) € C(F(z4-1,01), L, R)}, (2.16)

k=1
where zero subscripts pertain to a reference system.
Now let Z11,..., 251, ZiN, - Z1uN be an
autocorrelated sequence of N busy (not necessarily
regenerative) cycles generated from the pdf g(z). We

can estimate V¥ ti(v), k = 0,1,..., from a single
simulation as follows:

NS L2V Za o)

i=1t=1
(2.17)

VAT =

It is crucial to realize that the estimators V* ]y (v)
above will be biased. The reason is that the output
process {L,} is driven by an autocorrelated sequence
Zw,...,Z:1,....Z\N,...,Z;yN, and therefore, is
not regenerative.

Consider the special case when this sequence is in-
dependent, 1.e., when the dominating density g¢;(z,)
can be writen as g¢,(z;) = I-[] 1 9(zj). Notice that
in this case, the processes {L{(Z,;)} and g:(2,) are
regenerative, because they are driven by an indepen-
dent sequence Zii,...,Z71,..,ZiN,..., ZryN-
However, the process f;(z,, v) is still not regenerative.
We argue, heuristically, that the estimator vt ~TN(v)
from (2.17) will typically be only slightly biased. The
bias can be further reduced, if the dominating pdf will
generate long cycles (this happens when the reference
queueing system is simulated in heavy traffic).

The algorithm for estimating the parameter vector
Ve (v), k> 0, everywhere in v = (v, v2) using the
“push out” method can be written as:

Algorithm 2.2 :

1. Generate an independent sequence
Zire Zotr s BNy Dy of N regener-
ative cycles from the dominating pdf g;(2,).

2. Generate the oulpul processes Li(Z,;) and
VWi(Z4)-

3. Calculate V* €, 5 (v) from (2.17).

The algorithm for generating estimators of vk e(v)
with the “push out” method is similar.

Assume that the process L,(X,) is stationary and
ergodic but not regenerative. In this case we can es-
timate Vkl’(v), k= 0,1, stmultaneously for different
values of v, and v3 by using the TSF (truncated score
function) estimators

Z"(v m) =
N T
NIy 2 b

Here the superscripts tr denote quantities associ-
ated with the truncated estimators, W/"(Z,;,v,m) =
H; —temp1 WilZji,v),m is the truncation parameter,
N is the number of batches, T is the size of the batch,
and Z11,..., 2N is a random sample from the pdf

g(z) which for each t > 0 dominates the conditional
pdf fi(ze|zio1,v)

th[( 0, m). (2.18)
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3 NUMERICAL RESULTS

This section presents simulation results employing di-
rect TSF estimators for the autocorrelated counter-
parts of the standard M/G/1 queue. We shall use
the the subscript ¢ to signify that arrivals or ser-
vices are autocorrelated, e.g., M./G/1, M/(./1 and
M./G./1. In particular M, specifies an autocorre-
lated sequence with exponential marginals.

In our examples, we considered an A./G/1
queue with gamma-distributed service times (denoted
[(u,3)). We chose an arrival rate A = 1, and set the
gamma shape parameter to § = 2. The desired sen-
sitivities were estimated with respect to the gamma
scale parameter . The performance ¢(v) was cho-
sen as the expected steady-state waiting time, where
vy = p. The reference parameter was selected to be
to = 2 (corresponding to traffic intensity po = 0.5),
and the truncation parameter was set to m = 15. We
ran Monte Carlo simulations at the reference param-
eter above, and used the SF method to do a change-
of-measure estimation of Vﬁlf(v), k = 0,1, at the
parameter value g = 5 (p = 0.4). In order to com-
pare our results with those obtained from the Crude
Monte-Carlo method (without change of measure),
we ran additional simulations of the AM./G/1 queue
with u =5, (A=1, f=2).

Table 3.1 in the Appendix presents the point esti-
mators Vfl('_',s(v,v,m), Vfll’_%(v,vo,m), k=01
(based on N = 10° customers), and the corre-
sponding half-length (in %) of the relative confi-
dence intervals, denoted w*(v,v,m), £ = 0,1, and
w*(v,vg,m), k = 0,1, as functions of « = R — L.
The a parameter is an indication of the magnitude of
autocorrelations present in a TES model, and the pa-
rameterization («, @), where ¢ = (R+ L)/, is equiv-
alent to the parameterization (L, R); see Jagerman
and Melamed (1992a) for a detailed discussion of the
meaning of o and ¢. Here v = (v;,v2), v; =y, v2 =
« (¢ = 0), and similarly for vo. We mention that the
lag-1 autocorrelation i1s a quadratic function of o and
®, and the case ¢ = 0 (equivalently, L = R) corre-
sponds to a TES process without dnift (see Jagerman
and Melamed 1992a).

Table 3.2 in the Appendix presents similar data for
an AR(1) model of arrivals. Here the autocorrela-
tion parameter vy is the lag-1 autocorrelation of the
autoregressive model.

The results of these tables are self-explanatory,
showing a good performance of the statistics under

change of measure. The results also give us a glimpse
of the effect of autocorrelation on waiting time statis-
tics. As expected, increasing autocorrelations give
rise to increased waiting times (for TES models, the
« magnitude is inversely related to the magnitude of
autocorrelation). Furthermore, the effect is more dra-
matic for TES than for AR(1), since apparently TES
autocorrelations decay more slowly. See also Livny et
al. (1993) for a similar study.

Our extensive simulation studies of sensitivity and
optimization in open queueing networks lead us to
make the following recommendations.

[i] Use the direct SF estimators, provided (a) the
variances (confidence intervals) are reasonable,
(e.g., when the expected number of customers
in a busy cycle is, say, less than 10), and (b)
the sample performance function L(vy) is differ-
entiable with respect to vy. (Clearly (b) holds
when L does not depend on v3).

[ii] Use low variance DSF (decomposable score func-
tion) and TSF (truncated score function) estima-
tors (e.g., Rubinstein 1992b), or the CSF (con-
ditional score function) method of McLeish and
Rollans (1992) if (a) fails (the variance is large).
Our numerical studies clearly indicate that DSF
and TSF estimators are highly efficient when op-
timizing DES.

[iii] Use the “push out” technique if (b) fails and the
required transformation # = x(y,v,) is avail-
able.
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APPENDIX
Table 3.1 TSF Estimators Vﬁ,(_”,\;(v,v,m), Vf,lfx(v,vo, m), k=0,1,
as Functions of the Autocorrelation Parameters vy = (a, ¢ = 0)
in a TES Model.
e without change of measure with change of measure
B(w) | wie) | Vo, ff(v) | w'(v) || &i(vo) | w(vo) | Vu,f(vo) | w'(vo)
0.1 0.348 | 4.38 -0.159 18.83 0.319 4.36 -0.150 18.96
0.2 ] 0.209 | 4.18 -0.107 15.63 0.208 4.66 -0.095 15.25
0.3 1] 0.176 | 4.14 -0.087 16.83 0.174 4.43 -0.083 14.55
Table 3.2 TSF Estimators V #4(v,v,m), V¥ 0% (v,vo,m), k=0,1,
as Functions of the Autocorrelation Parameter v,
in an AR(1) Model.
v without change of measure with change of measure
2 (v) | wO(v) | Vy, /5 (v) | w'(v) £ (vo) | wO(vo) | Vo, % (vo) | w'(vo)
0.1 0.164 | 6.05 -0.099 17.38 0.164 6.18 -0.096 13.65
0.2 ]| 0.141 6.90 -0.095 17.91 0.137 6.72 -0.091 13.15
0.3 ] 0.128 | 7.05 -0.091 18.33 0.125 7.89 -0.088 15.74
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